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Typography

Maths = Typography?

Richard Lawrence

Introduction

This paper is written for a conference with the theme
‘Hidden typography’. Broadly the author’s interest
is in mathematical printing and typesetting in par-
ticular. So, as is usual for academic conferences,
the author’s task is to persuade you, the reader,
that there is some connection between the confer-
ence subject and the author’s personal interest. To
see if this can be done it is pertinent to ask a few
questions:

* What is typography and so what is hidden
typography?

* What is mathematics?
* Is there any typography in mathematics and

is there any hidden typography in it?
The last of these questions is the one that is central
to the subject of the conference; answers to the other
two help to explain the author’s answer to it. So to
start with the conclusion:

* There is typography in mathematics.
* The typography in written mathematics is

not hidden, it is overlooked.
* There is a strong case for saying that written

mathematics is a very highly developed
example of typography: it may even be
possible to say ‘Maths = Typography’.

What is typography?

The art or process of setting and arranging types
and printing from them. (Concise Oxford

English Dictionary, 10th edition, 2001)

Typography may be defined as the craft of rightly
disposing printing material in accordance with spe-
cific purpose; of so controlling the type as to aid
to the maximum the reader’s comprehension of the
text. (Stanley Morison,

First principles of typography, 1951, CUP)

Here are two definitions of typography, one short
and written for a general audience, the other longer
and written for an audience wanting to know more.

This paper was presented at the 2003 St. Bride Printing
Library Conference on “Hidden Typography”, and appears
here with permission. The texts of all the talks from
the conference can be viewed at http://www.stbride.org/

conference2003/.

Both are pertinent to the purposes of this paper: it
is the aspect of ‘arranging’ or ‘rightly disposing’ ma-
terial ‘to aid to the maximum the reader’s compre-
hension’ that will be emphasized. Some will argue
that both these definitions are rather utilitarian and
omit any feeling for the art and beauty that typog-
raphy can bring to the printed document. However
the question of beauty in mathematical typography
is also addressed.

So what is hidden typography? In the best
sense it is Beatrice Warde’s crystal goblet typog-
raphy: invisible or unobtrusive but making the
reader’s task easier and more pleasant. It is design
that helps the reader to extract meaning from the
written word. This is very much the sense relevant
to the printing of maths. Enough people have trou-
ble grappling with the abstraction of maths that it
would not be a good idea to add typographical flour-
ishes and quirks to its written form. Good ‘crystal
goblet’ typography is what the complexity of maths
typesetting really does need.

What is mathematics?

The branch of science concerned with number,
quantity, and space, either as abstract concepts
(pure mathematics) or as applied to physics, engi-
neering, and other subjects (applied mathematics).

(Concise Oxford English Dictionary, 2001)

Mathematics is its own branch of science (like
physics or chemistry) and comes in two forms, pure
and applied. Both forms are concerned with ‘num-
ber, quantity, and space’, one in the abstract, one
in practical terms. The graphic representation of
maths then has to be able to encompass both ab-
stract notions and practical applications if it is to
be any use to mathematicians and those who use
maths (physicists, engineers, etc.). It has to deal
with ‘number, quantity, and space’. It also has to
be able to describe a whole branch of science (part
will not do). As we know the result is that the print-
ing of mathematics is challenging and specialist work
largely avoided by many.

Another common view of mathematics, par-
ticularly popular with those who use maths (engi-
neers, physicists, etc.) is that it is a language that
is used to describe physical situations and relation-
ships. Mathematical equations are used to describe
the motion of a pendulum, the decay of radioactive
waste, the flow of traffic on congested roads, and
the relationship between infinitely large groups of
objects in multidimensional space. Mathematics is
the language that scientists (physical scientists at
least) use to communicate their ideas and observa-
tions. Like mathematics in the dictionary definition
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above, the physical scientist is interested in ‘number,
quantity, and space’. The graphic representation of
maths has to reflect this.

Having used the standard trick of looking at
a dictionary definition of the subject it may be in-
structive to consider the popular views of its users
and practitioners. A physicist uses a variety of
strange machines to investigate the rules that gov-
ern the physical world and records observations as
mathematical relationships. A biologist grows then
experiments on living things in order to understand
more about them perhaps using statistics to sup-
port arguments and observations. An engineer de-
signs and builds machinery to exploit the discover-
ies of other scientists and uses approximate equa-
tions to predict how the machinery will behave.
The mathematician sits and thinks and scribbles
and rearranges equations on paper or blackboard.
The mathematician has no machinery or plants or
animals to work with. The mathematician’s only
prop in this populist view is the piece of paper or
blackboard, or more specifically equations written
on these. Mathematics is in some sense the written
equations on these surfaces. If this is indeed so, then
it can be appreciated that the optimal arrangement
of the symbols in the equations is of some conse-
quence.

So we have three views of mathematics: it is
a branch of science dealing with the description of
the abstract and real and quantity, number, and
space; it is a language; and it is written equations.
Properly, and not just as a result of undue deference
to the majesty of the Oxford English Dictionary, it
is only the first of these. But mathematics’ very
singular distinction is that it is dependent on its own
language to communicate it. That language is only
easily communicated in its written form (equations
on paper or blackboard). While the individual
components of an equation can be read out loud and
their relative positions can be described, it is not too
far-fetched to say that maths is an unpronouncable,
even a silent, language. So that its written form,
equations, has to be able to communicate matters
of ‘quantity, number, and space’.

Printing’s influence on mathematics

Before pursuing the intellectual argument that writ-
ten maths involves a lot of typography, it is instruc-
tive and interesting to look at the influence of print-
ing on the development of maths. It is also instruc-
tive to see the consequences of trying to write math-
ematics without symbols to understand why the lan-
guage of mathematics is necessary.

One of the very earliest mathematical works
is the Algebra of Al-Khowarazimi, a ninth-century
scholar in Baghdad. Florian Cajori (A history of
mathematical notation, 1929, Open Court) quotes a
translation of an example from this work:

What must be the amount of a square, which,
when twenty-one dirhems are added to it, becomes
equal to the equivalent of ten roots of that square?
Solution: Halve the number of the roots; the moiety
is five. Multiply this by itself; the product is
twenty-five. Subtract from this the twenty-one
which are connected with the square; the remainder
is four. Extract its root; it is two. Subtract this
from the moiety of the rots, which is five; the
remainder is three. This is the root of the square
which you required and the square is nine. Or you
may add the root to the moiety of the roots; the
sum is seven; this is the root of the square which
you sought for, and the square itself is forty-nine.

In modern notation the statement of the problem
and its solution is:

x2 + 21 = 10x

Solution: x = 10/2±
√

[(10/2)2− 21]
= 5±

√
(25− 21)

= 5±
√

4
= 5± 2
= 7, 3

Even if the reader can not follow the mathe-
matical notation, it should be apparent that the ver-
sion written using symbols is potentially much eas-
ier to comprehend. It is enormously more compact.
This compactness and its consequences for intelligi-
bility were commented on a long time ago. William
Oughtred (quoted by Cajori), an English mathe-
matician promoting his own work in 1647 noted:

. . .Which treatise being not written in the usuall
synthetical manner, nor with verbous expressions,
but in the inventive way of Analitice, and with sym-
boles or notes of things instead of words, seemed
unto many very hard; though indeed it was but
their owne diffidence, being scared by the newness
of the delivery; and not any difficulty in it selfe.
For this specious and symbolicall manner, neither
racketh the memory with multiplicity of words, nor
chargeth the phantasie with comparing and laying
things together; but plainly presenteth to the eye
the whole course and processe of every operation
and argumentation.

The essence here is Oughtred’s observation that by
writing ‘with symboles or notes of things instead of
words’ the argument is ‘plainly presenteth to the
eye’. The ‘symboles’ used by early mathematicians
are dictated by what the printer had available. So
in one of the earliest printed maths books, Cardan’s
Ars magna (1545, quoted in Cajori) the author
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contents himself with using abbreviations set in
the text roman type to express unknowns. Vieta
in 1591 (quoted by Cajori) uses single text roman
capitals for unknowns. It was René Descartes in
1637 who finally established the use of lower case
italic letters for unknowns. He also started the
useful distinction of using letters near the beginning
of the alphabet for unknown constants and letters
at the end of the alphabet for unknown variables.
Significantly by this date it was reasonable to expect
a printer to have matching roman and italic types
that could be set together. Mathematical setting is
notorious for the diversity of sorts it exploits. In
early mathematical works the choice of these sorts
is limited to what the printer has. For example in
early printed books on ‘algebra’ much use is made
of a capital R with a scratched tail to denote root, a
sort ordinarily deployed in liturgical work to denote
‘Response’ (e.g. Cardan, 1545).

One of the more amusingly documented discov-
eries made by an author seeking out unexploited cor-
ners of the printer’s stocks is the eventual use of bold
to denote vector quantities. Electromagnetic theory
was undergoing rapid development in the late nine-
teenth century and this called for the development
of notation in mathematics capable of distinguish-
ing quantities which possessed both direction and
size (vectors) from other non-directional quantities
(scalars). The first attempt used greek type, but this
failed because of confusion with other greek sym-
bols. Maxwell in 1873 promoted German (Fraktur)
type for the job. Oliver Heaviside (a populariser of
Maxwell’s work) was the one who started using bold
(Electromagnetic theory, 1893, Ernest Benn Ltd):

Maxwell employed German or Gothic type. This
was an unfortunate choice, being itself sufficient to
prejudice readers against vectorial analysis. Per-
haps a few readers who were educated at a commer-
cial academy where the writing of German letters
was taught might be able to manage the German
vector without much difficulty; but for others it is
a work of great pains to form German letters leg-
ibly. Nor is the reading of the printed letters an
easy matter. Some of them are so much alike that
a close scrutiny of them with a glass is needed to
distinguish them unless one is lynx-eyed. This is a
fatal objection. But, irrespective of this, the flour-
ishing ornamental character of the letters is against
legibility. In fact, the German type is so thoroughly
unpractical that the Germans themselves are giving
it up in favour of the plain Roman characters, which
he who runs may read. It is a relic of mediaeval
monkery, and is quite unsuited to the present day.
Besides there can be little doubt that the prevalent
shortsightedness of the German nation has (in great

measure) arisen from the character of the printed
and written letters employed for so many genera-
tions, by inheritance and accumulation. It became
racial; cultivated in youth, it was intensified in the
adult, and again transmitted to posterity. German
letters must go.

Rejecting Germans and Greeks, I formerly used
ordinary Roman letters to mean the same as Max-
well’s corresponding Germans. They are plain
enough, of course; but, as before mentioned, are
open to objection. Finally, I found salvation in
Clarendons, and introduced the use of this kind of
type so called, I believe for vectors (Phil. Mag,. Au-
gust, 1886), and have found it thoroughly suitable.
It is always in stock; it is very neat; it is perfectly
legible (sometimes alarmingly so), and is suitable
for use in formulae along with other types, Roman
or italic, as the case may be, contrasting and also
harmonising well with them.

Sometimes block letters have been used; but
it is sufficient merely to look at a mixed formula
containing them to see that they are not quite
suitable.

This rather long quote illustrates several points
about mathematicians and mathematics.

* Mathematicians are quite passionate about
how their maths is presented

* Mathematicians do have a keen appreciation
of the utility of notation

* Mathematicians have a real (if idiosyncratic)
idea of the aesthetics of maths printing

It is also clear from this quote what a real influence
the printer can have on advancing mathematical
notation and maths and science themselves.

The beauty of mathematics

The somewhat eccentric writings of Oliver Heavi-
side do show that mathematicians have a very keen
sense of what works in the notation they use to con-
vey ideas. Beyond this utilitarian view of notation,
mathematicians also appreciate wider principles in-
volved in the proper written display of their work.
This appreciation is linked to an appreciation of the
maths itself. A mathematician will be very pleased
if s/he is able to simplify an argument or equation
and render the mathematical content more compre-
hensible. Mathematicians speak of the ‘beauty’ of
a well-presented and succinct proof or newly found
link between branches of mathematics. The quest
for such ‘beauty’ keeps mathematicians busy try-
ing to refine existing proofs. The proof of the Four
Colour Map problem (any map can be coloured us-
ing only four colours without the same colour ad-
joining itself) reported a few years ago is acclaimed,
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but relying as it does on thousands of hours of com-
puter calculations, it is regarded as very inelegant.
There are many mathematicians busy trying to sim-
plify it. The writing of equations that are compact
and convey meaning easily is central to ‘beautiful’
mathematics.

The written language of mathematics is easily
given the attributes of compactness and beauty by
mathematicians. It is not surprising to see a long
and close association between mathematicians and
their printers, the mathematicians exploiting all the
available special sorts and skills that the printer can
provide. There is such density of meaning in the
choice of letter, its style (roman, bold, italic), its
typeface (serif, sans serif, script, outline), its al-
phabet (latin, greek, hebrew), its size, its position
relative to other characters (subscript, superscript),
that the printer’s job is very challenging. The chal-
lenge is to follow the very detailed requirements of
the mathematical author without any understand-
ing of the content.

The curious thing from a typographer’s point of
view is how little a typographer can contribute once
the mathematician has made all the choices neces-
sary to convey the mathematical meaning. It is not
too controversial to suggest that the mathematician
is in fact his/her own typographer, at least in the
matter of writing equations.

Maths = typography?

If mathematicians define the typography of the
equations they write and ‘beautiful’ mathematics
is well-presented equations whose meaning shines
through the density of notation that they bear, then
perhaps mathematics is just a highly refined typo-
graphical game? Going back to Stanley Morison’s
definition of typography as ‘so controlling the type
as to aid to the maximum the reader’s comprehen-
sion of the text’, then that is exactly what a mathe-
matician does. Given that mathematics’ only phys-
ical reality (its only props) are written equations,
then perhaps maths really is typography.

Modern mathematical typography

Mathematical typesetting has always challenged the
printer (Smith: The printer’s grammar 1755):

Gentlemen [authors] should be very exact in their
Copy, and Compositors as careful in folowing it,
that no alterations may ensue after it is composed;
since changing and altering work of this nature is
more troublesome to a Compositor than can be
imagined by one that has no tolerable knowledge of
Printing. Hence it is, that very few Compositors are
fond of Algebra, and rather chuse to be employed

on plain work, tho’ less profitable to them than the
former; because it is disagreeable and injures the
habit of an expeditious Compositor.

It is not only challenging, it is also expensive. In
the 1970s and 1980s publishers sought cheaper al-
ternatives to hot-metal typesetting and used strike-
on systems (IBM, Varityper) extensively. Mathe-
maticians grumbled, but mostly accepted arguments
about costs. One however was so appalled by the
standards of typesetting from Varitypers that he re-
belled, spent time studying typography and typeset-
ting, exploited the just-available raster-scan type-
setters, and wrote his own type design and type-
setting programs. That is Donald Knuth, Professor
of Computer Science at Stanford. His type design
program is Metafont and the typesetting program
is TEX. This is not the place to go into the work-
ings of TEX, but it is interesting to remark that the
program is a very good example of what computer
scientists call an ‘expert system’ that is modelled
to some degree on the workings of the Monotype
sytem that it replaces. Typographers hated it be-
cause of its associated typeface, Computer Modern
Roman which Knuth modelled on the maths books
of his youth (set in Modern Series 7). Typeset-
ters couldn’t understand its input coding: this was
not modelled on the mechanical requirements of the
Monotype system, but is written to make sense to
mathematicians. The program was also free. It has
been hugely successful to the point that it is the only
word-processing system any self-respecting mathe-
matician will use. Typesetters have then found the
economic necessity of dealing with it. Several are
able to do something about its associated typeface,
which pleases typographers.

One significant aspect of TEX that is illustra-
tive of the theme of this paper is a little-remarked
feature of it. Knuth wrote an output program ab-
breviated to ‘dvi’ which allows TEX to be printed
on anything from a 64-pin dot-matrix printer to a
laser raster typesetting machine. In all cases the rel-
ative positioning of the characters of the equations
are perfectly maintained irrespective of the printer
used. A mathematician can email a dvi file to a col-
league on the other side of the world know exactly
what that colleague will see (‘dvi’ stands for device
independent). The exact arrangement of characters
is vital to the meaning of the equations. The exact
typography is vital. For Knuth typography is maths.
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