docx2tex: Word 2007 to TEX

Krisztian Pdcza

E6tves Lorand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pézmény Péter sétdny 1/C. H-1117, Budapest, Hungary

kpocza (at) kpocza dot net
http://kpocza.net/

Mihély Biczé

Eotvos Lorand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pédzmény Péter sétdny 1/C. H-1117, Budapest, Hungary

mihaly.biczo (at) t-online dot hu
http://avalon.inf.elte.hu/personal/hdbiczo/

Zoltan Porkoldb

E6tvos Lorand University, Faculty of Informatics, Department of Programming Languages and Compilers,

Pézmény Péter sétdny 1/C. H-1117, Budapest, Hungary

gsd (at) elte dot hu
http://gsd.web.elte.hu/

Abstract

Docx2tex is a small command line tool to support users of Word 2007 to publish
documents when typography is important or only papers produced by TEX are
accepted. Behind the scenes, docx2tex uses common technologies to interpret
Word 2007 OOXML format without utilizing the API of Word 2007. Docx2tex is
published as a free and open source utility that is accessible and extensible by
everyone. The source code and the binary executable of the application can be
downloaded from http://codeplex.com/docx2tex/. This paper was originally
written in Word 2007 and later converted to TEX using docx2tex.

1 Introduction

There are two general methods to produce human
readable and printable digital documents:

1. Using a WYSIWYG word processor

2. Using a typesetting system
Each of them has its own advantages and disadvan-
tages; therefore each of them has many use cases
where one is better than the other.

WYSIWYG [1] is an acronym for the term What

You See Is What You Get that originates from the
late 70s. WYSIWYG editors are usually favored by
everyday computer users whose aim is to produce
good-looking documents in a fast and straightfor-
ward way exploiting the rich formatting capabilities
of such systems. WYSIWYG editors and word pro-
cessors ensure that the printed version of the docu-
ment will be the same as the document that is vis-
ible on the screen during editing. The first WYSI-
WYG word processor called Bravo was created at
Xerox by Charles Simonyi, who is the inventor of
intentional programming. In 1981 Simonyi left Xe-

rox and joined Microsoft where he created Microsoft
Word [2, 3], the first and still the most popular word
processor. Word is capable of producing simple and
also complex documents, including those with many
mathematical symbols. Another important feature
of Word is Track Changes that supports team work.
Using Track Changes any of the team members can
modify the document while these modifications are
tracked and can be accepted or refused by the team
leader.

Typesetting is the process of putting characters
of different types in their correct place on the paper
or screen. Before electronic typesetting systems be-
came widely used, printed materials had been pro-
duced by compositors who worked by hand or us-
ing special machines. The aim of typesetting sys-
tems is to create high-quality output of materials
that may contain complex mathematical formulae
and complex figures. Similarly, electronic typeset-
ting systems follow this goal and produce high qual-
ity, device independent output. The most popular

392 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

typesetting system is TEX [4] created by Donald E.
Knuth. TgX is mainly used by researchers and in-
dividuals whose aim is to achieve the best quality
output without sacrificing platform or device inde-
pendence. The users of TEX use a special and ex-
tensible DSL (Domain Specific Language) that was
designed to solve complex typesetting problems, pro-
duce books containing hundreds of pages, and more.

There is a big gap between these systems be-
cause each tries to satisfy different demands, namely:
produce common documents quickly even in a group
setting vs. achieve the best quality and typographi-
cally correct printout. To bridge this difference there
are both commercial and non-commercial tools that
support conversion from Word or other WYSIWYG
formats to TEX (and back). The first direction, con-
verting from WYSIWYG (Word) formats to TEX, has
perhaps more frequent usage because many users
edit the original text in Word for the sake of sim-
plicity and efficiency, and later convert it to TEX by
hand in order to ensure quality.

The problems with present conversion applica-
tions include the following;:

1. many of them are available only as proprietary
tools;

2. thus they have limitations (running times or
page limit) when not purchased;

3. they support only the old, binary Word or Rich
Text document format (.doc, .rtf); and/or

4. they use the Word’s COM API to process docu-
ments, which makes them complex.

In this paper we present an open source and free so-
lution that is capable of handling the new and open
Word 2007 .docx format natively by using standard
technologies without using the COM API of Word
and without even installing Word. In this article
the current features are presented along with further
development directions.

2 Existing solutions

It has always been challenging to convert propri-
etary, binary or any other document formats to TEX.
Because Word is the most common editor, many
tools try to convert from Word documents. One of
these tools is the proprietary Word2TeX [5], which
makes Word capable of saving documents in TEX
format. This tool is embedded into Word, has an
evaluation period and can be purchased in different
license packages. A similarly featured tool named
Word-to-Latez [6] does not provide sources, though
it is available at no cost.

Another possibility is to use OpenOffice.org [7],
which is capable of reading Word documents and

docx2tex: Word 2007 to TEX

also saving them in TEX format. It is a free and
open source application; however, it interprets the
binary data of Word documents.

Rtf2latex2e [8] is the most recent solution that
translates .rtf files to TEX. It is a free and open
source application.

3 Technology

In this section we will enumerate and then briefly
review the technologies that are used in docx2tex
and show how they cooperate.

The technologies used are the following:

1. Office Open XML (ECMA 376 Standard [9], re-
cently approved as an ISO Standard), the de-
fault format of Word 2007. In brief: OOXML.

2. Microsoft .NET 3.0 (CLI is ECMA 335 Standard
[10] and ISO/IEC 23271:2006 Standard [11]).

3. ImageMagick [12] to convert images.

OOXML files are simply XML and media files com-
pressed using ZIP. Docx2tex uses Microsoft .NET
3.0 to open and unzip OOXML Word 2007 (.docx
extension) documents. Microsoft .NET 3.0 has some
special classes in the System.lO.Packaging name-
space that facilitate opening and unzipping OOXML
files and also provide an abstraction to represent the
included XML and media files as packages. The op-
erations performed by this component are described
by the object line called OOXML depackaging in Fig-
ure 1.

The most important component of docx2tex is
the Core XML FEngine that implements the basic
conversion from XML files to TEX. The Core En-
gine is responsible for reading and processing the
XML data of the OOXML documents that is served
by the OOXML depackaging component. The Core
Engine identifies parts of the OOXML document and
processes the contents of these parts (paragraphs,
runs, tables, image references, numberings, ...). It
is not responsible for processing parts of the OOXML
document that are available through a relation. For
those, docx2tex has a set of internal helper func-
tions that are responsible for driving the process-
ing of related entities such as image conversion, spe-
cial styling and resolving the properties of numbered
lists.

When an image reference is found in the XML,
ImageMagick is called to produce EPS files from the
original image files. The resulting EPS files can be
embedded easily into TEX documents.

We support the exact output produced by Word
2007; other output variations saved by third party
applications that may differ from the ECMA 376
Standard are not supported.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 393

Krisztian Pdcza, Mihaly Biczé and Zoltan Porkolab

OOXML depackaging Core XML Engine

Helper Functions

Image Converter TeXizer

T T
| |
| |
—_— ——

Feed original XML

Helper call (styling)

Style calculated

Helper call (image conv.)

Image converted

Helper call (numbering)

Execute ImageMagick

EPS created

|
I
|
I
}
Numbering performed }
I
|
I
I
|
I
|

Helper call (image conv.)

Image converted

Simplify runs and ensure line lengths

Conversationdone | K——-——-————-—

Performed

Figure 1: UML sequence diagram

In the next sections the structure of OOXML
will be briefly discussed; first, let us review the idea
of runs. A run is a piece of text which also has some
style specification. Runs are placed and removed
dynamically while the Word document is edited. A
sentence or even a word can be divided into more
than one run with the same style. The component
called TeXizer is responsible to join runs having the
same style to a simple run in the outgoing TEX code
and break the source line length at some predefined
value (default is 72).

The previous description is illustrated by the
UML sequence diagram in Figure 1.

4 Features of docx2tex

In this section we list the supported and the unsup-
ported features of docx2tex.

4.1 Supported features
Docx2tex supports the following features of Word
2007 and TEX:

1. Normal text

2. Italic, bold, underlined, stroked, small capitals,

Left, right, center aligned text

Headings and sections, three levels

Verbatim text

Style mapping

Simple tables

Line and page breaks

Numbered and bulleted lists

10. Multilevel lists and continuous numbered lists

© XN oW

11. Figure, table and listing captions
12. Cross references to captions and headings

394 TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

13. Image conversion from various formats (includ-
ing .png, .jpeg, .enf, etc.) to .eps

14. Substitution of special characters (e.g. \, #, {,
VL)% &)

15. Text boxes

16. Basic math formulae, Word Equations support

docx2tex supports normal and special text styles
and also text alignments. We support heading styles
Headingl, Heading2, and Heading3 that convert to
\section, \subsection, and \subsubsection re-
spectively. Word does not support verbatim text
while TEX does. To work around this deficiency,
text marked with Verbatim style is converted to ver-
batim text surrounded by \begin{verbatim} and
\end{verbatim}. There are many cases where we
are required to use different styles for headings or
even verbatim.

Only simple, left-aligned tables are supported.
Both numbered and bulleted lists are supported, in-
cluding mixing and nesting. Continuous lists are
also supported using the \setcounter, \enumi, and
\theenumi commands. Figure, table and listings
captions are recognized and we support referencing
them; likewise with heading references. Image ref-
erences are resolved and the images (mainly .png
and . jpeg) embedded in the OOXML documents are
converted to .eps. The width and height properties
are queried and the same properties are used in the
resulting TEX documents. Some special TEX char-
acters are also resolved and escaped in the resulting
TEX document. Text found in Text Boxes of Word
documents are also processed and inserted in place
of the resulting TEX document.

4.2 Unsupported features

Docx2tex has only basic Word Equations (mathe-
matical formulae) support at the time of publishing
this paper. We plan to add more support for Word
2007 Equations and Drawings that can be converted
to TEX mathematical formulas and xfigs respectively.
Both of them are described in XML format therefore
our standard solution can be extended without intro-
ducing other technologies.

5 A complex example

In this section we will show a complex example bro-
ken into significant parts that introduces the most
important features of docx2tex.

5.1 The structure of the OOXML ZIP
package
To inspect the content of an OOXML ZIP package we

first unzip the contents of our Word 2007 document
to a directory and get a recursive directory listing:

docx2tex: Word 2007 to TEX

PS C:\Phd\conf\2008_4_tex\example.docx>
1s -Recu |% {$_.FullName.SubString(30)}
example.docx\customXml
example.docx\docProps
example.docx\word
example.docx_rels
example.docx\[Content_Types] .xml
example.docx\customXml_rels
example.docx\customXml\iteml.xml
example.docx\customXml\itemProps1.xml
example.docx\docProps\app.xml
example.docx\docProps\core.xml
example.docx\word\media
example.docx\word\theme
example.docx\word_rels
example.docx\word\document .xml
example.docx\word\fontTable.xml
example.docx\word\numbering.xml
example.docx\word\settings.xml
example.docx\word\styles.xml
example.docx\word\webSettings.xml
example.docx\word\media\imagel. jpeg
example.docx\word\theme\themel.xml
example.docx\word_rels\document.xml.rels
example.docx_rels\.rels

The most important part is the document .xml
file that contains the document itself and references
to external items. The numbering.xml file specifies
the style of the numbered or bulleted lists contained
in document.xml. The styles.xml file specifies in-
formation about the styles used in the document.
Under the media subdirectory the embedded images
can be found (imagel. jpeg in our example).

5.1.1 Structure of the document

The text in the document.xml file is grouped into
paragraphs. Every segment of the document is a
paragraph (normal text, heading texts, images, etc.)
except for some special elements like tables. Para-
graphs are further divided into runs. A run is a
piece of text that also has some style specification.

5.2 Text conversion

The most fundamental feature of tools like docx2tex
is the ability to interpret text runs with many basic
styling properties and convert them to TEX format.
Consider the following example sentence: This is a
sentence that contains text with different formatting:

This sentence looks like the following in OOXML:

<w:p w:rsidR="004F5706" w:rsidRDefault=
"004F5706" w:rsidP="004F5706">
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve">

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 395

Krisztian Pdcza, Mihaly Biczé and Zoltan Porkolab

This is a </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:i/>
<w:vertAlign w:val="superscript"/>
</w:rPr>
<w:t>sentence</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:b/>
<w:i/>
</w:rPr>
<w:t xml:space="preserve"> that</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">

<w:rPr>
<w:u w:val="single"/>
</w:rPr>
<w:t>contains</w:t>
</w:r>

<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> text </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:b/>
<w:i/>
<w:u w:val="single"/>
</w:rPr>
<w:t>with</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:strike/>
</w:rPr>
<w:t>different</w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve"> </w:t>
</w:r>
<w:r w:rsidRPr="0030655B">
<w:rPr>
<w:vertAlign w:val="subscript"/>
</w:rPr>
<w:t>formatting</w:t>
</w:r>

<w:r w:rsidRPr="0030655B">
<w:t>.</w:it>
</w:r>
</w:p>
The XML node <w:p> and </w:p> encloses a
paragraph while <w:r> and </w:r> encloses a run.
A run contains a range of text (between <w:t> and
</w:t>) and may contain some formatting between
<w:rPr> and </w:rPr> (e.g. <w:b/> means bold,
while <w:i/> means italic font style).
The TEX output generated by docx2tex of the
previous sentence looks like the following:

This is a \textit{$ {sentence}$}\textbf{/
\textit{that}} \underline{contains} text
\textbf{\textit{\underline{with}}} \sout{%
different} $_{formattingl}$.

5.3 Headings and verbatim

Headings and verbatim are handled the same way
because they can be identified in the source docu-
ment by examining paragraph level styles.

Consider the following OOXML fragment that
describes a first level heading:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault="004F5706"
w:rsidP="000136DF">
<w:pPr>
<w:pStyle w:val="Headingl"/>
</w:pPr>
<w:bookmarkStart w:id="0" w:name=
"_Ref186547407"/>
<w:r w:rsidRPr="0030655B">
<w:t>Heading text</w:t>
</w:r>
<w:bookmarkEnd w:id="0"/>
</w:p>
The <w:pStyle w:val="Headingl"/> node speci-
fies that a first level heading begins, while the con-
tained node <w:bookmarkStart w:id="0" w:name=
"_Ref186547407"/> identifies a unique internal ref-
erence (bookmark) to the heading that can be cross-
referenced from any part of the document. For each
referenceable item Word generates an ugly unique
number prefixed with _Ref as an identifier (in our
example, _Ref186547407).
The generated TEX output is the following (line
break is editorial):

\section{Heading textl}\label{section:
_Ref186547407}

It is possible to map custom styles to certain
TEX elements. The special mappings are loaded
from a file with the same name having the extension
.paraStyleName (that is, a file example.docx has

396 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

the mapping file example.paraStyleName). The
Word 2007 styles appearing on the right side of these
equations have to be the w:styleId attribute of one
of the styles found in the styles.xml file (names are
case sensitive).

Here is a listing to help understand the format
of the .paraStyleName files:

section=Myheadingl
subsection=Myheading?2
subsubsection=Myheading3
verbatim=Myverbatim

5.4 Images and cross references

In OOXML, images are described in a very complex
and loose way; there is no space here to show the
original XML fragment. Instead we show only the
generated TEX code:

\begin{figure}[h]

\centering

\includegraphics [width=10.52cm,height=
8.41cm]{media/imagel.eps}
\caption{\label{figure: _Ref186544261}:
Figure caption}

\end{figure}

The image is centered and the width and the
height of the image are preserved. imagel.jpeg was
converted to imagel.eps and the file was saved in
the media subdirectory. When the image has a cap-
tion then it is also added to the output so that it
can be referenced.

Reference to the previous figure is described in
OOXML in the following form:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault=
"004F5706" w:rsidP="004F5706">
<w:pPr>
<w:keepNext/>
</w:pPr>
<w:r w:rsidRPr="0030655B">
<w:t xml:space="preserve">Reference to
the figure: </w:t>
</w:r>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="begin"/>
</w:r>
<w:r w:rsidR="006B4DA8">
<w:instrText xml:space="preserve">
REF _Ref186544261 \h </w:instrText>
</w:r>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="separate"/>
</w:r>
<w:r w:rsidR="006B4DA8">

docx2tex: Word 2007 to TEX

<w:t xml:space="preserve">Figure</w:t>
</w:r>
<w:r w:rsidR="006B4DA8">
<w:rPr>
<w:noProof/>
</w:rPr>
<w:t>1</wit>
</w:ir>
<w:r w:rsidR="007A289D">
<w:fldChar w:fldCharType="end"/>
</w:r>
</w:p>
The generated TEX code is simple (it can be
seen that the Figure 1 text has been omitted from
the output because it is internal to Word):

Reference to the figure: \ref{figure:
_Ref186544261}.

Referencing tables is the same as for figures and
sections.

5.5 Lists and tables

There are two main categories of lists supported by
OOXML and Word 2007: numbered and bulleted.
Both types of lists are allowed to have multiple levels,
and numbered lists can be continuous, meaning that
the list can be interrupted by some other content
and then continued at the same number.

The first item of a numbered list looks like the
following:

<w:p w:rsidR="004F5706" w:rsidRPr=
"0030655B" w:rsidRDefault="004F5706"
w:rsidP="004F5706">
<w:pPr>
<w:pStyle w:val="ListParagraph"/>
<w:keepNext/>
<w:numPr>
<w:ilvl w:val="0"/>
<w:numId w:val="1"/>
</w:numPr>
</w:pPr>
<w:r w:rsidRPr="0030655B">
<w:t>First</w:t>
</w:r>
</w:p>
The nodes enclosed in <w:numPr> and </w:numPr>
specify that we have a list. The w:val attributes
of w:numId and w:ilvl specify numbering identi-
fier and level parameters (style 1 at level 0 in our
example). It may seem strange that the w:numPr
nodes describe both numbered and bulleted lists. It
is the numbering identifier and the level parameter
that distinguishes between the two categories of lists.
These parameters are defined in the numbering.xml

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 397

Krisztian Pdcza, Mihaly Biczé and Zoltan Porkolab

file that is processed by docx2tex. The above ele-
ment is part of a complex multilevel numbered list:

\newcounter{numberedCntA}
\begin{enumerate}

\item First

\item Second

\item Third
\begin{enumerate}

\item First

\item Second

\item Third
\end{enumerate}

\item Fourth
\setcounter{numberedCntA}{\theenumi}
\end{enumerate}

When a previous list is continued, \setcounter
{enumi}{\thenumberedCntA} is inserted after the
\begin{enumerate} by docx2tex.

We omit showing a bulleted example since it
differs only in the TEX output: the itemize keyword
is used instead of enumerate, and we do not have to
maintain counters for continuous lists.

Docx2tex supports only simple tables, so no
merged, divided or differently aligned table cells are
possible, but the current features still allow docx2tex
to be able to convert most tables.

Again there is not enough space here to show
the OOXML version of a simple table. The generated
TEX output of a table with four cells is the following;:
\begin{tabular}{|111]}

\hline

1 & 2 \\

\hline

3 & 4 \\

\hline

\end{tabular}

\caption{\label{table: _Ref186545972}:
caption}

\end{table}

5.6 Special characters

TEX uses some special characters to place formatting
commands to structure or change the appearance of
text. When we want to place these special charac-
ters in running text they have to be described in a
special way.

Consider the following set of special characters:
#\N{}Y,h " _"&$"
These are described in OOXML in the following form:

<w:p w:rsidR="00AB630B" w:rsidRDefault=
"00OAB630B" w:rsidP="00AB630B">

<> as’q ...

<w:r>
<w:t xml:space="preserve"><>

</wit>
</w:r>
<w:proofErr w:type="spellStart"/>
<w:r>
<w:t>as’q</w:t>

</w:r>
<w:proofErr w:type="spellEnd"/>
<w:r>
<w:t xml:space="preserve"> ...# \ { }
</fw:it>

</w:r>
<w:proofErr w:type="gramStart"/>
<w:r>

w:t>h “</wit>

</w:r>
<w:proofErr w:type="gramEnd"/>
<w:r>
<w:t xml:space='"preserve"> _ = &
$ ""</w:it>
</w:r>
</w:p>

The resulting TEX code is:

$<$$>$ as’q ...\# \backslash \{ \} \% \~
o\ A& S T,

5.7 Math formulae

Math formulae (Word Equations) are described in a
hierarchical XML structure inside the OOXML doc-
ument. It can be easily walked by a recursive algo-
rithm to create TEX output. The name of the XML
node that hosts mathematical formulae is m: oMath.
While standard parts of the document are described
by nodes that have the w XML namespace, Word
Equations have the m namespace.

There is no space to show an OOXML fragment
that holds a quite complex formula, but here is the
formula and the resulting TEX code that was gener-
ated by docx2tex:

B(v) & \/%—Tr L e Tdt

$B(v)\cong \frac{1i}{\sqrt{2\pi }F\int_{v}"
{\infty e {-\frac{t {2}}{2}}dt}$

6 A use case

Let us suppose the following scenario: Two authors
decide to write a scientific article about their re-
search topic and submit it to a conference or journal.
First they split the proposed article into sections
and assign each section to one of the authors. They
start to work independently using Word 2007. After
both of the authors finish they merge the resulting
text into a single document. After that step the
first author reads the whole document and makes
changes using the Track Changes function of Word.

398 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

Author 1 works

an article
Assign different parts

to different authors

Let's write ‘ \

docx2tex: Word 2007 to TEX

|
|
|
|

Merge work . ‘

[Result is acceptable: No]

[Result is acceptable: Yes]

Apply docx2tex

277
Special formatting O -

Submit }

Figure 2: Workflow

The second author accepts or rejects the changes
of the first author and also makes his own changes
using the Track Changes function of Word. When
the authors agree that the quality of the article is
acceptable, they convert it to TEX using docx2tex
and apply special formatting required for the partic-
ular conference or journal. Now the article can be
submitted.

This workflow is illustrated in Figure 2.

As can be seen we exploited the strengths of
both the WYSIWYG Word 2007 system to support
effective team work and the typesetting TEX system
to produce the best quality printout. The conversion
between the file formats they use was performed us-
ing docx2tex. Note that currently docx2tex is able
to do rough conversion and cannot apply special
commands and styles.

Readers not familiar with the Track Changes
function should consider Figure 3.

7 Conclusion and further work

In this article we introduced a tool called docx2tex
that is dedicated to producing TEX documents from
Word 2007 OOXML documents. The main advan-
tage of this solution over classical methods is that
we process the bare XML content of OOXML pack-
ages instead of processing binary files or exploiting
the capabilities of the COM API of Word, thus mak-

ing our solution more robust and usable.

We presented the main features of docx2tex, re-
lated primarily to text processing and formatting,
structuring the document, handling images, tables
and references. There are some important features
that we consider worth implementing in the future:
More Equations support
Embedded vector graphical drawings
Configuration settings
Optional font and coloring support
Documentation
Automated installer

S ovE

Multicolumn document handling and templat-
ing may also worth considering.

We published the application as free and open
source software under the terms of the BSD [13] li-
cense, so anybody can use it royalty free and can
add new features to the current feature set.

The source code and the binary of the appli-
cation can be downloaded from http://codeplex.
com/docx2tex/. If the reader would like to partici-
pate in the development of docx2tex, please contact
the authors.

References

[1] Wikipedia article on What You See Is What
You Get. http://en.wikipedia.org/wiki/
WYSIWYG

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 399

Krisztian Pdcza, Mihaly Biczé and Zoltan Porkolab

400

Pagr 1o0f13 Wurds: 3320 & English [United States) |

= =] .S
oL E el =3
Home Insert Page Layout References Mailings | Review View
& . - E } . <INl 4 ject * = E
& Research hi'l . _] ,_J Final Showing Markup " Q} Reject . | |5|_
= J 2 ‘ 5 A :]
2 Thesaurus g =] Show Markup = = ‘f} Previous .
Spelling & Track Balloons 7 Accept Compare Protect
Grammar 3 Translate 53 Comment _.] Changes = [[#] Reviewing Pane ~ - B Net ' Document ™
Proofing Commeants Tracking Changes Compare Pratect

Abstract

-}

Docx2tex isa small command line tool that uses standard technologies to help users of Word 2

puhlish publications where typography isrelevant or only papers produced by TeX are accepte ® P.. i
%, Paste

"""""""""""""""""""""""""""""" Accept Change : :

OOXML format w:thout utilizing the APl of Word 2007. Docx2tex is planned to be published as ‘Jg - ghanis seereps), olf
A Beje ange

open source utility that is accessible and extensible by everyone. This paper has been originall

A : ;i -+ TIrack Changes
written in Word 2007 and then converted to TeX using docx2tex. =

. Hyperlink..

Introduction

There are two general methods to produce human readable and printable digital documents:

1. Using a WYSIWYG word processor
2. Using a typesetting system

Each of them has its own advantages and disadvantages therefore each of them has many use cases

where one is better than the other and vice versa.

WYSIWYG [...] is the acronym for the term What You See Is What You Get that originates from the
late "70. WYSIWYG editors are mostly used by everyday computer users whose aim isto produce
good looking documents fast and exploit the rich formatting capabilities of such systems. WYSIWYG

editors and word processors ensure that the printed version of the document will be the same as the

ssibledocument that is visible on the screen white-during editing. The first WYSIWYG word e

processor called Bravo was created at Xerox by Husgarian-bess-Charles Simonyi, who was the =

SETET W) i Yok PRy TEIAE] L P A A | AR et Gty 11 LA [3 o gl A e LD Bl 731, © W v DA 1 [0 10 1 oy BT | F
I S)

Figure 3: Track Changes function of Word

Wikipedia article on Microsoft Word. http: [9] ECMA 376 OOXML Standard. http://www.
//en.wikipedia.org/wiki/Microsoft_ ecma-international.org/publications/
Office_Word standards/Ecma-376.htm

Product page of Microsoft Word. http: [10] ECMA 335 .NET CLI Standard. http://www.
//office.microsoft.com/en-us/word/ ecma-international.org/publications/
FX100487981033.aspx standards/Ecma-335.htm

Wikipedia article on TEX. http://en. [11] Link to ISO/IEC 23271:2006 Standard.
wikipedia.org/wiki/TeX http://standards.iso.org/ittf/
Product page of Word2Tex. http://wuw. PubliclyAvailableStandards/index.html
chikrii.com/ [12] Project page of ImageMagick. http:
Product page of Word-to-LaTeX. http:// //www . imagemagick.org/
kebrt.webz.cz/programs/word-to-latex/ [13] Article on BSD license. http://en.

Product page of OpenOffice.org. http: wikipedia.org/wiki/BSD_license

//www.openoffice.org/

Project page of rtf2latex2e. http://
sourceforge.net/projects/rtf2latex2e/

TUGDboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

