TUGboat, Volume 30 (2009), No. 2

Rich media annotations and AcroFreX
D. P. Story

Abstract

The Adobe Supplement to the ISO 32000 document
introduces a new annotation type, the rich media
annotation. This paper describes rmannot, a new
IXTEX package that implements this new annota-
tion. Additionally, the acroflex package, a major
application of rmannot, is also discussed with some
technical details.

Work on these two packages followed the time
the author spent working for Adobe Systems in 2008
as part of the Acrobat 9 development team.

1 Introduction

A new and exciting feature of Acrobat 9 and Adobe
Reader 9 is that an Adobe Flash player is embedded
in the application’s executable code; consequently,
version 9 offers native support for Flash video (FLV),
Flash applications (SWF), and the digital audio en-
coding format MP3. This enables a reliable cross-
platform playback experience for the user. The user
accesses the Flash player, which plays the media,
through the new rich media annotation.

The Acrobat 9 Pro user interface allows for the
creation of a rich media annotation, the specifica-
tion of the media to be either embedded or streamed
from the Internet, the selection of a skin from a col-
lection of predefined skins to control the media, and
so on. The rmannot package implements the rich
media annotation, as specified in Chapter 9.6 in the
extensions document [1], and all the user interface
features of the rich media annotation.

One of the motivations for writing the rman-
not package was the desire to write an interactive
graphing system for PDF. The acroflex package cre-
ates the AcroF[eX Graphing System, and represents
a major application of the rmannot package. To this
end, the AcroF[eX graphing widget, an SWF file,
was created using Adobe FLEX 3. The AcroFreX
graphing widget is embedded in the document us-
ing the rmannot package, and it, as its name implies,
performs and displays the graphing.

Another important part of the Acrobat/Flash
connection is to establish a communication link be-
tween the two. The scripting language of Acrobat is
JavaScript, while the Flash player uses ActionScript.
These two scripting languages can communicate us-
ing the scripting bridge, created for Acrobat for this
purpose. Details of the scripting bridge, and how
it is used, are presented in section 3 on the acroflex
package.

281

2 The rmannot package

The PDF Specification, Sixth Edition, version 1.7,
see [3], has been made into an international stan-
dard, called ISO 32000 (ISO 32000-1), see [4]. The
PDF specification, as documented in [4], is no longer
under control of Adobe, consequently, Adobe now
publishes an extensions document [1] that specifies
new PDF language features that are not in ISO 32000.
The resource document for rmannot and acroflex is
the Adobe Supplement to the ISO 32000 [1].

2.1 Multimedia for Versions 6 and 9
compared

The rich media annotation, as specified in [1] turned
out to be very straightforward to implement. The
new annotation is much easier than the complex
multimedia approach of version 6. The multime-
dia of version 6 uses what the PDF Specification [3]
calls a screen annotation, and has been implemented
for BTEX in the moviel5 package [5] by Alexander
Grahn.

The multimedia approach of version 6, which
supports a long list of media types, requires the un-
derlying operating system to locate and launch an
appropriate multimedia player residing on the user’s
system to play the media clip. In rich media anno-
tation of version 9, only SWF, FLV, and MP3 files
are supported (other media types can be converted
to one of these using Acrobat Pro Extended, or a
third party conversion utility), but the embedded
Flash player is used to play the media, so no exter-
nal multimedia player is used or needed.

2.2 Implementation notes for rmannot

As it is now written, rmannot requires the document
author to use Acrobat 9 Pro to create a PostScript
file, perhaps using dvips, and to distill it using Ac-
robat Distiller 9. Once the document is built into
a PDF, it can be viewed with Adobe Reader 9 (or
later). Currently, this package is not available to
users of pdftex.

The rmannot package is part of the AeB Pro
family of packages (see [7]), this family is a collection
of packages that require the use of Acrobat Distiller
to create PDF. The package, documentation, and
demo files can be obtained from the home page of
rmannot.!

2.2.1 Embedding media

To embed media (SWF, FLV, and MP3 files) in the
document, rmannot uses another package in the AeB

1 The rmannot home page is at http://www.math.uakron.
edu/~dpstory/rmannot.html.

Rich media annotations and AcroFjeX


http://www.math.uakron.edu/~dpstory/rmannot.html
http://www.math.uakron.edu/~dpstory/rmannot.html

282

Pro family, called graphicxsp (see [7]). The rmannot
package defines a command \saveNamedPath that
is to be executed in the preamble of the document;
\saveNamedPath uses graphicxsp commands. The
syntax is as follows:

\saveNamedPath{(name)}{{path)}

The (path) is the absolute path to the media file
(with extension .swf, .flv, or .mp3 included). The
absolute path is required because Distiller does not
work with relative paths and does not have a notion
of current directory. The (name) is a symbolic name
that is used to reference this media throughout the
document.

2.3 Creating a rich media annotation

Once the media file has been embedded, in the body
of the document, rich media annotations can be cre-
ated using the \rmAnnot command:
\rmAnnot [{options)] {{width) }{{height)}{{name)}
The {options) are key-value pairs that allow the doc-
ument author to specify any of the rich media op-
tions available through the Acrobat user interface.
The (width) and (height) are the width and height,
specified in any of the scales of measurement IXTEX
supports. The annotation may be resized, using, for
example, the \resizebox command of the graphicx
package, to any size while maintaining the aspect
ratio of the media clip. Finally, the (name) is the
name given the media by a \saveNamedPath com-
mand. This example,
\rmAnnot [poster=myPoster,
skin=skin3]{640bp}{480bp}{myFLV}
shows some of the many optional key-value pairs
available; here we specify a poster for the media (the
appearance of the media when the annotation is not
activated), and the skin to use to control this Flash
video.

The rmannot package embeds a media file only
once, but that media can be displayed and played
on multiple pages without significantly increasing
file size. Acrobat, by contrast, through its user in-
terface, will embed the same media multiple times,
once for each rich media annotation that uses that
media file. In this regard, the approach taken to em-
bedding by rmannot is superior to that of Acrobat.

There are other economies that should be men-
tioned as well. The embedded Flash player handles
SWF files natively, but requires an SWF applica-
tion to play video and sound files. FLV and MP3
files are actually played by VideoPlayer.swf and
AudioPlayer.swf, respectively. These two SWFs
are shipped with Acrobat Pro (and Extended). In
addition to these, there are seven skin files (also SWF

D. P. Story

TUGDboat, Volume 30 (2009), No. 2

files) that are shipped with Acrobat that provide
control over Flash video. The rmannot package takes
care to embed each of these, as needed, only once;
while Acrobat embeds the players and skins multiple
times. This saving of file size becomes very impor-
tant with the acroflex package, where the document
author may want many graphing screens throughout
the document.

It should be noted that the SWF players and
skins that come with Acrobat are not distributed
with the rmannot package, which would violate the
licensing with Adobe; rather, rmannot requires the
document author to have Acrobat Pro, so these files
are already on his system. The players and skins are,
by the way, one of the problems with porting rman-
not to pdftex. The SWFs cannot be redistributed,
so a package developer must write his own players
and skin SWFs, and provide them in the package
distribution.

3 The acroflex package

The acroflex package is a major application of the
rmannot package. The keys to this package are the
AcroF1eX graphing widget, which was written using
Adobe FLEX 3, and the scripting bridge that allows
communication between Acrobat (or Adobe Reader)
and the graphing widget.

FLEX 3 — available from Adobe without charge
to educators and students —is an XML-like (MXML)
markup language that is compiled into an SWF file.?
FLEX has charting (graphing) capabilities that are
exploited by the acroflex package.

The acroflex package is part of the AeB Pro fam-
ily of packages (see [7]). The package, documenta-
tion and demo files can be obtained from the home
page of acroflex.?

3.1 Features of AcroFeX

The AcroFeX graphing screen (the visual appear-
ance of the AcroF[eX graphing widget) can be in-
teractive or non-interactive. The document author
can create as many graphing screens as needed; each
screen can appear in the rich media annotation at
a fixed position in the document, or in a floating
window.

For an interactive graphing screen, the user can
enter an expression (into an Acrobat form text field)
representing a function of a single variable x, a polar
function of ¢, or a set of parametric equations that
are functions of ¢. Various controls are provided to

2 Adobe FLEX 3 can be found at http: //www.adobe. com/.
3 The acroflex home page is at http://www.math.uakron.
edu/~dpstory/acroflex.html.


http://www.adobe.com/
http://www.math.uakron.edu/~dpstory/acroflex.html
http://www.math.uakron.edu/~dpstory/acroflex.html

TUGboat, Volume 30 (2009), No. 2

change the viewing window, for shifting horizontally
and vertically, and for zooming in or out.

The author can also pre-populate the fully in-
teractive screen by creating one or more links us-
ing the \sgraphLink command. When activated by
clicking, the link passes graphing data to the graph-
ing screen to be viewed by the user. The user may
then interact with the graph.

For a non-interactive graphing screen, no con-
trols are provided to manipulate the graph; the user
can only view the graph. The screen is populated
when the user clicks a link created by the com-
mand \sgraphLink, as described above. Informa-
tion passed by the executing JavaScript of the link
to the graphing routines of AcroF[eX includes the
functional expression (or list of points to plot), do-
main, and range.

In the current version of AcroF[eX , up to four
functions can be graphed, four functions with the
shaded regions between the graph and horizontal
axis can be graphed, and four sets of plotted points
can be displayed, all on one graphing screen.

3.2 Implementation notes

The two major challenges of this package were to
write the graphing widget using FLEX 3, and to
write document-level JavaScript to calculate plot
data to be passed to the graphing widget. The plot
data is passed using the scripting bridge.

Development of the AcroF[eX graphing widget
evolved over time as my understanding of Adobe
FLEX grew. The rmannot package is then used to
embed the widget in the PDF document, and to dis-
play the widget as the graphing screen through a
rich media annotation.

On the Acrobat side, the JavaScript functions
Graph_xy and Graph_xyt were written to prepare
plot data for functions of a single variable, and for
polar functions and parametric equations, respec-
tively. These functions get graphing data supplied
by the user (in the case of an interactive graphing
screen), or receive graphing data as part of their
parameters (in the case of using \sgraphLink to
pre-populate a graphing screen). The exerquiz pack-
age (part of AeB, see [6]) is used to parse the target
function, and the graphing data then create the plot
data.

The plot data created by the graphing func-
tions is built as an XMList. For example, suppose
the function is z2, to be plotted over the interval
[-2,2], with n = 5 data points, the plot data has
the following form:
cPlotData=<points>

<point><x>-2</x><y>4</y></point>

283

<point><x>-1</x><y>1</y></point>
<point><x>0</x><y>0</y></point>
<point><x>1</x><y>1</y></point>
<point><x>2</x><y>4</y></point>

</points>

Once this XMList has been constructed, it is con-

verted to a string,

cPlotData=cPlotData.toXMLString();

We then get the rich media annotation object,

var annot = this.getAnnotRichMedia (pNum,

"afRM"+baseName) ;
and send the data to the AcroF[eX graphing widget
by way of the scripting bridge,
annot.callAS("getPlotData", graph_props, oDR,

cPlotData);

The bridge from Acrobat-to-Flash is the JavaScript
callAS method of the rich media annotation. (See
[2] for information on the callAS method). The
function getPlotData is an ActionScript function
defined in the AcroF[eX graphing widget. We pass
the function name, "getPlotData", as a string; the
properties of the plot graph_props (a JavaScript
object); the range and domain specification oDR (a
JavaScript object); and finally, the plot data itself,
cPlotData.

In order for getPlotData ActionScript function
to be recognized by the widget, it must be exposed
by the ExternalInterface.addCallback method
of ActionScript. Within the source code (MXML)
of the AcroF[eX graphing widget, we have
private function initApp():void {

ExternalInterface.addCallback(
"getPlotData",getPlotData);
1
The initApp function is executed when the graph-
ing widget is activated.

The function getPlotData, on the AcroFfeX
widget side, interprets the graph_props object to
determine what type of plot is to be created (plot
points or draw a curve, draw continuous curve or
segmented curve, shade graph or not). AcroF[eX
maintains an array of length 12 to manage all the
curves and plotted points. The function passes the
viewing domain and range, the oDR object, to the
chart for labeling, and assigns a unique color for the
curve or plot. Finally, getPlotData converts the
parameter cPlotData to XML,
var xmlPlotData:XML = new XML(cPlotData);

and populates the chart with the plot data.

3.3 Compatibility with exerquiz

The exerquiz package plays an important role in the
acroflex package by providing the parsing routines

Rich media annotations and AcroFjeX



284

for algebraic expressions; however, exerquiz was cre-
ated to provide quizzing environments for educa-
tors. The AcroF[eX graphing screens can be in-
tegrated into exerquiz quizzes using support com-
mands provided by the acroflex package. The demo
file afgraph.pdf contains several examples.

The interested reader is encouraged to view the
demo file afgraph.pdf, located at the home page of
the acroflex package.?

4 The AcrdTEX PDF blog

Following the development of rmannot and acroflex,
the AcroTgpX PDF Blog® was created for the PDF
and IWTEX communities; the blog covers various top-
ics in PDF, including extensive information on the
rich media annotation (RMA) and on the scripting
bridge. The reader interested in these topics may
read PDF blogs #1-11; these blog articles were writ-
ten using the rmannot package.

5 Concluding remarks on BTEX

The rmannot and acroflex packages forge no new
ground in IXTEX code; they build on the AeB and
AeB Pro bundles. Developing a package has be-
come easier through the years because there are so
many basic packages that are available for develop-
ers: hyperref, xkeyval, and xcolor, to name a few. In
any case, WTEX is shown to be a fine authoring sys-
tem for new applications of emerging technologies.

4 http://www.math.uakron.edu/~dpstory/acroflex.
html
5 http://www.math.uakron.edu/~dpstory/pdfblog.html

D. P. Story

TUGDboat, Volume 30 (2009), No. 2

References

[1] Adobe Systems, Inc. Adobe Supplement to the
ISO 32000, BaseLevel 1.7, ExtensionLevel 3.
http://www.adobe.com/go/pdf_developer,
2008.

[2] Adobe Systems, Inc. JavaScript for Acrobat
API Reference. http://livedocs.adobe.com/
acrobat_sdk/9/Acrobat9_HTMLHelp/index.
html, 2008.

[3] Adobe Systems, Inc. PDF Reference, Sixth
Edition, version 1.7, Adobe Portable Document
Format. http://www.adobe.com/go/pdf_
developer, November 2006.

[4] International Organization for Standardization.
ISO 32000-1:2008, Document management —
Portable document format— Part 1: PDF 1.7.
http://www.iso.com, 2008.

[5] Alexander Grahn. The moviel5 package.
Available from CTAN, macros/latex/
contrib/moviel5, 2008.

[6] D. P. Story. AcrdIEX eDucation Bundle
(AeB). Available from CTAN, latex/contrib/
acrotex, 2008.

[7] D. P. Story. AeB Pro Family of Software.
Available from CTAN, latex/contrib/aeb_
pro, 2008.

o D. P. Story
Department of Mathematics
Northwest Florida State College
Niceville, FL 32578
U.S.A.
dpstory (at) acrotex dot net
http://www.math.uakron.edu/

~dpstory/


http://www.math.uakron.edu/~dpstory/acroflex.html
http://www.math.uakron.edu/~dpstory/acroflex.html
http://www.math.uakron.edu/~dpstory/pdfblog.html
http://www.adobe.com/go/pdf_developer
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/index.html
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/index.html
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/index.html
http://www.adobe.com/go/pdf_developer
http://www.adobe.com/go/pdf_developer
http://www.iso.com
macros/latex/contrib/movie15
macros/latex/contrib/movie15
latex/contrib/acrotex
latex/contrib/acrotex
latex/contrib/aeb_pro
latex/contrib/aeb_pro

	Introduction
	The rmannot package
	Multimedia for Versions 6 and 9 compared
	Implementation notes for rmannot
	Embedding media

	Creating a rich media annotation

	The acroflex package
	Features of AcroFLeX
	Implementation notes
	Compatibility with exerquiz

	The AcroTeX PDF blog
	Concluding remarks on LaTeX

