
268 TUGboat, Volume 26 (2005), No. 3

LATEX

powerdot— making presentations

with LATEX

Hendri Adriaens and Christopher Ellison

Abstract

This article describes the powerdot class [2], for mak-
ing presentations with LATEX. It is a successor to the
prosper and HA-prosper packages.

1 Introduction

powerdot is a presentation class for LATEX that al-
lows for the quick and easy development of profes-
sional presentations. It comes with many tools that
enhance presentations and aid the presenter. Exam-
ples are automatic overlays, personal notes, a digital
clock on slides and a handout mode. To view a pre-
sentation, DVI, PS or PDF output can be used. A
powerful template and palette system is available to
easily develop new styles. Also, a LYX layout file is
provided. powerdot is a new package in the line of
prosper [5] and HA-prosper [1].

It has been well known for quite some time
that the prosper class has severe problems. Exam-
ples include damaged constructions from a redefined
\item, spacing problems on overlays while in math
mode, failing counter protection, useless DVI and PS

output, and a lack of support for screen-optimized
paper dimensions. The HA-prosper package (devel-
oped by the first author) tried to correct some of
these problems, but with additional LATEX program-
ming experience, it was found that some of the prob-
lems of the prosper class (such as the paper dimen-
sions) could not be corrected.

As an alternative, the idea of using pstricks [6, 7]
and minipage environments for content was appeal-
ing in that it allowed for a vast variety of presenta-
tion styles.

Halfway through 2004, Hendri decided to make
a successor to the prosper and HA-prosper combi-
nation. The class would be built from the ground
up, and it would be called powerdot.1 As it would
be a major undertaking to develop a new class, new
styles, and documentation, Hendri looked for a help-
ing hand on the HA-prosper mailing list. He was very
lucky to find that Chris Ellison was prepared to help.

Editor’s note: This article was also published in MAPS 33
(Najaar 2005), pp. 54–58, and is published here, with addi-
tions, by kind permission of the author and editor.

1 At first, the name TEXciting was chosen, but that was
abandoned due to associations with ‘citations’.

After some initial tests, the production of the class
finally started in July 2005, and it was mostly com-
pleted during the summer holidays of 2005. This
article describes the build process and the choices
made along the way.

2 Paper size and orientation

Before generating output, we needed to be sure we
were using the correct paper size and orientation.
Our general idea was to place all content in minipage

environments and then use pstricks’ \rput to po-
sition the environments on the paper. Therefore,
powerdot itself could control page dimensions and
margins for the user. So, we removed all margins
and defined the origin (0,0) at the lower-left corner
of the paper and (\slidewidth,\slideheight) for
the upper-right corner. This provides an easy way
for designers to create scalable styles for use with
multiple paper types, e.g., letter paper, A4 paper
and screen ratio “paper” (4/3).

But what are these lengths \slidewidth and
\slideheight? They are determined from the pa-
per type and orientation specified by the user and
will be set to .5\paperwidth and .5\paperheight.
We then magnify the DVI by a factor of two to have
easy access to large fonts with standard files such
as size10.clo. This creates a usable DVI file,2 a
usable PS file (after processing with dvips), and a
usable PDF file (after processing with ps2pdf).

To help the user when compiling to PDF, pow-

erdot uses the papersize special to tell dvips which
paper size should be used. This way, the user need
not specify the paper type with dvips’ -t command
line option. Unfortunately, there is a problem with
this special. Most dvips configurations used today
have a paper name A4size which, when A4 paper
dimensions are found in the papersize special, does
not write the PostScript a4 command to the Post-
Script file. When processing this PostScript file us-
ing ps2pdf without command line parameters, the
program will not find a particular paper type and
will default to letter paper. To avoid this problem,
powerdot explicitly writes the a4 command to the
PostScript file when A4 paper is requested, and the
letter command for letter paper.3

3 Designer interface

So far, we have set up the paper dimensions and

2 For DVI viewers that understand PostScript \specials.
3 powerdot also has the nopsheader option, which avoids

writing the papersize special and the a4 command. This
should be used when dvips can’t be used without command
line parameters; for instance, when the editor always inserts
either -tletter or -ta4.



TUGboat, Volume 26 (2005), No. 3 269

made sure that the user can get a proper DVI, PS

or PDF file without much trouble or knowing about
command line parameters. Now we have to make
sure that new slide styles can easily be developed.
This will be a huge improvement over prosper’s com-
plicated and basically absent designer interface.

Remember, we started with the idea of plac-
ing content on the paper in minipage environments
using \rput. This gives rise to a very simple but
powerful designer interface where all properties of
the main components (slide title, text box, etc.) can
be controlled by keys (options), which are defined
using xkeyval [3]. These keys can be used in power-

dot’s \pddefinetemplate command, which has an-
other argument to create the background of the slide
(using, for instance, pstricks). A special key, called
ifsetup, can be used to specify to which setups all
following keys should apply. For instance,

ifsetup={landscape,a4paper}

tells powerdot that all following keys should be used
if the user requested landscape A4 paper. The fol-
lowing, however,

ifsetup=landscape

makes all following keys be used in landscape orien-
tation with any paper type. powerdot also provides
a \pdifsetup command that works in a similar way
as the key, but takes true and false texts, executing
one of them depending on the current setup of the
document and the first argument, which is like the
input to the ifsetup key.

The \pddefinetemplate command allows us to
use an existing template as the basis for a new tem-
plate, which further simplifies style development.
Here is an example of the designer interface.

\documentclass[

% orient=portrait

]{powerdot}

\pddefinetemplate{basic}{

titlepos={.05\slidewidth,.91\slideheight},

titlewidth=.9\slidewidth,

textpos={.05\slidewidth,.85\slideheight},

textwidth=.9\slidewidth,

textfont=\raggedright\color{black}

}{%

\psframe*[linecolor=yellow!20]%

(0,0)(\slidewidth,\slideheight)%

}

\pddefinetemplate[basic]{slide}{%

ifsetup=landscape,

titlefont=\Large\raggedright\color{black},

ifsetup=portrait,

titlefont=\Large\centering\color{black}

}{}

\begin{document}

\begin{slide}{Title}

Some text.

\end{slide}

\end{document}

The first \pddefinetemplate command creates a
template named basic, which defines the title and
text position on the page, and (in the second ar-
gument) the background of the slides (here, a light
yellow color).

The second \pddefinetemplate command de-
fines a slide template, in this case based on the
basic template. This template initializes the posi-
tion of the main text box and the title and the text
font to be used. In addition to the declarations com-
ing from the basic template, the slide template
specifies the title formatting (font, justification, and
color).

Here we use the ifsetup key to choose differ-
ent formatting for the slide title in landscape mode
(\raggedright) or portrait mode (\centering). In
practice, this might be considered inconsistent de-
sign, but here it just serves as an example. This
example is simple, and the templates could easily
be merged into one, but it clearly demonstrates the
possibility of reusing existing templates.

Finally, we actually produce an example slide,
using the just-defined slide environment.

If we typeset the example above in both land-
scape and portrait orientation, we get the following
output.

Title

Some text.

Title

Some text.

When a designer wants to do more fancy things
which cannot be controlled by keys, powerdot sup-
plies a variety of macros that do specific jobs and can
be redefined to achieve any desired goals. Examples
are \pd@title, which controls the typesetting of the
presentation title, and \pd@slidetitle, which con-
trols the typesetting of slide titles. By default, these
macros just pass on their argument, but they can be
redefined to do arbitrary things.

As examples of the possibilities of the design
interface of powerdot, you can find samples of some



270 TUGboat, Volume 26 (2005), No. 3

Example slide

left footer right footer – 2 / 2

Here is the binomium formula.

(a + b)n =
n

∑

k=0

(

n

k

)

a
n−k

b
k

(1)

We will prove formula (1) on the blackboard.

� Here

� is

� a

� list

� with

� seven

� items.

Figure 1: sailor style

Example slide

left footer right footer – 2 / 2

Here is the binomium formula.

(a + b)n =
n
∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

■ Here

◆ is

■ a

◆ list

■ with

◆ seven

■ items.

Figure 2: bframe style

of the currently available presentation styles in fig-
ures 1 to 3.

4 User interface

Most importantly, a new user interface needed to be
developed which was both powerful and simple to
use. Setting up the main characteristics of a presen-
tation, like paper type, font size and style, is done
via the \documentclass command. Other settings,
like the footers, transition effects and layout of lists,
is done via the \pdsetup command.

The user interface for making slides is intended
to be very simple and is mainly formed by the slide
environment.4 By default, this environment first
stores the literal text of the body in a token reg-
ister. This allows us to reuse the body later on.
We do this by searching the input stream for the

4 Most styles supply additional templates, such as the
wideslide environment, but these work internally the same
as the slide environment.

Example slide

left footer right footer

Here is the binomium formula.

(a + b)n =
n
∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

• Here

• is

• a

• list

• with

• seven

• items.

Figure 3: paintings style

next occurrence of the \end command. If this com-
mand has the proper argument, namely slide, then
we have found the end of the slide and we can start
processing the content. If not, we add the text found
so far to the token register and continue the search.

Now that we have the body ‘in our hands’, we
can typeset it once and see what happens. The
user could actually have specified an overlay com-
mand like \onslide or \pause in the slide. Dur-
ing the first run, these commands are executed and
these are used to determine the remaining number
of times that we need to typeset the body. This
process creates several overlays using just one slide
environment. Here is an example.5

\begin{slide}{My first slide}

Hello \pause world!

\end{slide}

\begin{slide}{My second slide}

\onslide{1-}{Hello} \onslide{2}{world!}

\end{slide}

This example creates two overlays for each slide.
Hello will appear on both overlays for each slide,
while world! appears only on every second overlay.

There is a TEXnical drawback to using the tech-
nique described above to get the body of the envi-
ronment, and that is that the category codes will be
fixed in the text once we typeset it for the first time.
Hence, constructions that rely on changing catcodes
internally, such as the verbatim environment, do
not work inside the slide environment. Thus, pow-

erdot implements two other techniques to process
slides.

The second technique (accessed by the slide op-
tion method=direct) directly typesets the body of

5 Please refer to the documentation for syntax details.



TUGboat, Volume 26 (2005), No. 3 271

the slide, instead of storing it first in a token regis-
ter. This is fast, and allows for verbatim listings on
slides, but doesn’t allow for overlays.

The third technique (accessed by the slide op-
tion method=file) writes the body of the slide to a
temporary file. This file can be read back in again
to produce the slide. This method does allow for
verbatim on slides and for overlays. However, since
an external file is needed, this is a little bit slower
than the other two methods.

Here is an example for having both verbatim
and overlays on slides.

\begin{slide}[method=file]{Verbatim and

overlays}

\begin{lstlisting}[frame=single,

escapeinside=‘’]

the first line of code‘\pause’

the second line of code‘\pause’

the third line of code

\end{lstlisting}

\end{slide}

The example uses the listings package and creates
three overlays on which the program listing is re-
vealed step by step.

5 Supporting LATEX commands

Of course, creating a presentation is rather different
from writing an article, and by introducing new fea-
tures, such as overlays, we might bring trouble to
standard LATEX constructions.

LATEX counters are one example. When repeat-
edly typesetting the same text, a counter increase
in that text (for instance by the equation environ-
ment) gets executed each time. This could lead to
the same equation having different numbers on dif-
ferent overlays. This is easily overcome, however.
We record the value of known counters before type-
setting the first overlay and reset it at the start
of the next overlay. powerdot does this automati-
cally for the counters equation, figure, table and
footnote. The user can add more counters to the
list by using the counters key in the \pdsetup com-
mand.

A similar example is the \label command. If
the standard \label command were executed on
overlays, the user would always get errors about
Multiply defined labels. prosper tried to solve
this issue by executing \labels only on the first
overlay. It is obvious that this leads to undefined
labels when a label does not appear on the first over-
lay, for instance, because it was gobbled by, for ex-
ample, \onlySlide*{2}{...}. Another idea would
be to tell the user to always use \label inside an ap-

propriate \onslide command with a single overlay
specification to avoid multiply defined labels. That,
however, requires extra work from the user.

In contrast, powerdot executes the \label only
on the first overlay where it is actually used. This
could, for example, be overlay 37. The way it does
this is by adding all labels defined on a slide to a
list. If the list already includes the current label,
this label is not executed again. The list is emp-
tied at the start of every slide. The side effect of
this system is that multiply-defined labels on the
same slide cannot be detected anymore. However,
multiply-defined labels on different slides still result
in a warning in the log file of the user. This side
effect is not considered very serious, as the source of
a single slide is usually rather short and errors can
be observed in the output.

6 LYX support

To support the use of LYX [4] for creating powerdot

presentations, we wanted the user interface to work
within the restrictions set by LYX. One of the diffi-
culties with LYX’s interface is that it doesn’t allow
environments to have arguments. Instead, we have
to use commands to indicate the beginning and end
of a slide. When a powerdot LYX presentation is
exported to LATEX it looks like this:

\documentclass{powerdot}

\begin{document}

\lyxend\lyxslide{My first slide}

Hello \pause world!

\lyxend\lyxslide{My second slide}

\onslide{1-}{Hello} \onslide{2}{World}

\lyxend

\end{document}

Here, \lyxend is a harmless macro that is only used
by \lyxslide as a delimiter. This interface can be
extended via the \pddefinelyxtemplate command
if a style defines custom templates. This command
defines a control sequence that uses the underlying
templates, like \lyxslide uses the slide template.

The LYX interface of powerdot also allows for
the direct and file processing methods described
in section 4. This does lead to a tricky situation
when writing the body of a slide verbatim to a file,
because we read material line by line. When seeing
\lyxend, we need to stop reading verbatim, but as
the next slide starts again at the same line, this will
also be read verbatim. To be able to execute the
next slide again, we also need to write the remainder
of the line to a temporary file and read it back in.
ε-TEX’s \scantokens could also be used to do this
job, but it has the habit of inserting an end-of-file



272 TUGboat, Volume 26 (2005), No. 3

into the input stream, which causes trouble if the
next slide starts verbatim reading again. This can be
patched, but the easier solution of using a physical
external file and reading back in exactly one line —
ignoring the EOF on the next line — was preferred.

7 Hiding material

How do \onslide and \pause actually work when
hiding material?6 This is done using the overlays
offered by pstricks. We can use this system in the
following way. On every slide, we initialize Post-
Script overlay 0. On that overlay, text will be vis-
ible. PostScript overlay 1 is used to make material
invisible. This means that it will be typeset as usual
by LATEX, but that the material will not be visible in
the output. Hence, the cursor will still be moved by
the material. By switching to overlay 1 and back at
the right times, we can hide any material we want.
By switching to overlay 1 and not switching back,
we can hide all following material.

If we consider the example again and ignore all
second (powerdot) overlays (as all material will be
visible there), in essence it comes down to executing
the following:

\documentclass{powerdot}

\begin{document}

\makeatletter

\begin{slide}{My first slide}

Hello \pst@Verb{(1) BOL} world!

\end{slide}

\begin{slide}{My second slide}

Hello \pst@Verb{(1) BOL}world!%

\pst@Verb{(0) BOL}

\end{slide}

\end{document}

The \pst@Verb commands insert the switches to
PostScript overlay 0 and 1 into the PostScript doc-
ument via \special’s. We see that \pause will not

6 There are also versions of these macros that ignore ma-
terial or color it with another color than the text color.

return to overlay 0 afterwards, whereas \onslide

does so. Hence, any following material would be
invisible on powerdot overlay 2 on the first slide and
not on the second.

8 Final details

The user interface has many additional details—
to create sections, table of contents entries, prevent
figure and table environments from floating, cre-
ate personal notes and handouts, and much more.

Please have a look at the user documentation if
you are interested in learning more about the power-

dot class. The result of this holiday effort is a class
that can create good-looking slides with a minimal
amount of input from the designer and user, both
when typing the source and when compiling it.

References

[1] Hendri Adriaens. HA-prosper package.
CTAN:/macros/latex/contrib/HA-prosper.

[2] Hendri Adriaens and Christopher Ellison.
powerdot class. CTAN:/macros/latex/

contrib/powerdot.

[3] Hendri Adriaens and Uwe Kern. xkeyval—
new developments and mechanisms in key
processing. TUGboat, 25(2):194–199, 2004.
CTAN:/macros/latex/contrib/xkeyval.

[4] LYX crew. LYX website. http://www.lyx.org.

[5] Frédéric Goualard and Peter Møller Neergaard.
prosper class. CTAN:/macros/latex/contrib/

prosper.

[6] Herbert Voß. PSTricks website. http:

//pstricks.tug.org.

[7] Timothy Van Zandt et al. PSTricks package,
v1.07, 2005/05/06. CTAN:/graphics/pstricks.

⋄ Hendri Adriaens

hendri[at]uvt.nl

⋄ Christopher Ellison

chris.ellison[at]gmail.com


	Title
	Title

