
462 TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings

The LuaTEX way: \framed

Hans Hagen
Pragma ADE
http://pragma-ade.com

Abstract

ConTEXt's \framed macro has many flexible options for typesetting a paragraph.
This short note discusses its reimplementation in Lua for ConTEXt MkIV.

1 \framed and its width
One of the more powerful commands in ConTEXt
is \framed. You can pass quite a few parameters
that control the spacing, alignment, backgrounds
and more. This command is used all over the place
(although often hidden from the user) which means
that it also has to be quite stable.

Unfortunately, there is one nasty bit of code
that is hard to get right. Calculating the height of a
box is not that complex: the height that TEX reports
is indeed the height. However, the width of box is
determined by the value of \hsize at the time of
typesetting. The actual content can be smaller. In
the \framed macro by default the width is calculated
automatically.
\framed

[align=middle,width=fit]
{Out beyond the ethernet the spectrum spreads
\unknown}

this shows up as (taken from ‘Casino Nation' by
Jackson Browne):
Out beyond the ethernet
the spectrum spreads . . .

Or take this quote (from ‘A World Without Us'
by Alan Weisman):
\hsize=.6\hsize
\framed [align=middle,width=fit]

{\input weisman }

This gives a multi-line paragraph:
Since the mid-1990s, humans
have taken an unprecedented

step in Earthly annals by
introducing not just exotic

flora or fauna from one
ecosystem into another, but

actually inserting exotic genes
into the operating systems of
individual plants and animals,
where they're intended to do
exactly the same thing: copy

themselves, over and over.

Here the outer \hsize was made a bit smaller.
As you can see the frame is determined by the widest
line. Because it was one of the first features we
needed, the code in ConTEXt that is involved in de-
termining the maximum natural width is pretty old.
It boils down to unboxing a \vbox and stepwise grab-
bing the last box, penalty, kern and skip. That is,
we unwind the box backwards.

However, one cannot grab everything; or, in
TEX speak: there is only a limited number of
\lastsomething commands. Special nodes, such as
whatsits, cannot be grabbed and make the analyzer
abort its analysis. There is no way that we can solve
this in traditional TEX and in ConTEXt MkII.

2 \framed with LuaTEX
So how about LuaTEX and ConTEXt MkIV? The
macro used in the \framed command is:
\doreshapeframedbox{do something

with \box\framebox}

In LuaTEX we can manipulate box content at
the Lua level. Instead of providing a truckload of ex-
tra primitives (which would also introduce new data
types at the TEX end) we delegate the job to Lua.
\def\doreshapeframedbox

{\ctxlua{commands.doreshapeframedbox
(\number\framebox)}}

Here \ctxlua is our reserved instance for Con-
TEXt, and commands provides the namespace for
commands that we delegate to Lua (so, there are
more of them). The amount of Lua code is far
smaller than the TEX code (which we will not show
here; it's in supp-box.tex if you want to see it).
function commands.doreshapeframedbox(n)
if tex.wd[n] ~= 0 then

local hpack = node.hpack
local free = node.free
local copy = node.copy_list
local noflines, lastlinelength, width = 0,0,0
local list = tex.box[n].list
local done = false
for h in node.traverse_id('hlist',list) do
done = true



The LuaTEX way: \framed

TUGboat, Volume 29 (2008), No. 3 — TUG 2008 Conference Proceedings 463

local p = hpack(copy(h.list))
lastlinelength = p.width
if lastlinelength > width then

width = lastlinelength
end
p.list = nil
free(p)

end
if done then
if width ~= 0 then
for h in node.traverse_id('hlist',list) do
if h.width ~= width then

h.list = hpack(h.list,width,'exactly')
h.width = width

end
end

end
tex.wd[n] = width

end
-- we can also work with lastlinelength

end
end

In the first loop we inspect all lines (nodes with
type hlist) and repack them to their natural width
with node.hpack. In the process we keep track of
the maximum natural width. In the second loop

we repack the content again, this time permanently.
Now we use the maximum encountered width which
is forced by the keyword exactly. Because all glue is
still present we automatically get the desired align-
ment. We create local shortcuts to some node func-
tions which makes it run faster; keep in mind that
this is a core function called many times in a regular
ConTEXt job.

In looking at ConTEXt MkIV you will find quite
a lot of Lua code and often it looks rather complex,
especially if you have no clue why it's needed. Think
of OpenType font handling which involves locating
fonts, loading and caching them, storing features and
later on applying them to node lists, etc.

However, once we are beyond the stage of de-
veloping all the code that is needed to support the
basics, we will start doing the things that relate more
to the typesetting process itself, such as the previous
code. One of the candidates for a similar Lua-based
solution is for instance column balancing. From the
previous example code you can deduce that manipu-
lating the node lists from Lua can make that easier.
Of course we'll be a few more years down the road
by then.


