TUGboat, Volume 30 (2009), No. 2

LuaTEX and ConTEXt: Where we stand
Hans Hagen

Abstract

We consider the release of LuaTEX 0.50 to be a very
important one, both for LuaTEX and for MKIV, so
here I will reflect on the state around this release. I
will do this from the perspective of processing docu-
ments because usability is an important measure.

1 Where do we stand?

There are several reasons why LuaTgX 0.50 is an
important release, both for LuaTEX and for MKIV.
Let’s start with LuaTgX.

e Apart from a couple of bug fixes, the current
version is pretty usable and stable. Details of
what we’ve reached so far have been presented
previously.

e The code base has been converted from Pascal
to C code, and as a result the source tree has
become simpler (being CWEB compliant hap-
pens around 0.60). This transition also opens
up the possibility to start looking into some of
the more tricky internals, like page building.

e Most of the front end has been opened up and
the new backend code is getting into shape. As
the backend was partly already done in C code
the moment has come to do a real cleanup. Keep
in mind that we started with pdfTEX and that
much of its extra functionality is rather interwo-
ven with traditional TEX code.

If we look at ConTgEXt, we've also reached a
crucial point in the upgrade.

e The code base is now divided into MKII and
MKIV. This permits us not only to reimplement
bits and pieces (something that was already in

progress) but also to clean up the code (only
MKIV).

e If you kept up with the development you already
know the kind of tasks we can (and do) delegate
to Lua. Just to mention a few: file handling,
font loading and OpenType processing, casing
and some spacing issues, everything related to
graphics and MetaPost, language support, color
and other attributes, input regimes, XML, multi-
pass data, etc.

e Recently all backend related code was moved
to Lua and the code dealing with hyperlinks,
widgets and alike is now mostly moved away
from TEX. The related cleanup was possible
because we no longer have to deal with a mix
of DVI drivers too.

187

e Everything related to structure (which includes
numbering and multi-pass data like tables of
contents and registers) is now delegated to Lua.
We move around way more information and will
extend these mechanisms in the near future.

2 Performance testing

Tracing on Taco’s machine has shown that when
processing the LuaTEX reference manual the engine
spends about 10% of the time on getting tokens, 15%
on macro expansion, and some 50% on Lua (callback
interfacing included). Especially the time spent by
Lua differs per document and garbage collections
seems to be a bottleneck here. So, let’s wrap up how
LuaTgX performs around the time of 0.50. We use
three documents for testing (intermediate) LuaTEX
binaries: the reference manual, the history document
‘mk’, and the revised Metafun manual.

The reference manual has a MetaPost graphic
on each page which is positioned using the ConTEXt
background layering mechanism. This mechanism is
active only when backgrounds are defined and has
some performance consequences for the page builder.
However, most time is spent on constructing the
tables (tabulate) and because these can contain para-
graphs that can run over multiple pages, constructing
a table takes a few analysis passes per table plus some
so-called vsplitting. We load some fonts (including
narrow variants) but for the rest this document is
not that complex. Of course colors are used as well
as hyperlinks. The report at the end of these runs is
shown in figure 1.

The runtime is influenced by the fact that some
startup time and font loading takes place. The more
pages your document has, the less the runtime is
influenced by this.

More demanding is the ‘mk’ document (figure 2).
Here we have many fonts, including some really huge
CJK and Arabic ones (and these are loaded at several
sizes and with different features). The reported font
load time is large but this is partly due to the fact
that on my machine for some reason passing the
tables to TEX involved a lot of pagefaults (we think
that the cpu cache is the culprit). Older versions of
LuaTgX didn’t have that performance penalty, so
probably half of the reported font loading time is
kind of wasted.

The hnode processing time refers mostly to
OpenType font processing and attribute processing
time has to do with backend issues (like injecting
color directives). The more features you enable, the
larger these numbers get. The MetaPost font loading
refers to the punk font instances.

LuaTEX and ConTEXt: Where we stand

188

input load time

stored bytecode data
node list callback tasks
cleaned up reserved nodes
node memory usage

h-node processing time
attribute processing time
used backend

loaded patterns

jobdata time

callbacks

interactive elements
v-node processing time
loaded fonts

fonts load time

metapost processing time

result saved in file
luatex banner
control sequences
current memory usage
runtime

input load time

stored bytecode data
node list callback tasks
cleaned up reserved nodes
node memory usage

h-node processing time
attribute processing time
used backend

loaded patterns

language load time
jobdata time

callbacks

xml load time

v-node processing time
loaded fonts

fonts load time

metapost processing time

graphics processing time
result saved in file
metapost font generation
metapost font loading

luatex banner
control sequences
current memory usage
runtime

TUGDboat, Volume 30 (2009), No. 2

0.109 seconds

184 modules, 45 tables, 229 chunks

4 unique tasks, 4 created, 20980 calls

29 nodes, 10 lists of 1427

19 glue_spec, 2 dir

0.312 seconds including kernel

1.154 seconds

pdf (backend for directly generating pdf output)
en:us:pat:exc:2

0.078 seconds saving, 0.047 seconds loading
direct: 86692, indirect: 13364, total: 100056
178 references, 356 destinations

0.062 seconds

43 files:

1.030 seconds

0.281 seconds, loading: 0.016 seconds,
execution: 0.156 seconds, n: 161
luatexref-t.pdf

this is luatex, version beta-0.42.0

31880 of 147189

106 MB (ctx: 108 MB)

12.433 seconds, 164 processed pages,

164 shipped pages, 13.191 pages/second

Figure 1: Timing reports for the LuaTEX reference manual.

0.125 seconds

184 modules, 45 tables, 229 chunks

4 unique tasks, 4 created, 24295 calls

116 nodes, 29 lists of 1411

21 attribute, 23 glue_spec, 7 attribute_list,

7 local_par, 2 dir

1.763 seconds including kernel

2.231 seconds

pdf (backend for directly generating pdf output)
en:us:pat:exc:2 en-gb:gb:pat:exc:3 nl:nl:pat:exc:4
0.094 seconds, n=4

0.062 seconds saving, 0.031 seconds loading
direct: 98199, indirect: 20257, total: 118456
0.000 seconds, lpath calls: 46, cached calls: 31
0.234 seconds

69 files:

28.205 seconds

0.421 seconds, loading: 0.016 seconds,
execution: 0.203 seconds, n: 65

0.125 seconds including tex, n=7

mk.pdf

0 glyphs, 0.000 seconds runtime

0.187 seconds, 40 instances,

213.904 instances/second

this is luatex, version beta-0.42.0

34449 of 147189

454 MB (ctx: 465 MB)

50.326 seconds, 316 processed pages,

316 shipped pages, 6.279 pages/second

Figure 2: Timing reports for the ‘mk’ document.

Looking at the Metafun manual one might ex-
pect that one needs even more time per page but this
is not true. We use OpenType fonts in base mode
as we don’t use fancy font features (base mode uses
traditional TEX methods). Most interesting here is
the time involved in processing MetaPost graphics.

Hans Hagen

There are a lot of them (1772) and in addition we
have 7 calls to independent ConTEXt runs that take
one third of the total runtime. About half of the
runtime involves graphics. See figure 3.

By now it will be clear that processing a doc-
ument takes a bit of time. However, keep in mind

TUGboat, Volume 30 (2009), No. 2

input load time

stored bytecode data
node list callback tasks
cleaned up reserved nodes
node memory usage

h-node processing time
attribute processing time
used backend

loaded patterns

jobdata time

callbacks

interactive elements
v-node processing time
loaded fonts

fonts load time

metapost processing time

mps conversion time
graphics processing time
result saved in file
luatex banner

control sequences
current memory usage
runtime

0.109 seconds

184 modules, 45 tables, 229 chunks

4 unique tasks, 4 created, 33510 calls

39 nodes, 93 lists of 1432

249 attribute, 19 glue_spec, 82 attribute_list,
85 local_par, 2 dir

0.562 seconds including kernel

2.512 seconds

pdf (backend for directly generating pdf output)
en:us:pat:exc:2

0.094 seconds saving, 0.031 seconds loading
direct: 143950, indirect: 28492, total: 172442
214 references, 371 destinations

0.250 seconds

45 files: 1.....

1.794 seconds

5.585 seconds, loading: 0.047 seconds,
execution: 2.371 seconds, n: 1772,

external: 15.475 seconds (7 calls)

0.000 seconds, 1 conversions

0.499 seconds including tex, n=74

metafun.pdf

this is luatex, version beta-0.42.0

32587 of 147189

113 MB (ctx: 115 MB)

43.368 seconds, 362 processed pages,

362 shipped pages, 8.347 pages/second

Figure 3: Timing reports for the Metafun manual.

that these documents are a bit atypical. Although ...
the average ConTEXt document probably uses color
(including color spaces that involve resource manage-
ment), and has multiple layers, which involves some
testing of the about 30 areas that make up the page.
And there is the user interface that comes with a
price.

3 Fonts and performance

It might be good to say a bit more about fonts.
In ConTEXt we use symbolic names and often a
chain of them, so the abstract SerifBold resolves
to MyNiceFontSerif-Bold which in turn resolves to
mnfs-bold.otf. As XHIEX introduced lookup by
internal (or system) fontname instead of filename,
MKII also provides that method but MkIV adds some
heuristics to it. Users can specify font sizes in tradi-
tional TEX units but also relative to the body font.
All this involves a bit of expansion (resolving the
chain) and parsing (of the specification). At each of
the levels of name abstraction we can have associ-
ated parameters, like features, fallbacks and more.
Although these mechanisms are quite optimized this
still comes at a performance price.

Also, in the default MkIV font setup we use a
couple more font variants (as they are available in
Latin Modern). We’ve kept definitions sort of dy-
namic so you can change them and combine them in
many ways. Definitions are collected in typescripts
which are filtered. We support multiple mixed font

sets which takes a bit of time to define but switching
is generally fast. Compared to MKII the model lacks
the (font) encoding and case handling code (here we
gain speed) but it now offers fallback fonts (replaced
ranges within fonts) and dynamic OpenType font
feature switching. When used we might lose a bit
of processing speed although fewer definitions are
needed which gets us some back. The font subsystem
is anyway a factor in the performance, if only be-
cause more complex scripts or font features demand
extensive node list parsing.

Processing The TEXbook with LuaTEX on Taco’s
machine takes some 3.5 seconds in pdfTEX and 5.5
seconds in LuaTgEX. This is because LuaTEX inter-
nally is Unicode and has a larger memory space. The
few seconds more runtime are consistent with this.
One of the reasons that The TEXbook processes fast
is that the font system is not that complex and has
hardly any overhead, and an efficient output routine
is used. The format file is small and the macro set
is optimal for the task. The coding is rather low
level so to say (no layers of interfacing). Anyway,
100 pages per second is not bad at all and we don’t
come close with ConTEXt and the kind of documents
that we produce there.

4 Engine performance comparisons

This made me curious as to how fast really dumb
documents could be processed. It does not make
sense to compare plain TEX and ConTEXt because

LuaTEX and ConTEXt: Where we stand

190

they do different things. Instead I decided to look at
differences in engines and compare runs with different
numbers of pages. That way we get an idea of how
startup time influences overall performance. We
look at pdfTEX, which is basically an 8-bit system,
XATEX, which uses external libraries and is Unicode,
and LuaTEX which is also Unicode, but stays closer
to traditional TEX but has to check for callbacks.

In our measurement we use a really simple test
document as we only want to see how the baseline
performs. As not much content is processed, we focus
on loading (startup), the output routine and page
building, and some basic PDF generation. After all,
it’s often a quick and dirty test that gives users their
first impression. When looking at the times you need
to keep in mind that XH{TEX pipes to DVIPDFMx and
can benefit from multiple cpu cores. All systems have
different memory management and garbage collection
might influence performance (as demonstrated in an
earlier chapter of the ‘mk’ document we can trace in
detail how the runtime is distributed). As terminal
output is a significant slowdown for TEX we run in
batchmode. The test is as follows:

\starttext
\dorecurse{2000}{test\page?}
\stoptext

On my laptop (Dell M90 with 2.3Ghz T76000
Core 2 and 4MB memory running Vista) I get the
following results. The test script ran each test set 5
times and we show the fastest run so we kind of avoid
interference with other processes that take time. In
practice runtime differs quite a bit for similar runs,
depending on the system load. The time is in seconds
and between parentheses the number of pages per
seconds is mentioned.

engine 30 300 2000 10000

xetex 1.81 (16) 2.45 (122) 6.97 (286) 29.20 (342)
pdftex 1.28 (23) 2.07 (144) 6.96 (287) 30.94 (323)
luatex 1.48 (20) 2.36 (127) 7.85 (254) 34.34 (291)
The next table shows the same test but this
time on a 2.5Ghz E5420 quad core server with 16GB
memory running Linux, but with 6 virtual machines
idling in the background. All binaries are 64 bit.

engine 30 300 2000 10000

xetex 0.92 (32) 1.89 (158) 8.74 (228) 42.19 (237)
pdftex 0.49 (61) 1.14 (262) 5.23 (382) 24.66 (405)
luatex 1.07 (27) 1.99 (150) 8.32 (240) 38.22 (261)

A test demonstrated that for LuaTEX the 30
and 300 page runs take 70% more runtime with
32 bit binaries (recent binaries for these engines are

available on the ConTEXt wiki contextgarden.net).

When you compare both tables it will be clear
that it is non-trivial to come to conclusions about

Hans Hagen

TUGDboat, Volume 30 (2009), No. 2

performances. But one thing is clear: LuaTgX with
ConTEXt MKIV is not performing that badly com-
pared to its cousins. The Unicode engines perform
about the same and pdfTEX beats them significantly.
Okay, I have to admit that in the meantime some
cleanup of code in MkIV has happened and the Lua-
TEX runs benefit from this, but on the other hand,
the other engines are not hindered by callbacks. As
I expect to use MKIT less frequently optimizing the
older code makes no sense.

5 Futures

There is not much chance of LuaTgX itself becoming
faster, although a few days before writing this Taco
managed to speed up font inclusion in the backend
code significantly (we’re talking about half a second
to a second for the three documents used here). On
the contrary, when we open up more mechanisms
and have upgraded backend code it might actually
be a bit slower. On the other hand, I expect to
be able to clean up some more ConTEXt code, al-
though we already got rid of some subsystems (like
the rather flexible (mixed) font encoding, where each
language could have multiple hyphenation patters,
etc.). Also, although initial loading of math fonts
might take a bit more time (as long as we use vir-
tual Latin Modern math), font switching is more
efficient now due to fewer families. But speedups in
the ConTEXt code might be compensated for by more
advanced mechanisms that call out to Lua. You will
be surprised by how much speed can be improved
by proper document encoding and proper styles. I
can try to gain a couple more pages per second by
more efficient code, but a user’s style that does an
inefficient massive font switch for some 10 words per
page easily compensates for that.

When processing the present 10 page document
in an editor (Scite) it takes some 2.7 seconds between
hitting the processing key and the result showing up
in Acrobat. I can live with that, especially when I
keep in mind that my next computer will be faster.

This is where we stand now. The three reports
shown before give you an impression of the impact of
LuaTgX on ConTEXt. To what extent is this reflected
in the code base? Eventually most MKII files (with
the mkii suffix) and MKIV files (with suffix mkiv)
will differ and the number of files with the tex suffix
will be fewer. Because they are and will be mostly
downward compatible, styles and modules will be
shared as much as possible.

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

