304

Software & Tools

Rambutan: Literate programming in Java

Prasenjit Saha

Introduction. RAMBUTAN is a literate program-
ming system for Java with TEX, closely resembling
CWEB and the original WEB system.* I developed it
using Norman Ramsey’s Spidery WEB.

This article is also the manual, as well as an
example of a RAMBUTAN literate program; that
is to say, the file Manual.w consists of code and
documentation written together in the RAMBUTAN
idiom. From this common source, the RAMBUTAN
system does two things:

javatangle Manual

extracts a compilable Java applet to compute the
first N primes, and
javaweave Manual

produces a TEX file laying out code and documen-
tation together, including these words.

Actually, the above is a slight oversimplification:
Manual.w could have contained the whole source,
but in fact I have distributed the source between
Manual.w, Primes.w, and Manual.ch, in order to
illustrate multiple source files—but more on that
later.

The example code follows this preamble, and
introduces the main ideas of literate programming,
as relevant to RAMBUTAN. (The reader is assumed
to be reasonably familiar with Java and TEX.) After
the program there are short explanations of all of
RAMBUTAN’s features. The important features are
few and simple and explained first; the arcana for
literate-programming experts come later. A brief
annotated bibliography concludes.

1. Computing primes. This is a Java applet
that takes two numbers N1, N2 and prints out the
N1-th prime to the N2-th prime.

Like all literate programs, this one consists of
a series of numbered sections. We are currently
in section 1. (Any material before section 1 is

* In other words, what you would expect to be called JavaWEB.
But since JavaWEB sounds too much like a Sun trademark and is a
clumsy word anyway, the system as a whole is called RAMBUTAN.
But inside RAMBUTAN the usual naming conventions apply: the
preprocessors are called javatangle and javaweave and the TEX
macro file is called javaweb.tex. (A rambutan, by the way, is a
delicious fruit, not unlike a lychee, widely enjoyed in Java and
elsewhere.)

TUGboat, Volume 23 (2002), No. 3/4

called limbo; in this case, the introduction.) Most
sections consist of a short text part followed by a
short code part. Some sections (such as this one)
contain only text, some others contain only code.

Section 1 is always a starred section. That just
means it has a title: ‘Computing primes’ in this
case. The title is supposed to describe a large group
of consecutive sections, and gets printed at the start
and on the page headline. Long programs have
many starred sections, which behave like chapter
headings.

The source for this section begins

O Computing primes. This is...

In the source, @* begins a starred section, and any
text up to the first period makes up the title.

2. This is an ordinary (i.e., unstarred) section,
and its source begins

@ This is an ordinary...

In the source, @ followed by space or tab or newline
begins an ordinary section.
In the next section things get more interesting.

3. (Imported packages 3) =
import java.applet .x;
import java.awt .x;
import java.awt.event .x;
import java.util .x;

This code is used in section 5.

4. The source for section 3 begins
@ @<Imported packages@>=
import java.applet...

The result is to make @<Imported packages@> an
abbreviation for four Java statements—mnote the =
in the source.

The bit (Imported packages 3) is called the
section name, not to be confused with the title
of a starred section. Notice how RAMBUTAN has
attached the number 3 and inserted a forward
reference to section 5.

5. Now we have a whole Java class in abbreviated
form. The section (Imported packages 3) is used
here, as promised; so are other sections that haven’t
been defined yet.

(Primes. java 5) =
(Imported packages 3)
public class Primes extends Applet
implements ActionListener
{ (Fields 12)
(Code for initializing 13)

TUGDboat, Volume 23 (2002), No. 3/4

('The event handler 18)

}

6. The source for section 5 is
@ Now we have...

@(Primes.java@>=
@<Imported packages@>
public class Primes extends Applet
implements ActionListener
{ @<Fields@>
0<Code for initializing®@>
@<The event handler®@>
}

Note the left parenthesis in (Primes.java 5), in
contrast with the angle brackets used for other
section names. The source for the section name
(Primes. java 5) is

@(Primes. java@>=

rather than

@<Primes. java@>=
Because of this, section 5 is an output sec-
tion: its expansion is output to the specified file,
Primes. java.

7. That’s it for the really essential features of a
literate programming system: javatangle collects
the code fragments into a compilable program
and javaweave cross-references the sections. The
remaining features of RAMBUTAN are basically
refinements. This example will illustrate a few
more features, but the full list can wait till the next
chapter of this manual. Meanwhile we’ll get on with
explaining the program.

8. The algorithmic job of this program is to
produce a list of primes, which it does inductively.
First, note that testing p for primeness is easy
if we know all the primes < p. We set pmul[j]
to consecutive odd multiples of prime[j] and check
whether we ever hit p. It is enough to try multiples
of primes < \/D-
(Set factor < true if p is a multiple of a
prime 8) =
for (int j — 2; psqr(j] < p; j++)
{ while (pmul[j] < p) pmullj] < 2% primel];
if (pmullj] = p) factor «— true;

This code is used in section 9.

9. Now suppose we have found prime[1] through
primelk — 1]. We then try successive odd numbers
p > prime[k — 1] until we find a prime p.
(Compute primelk] 9) =

305
if (k=1) primelk] — 2;
else (k = 2) primel[k] «— 3;
else

for (int p « prime[k — 1] +2; ; p & 2)
{ boolean factor « false;
(Set factor < true if p is a multiple of a
prime 8)
if (=factor)
{ prime[k] < p; break;
}
}
pmul[k] — primelk];
psqr[k] «— prime[k] = primek];

This code is used in section 20.

10. (Arrays for computing primes 10) =
int[] prime «— new int[N2 + 1];
int[] pmul < new int[N2 + 1];
int[] psqr < new int[N2 + 1];

This code is used in section 20.

11. When we use the code from section 8 in
section 9, the source actually gives the section name
as
@<Set |factor=true| if...@>=

with the three dots. Once a section name has
appeared in the source RAMBUTAN can complete it
from this kind of three-dot shorthand. (And by the
way, RAMBUTAN sensibly collapses extra spaces or
newlines in section names.)

Another feature is the usage |factor=truel
which tells javaweave to typeset the enclosed text
in code-style.

12. The rest of this program is the GUI. Here are
the elements for it. (We restrict ourselves to Java
1.1, which more people’s browsers will interpret
than Java 2.)

The code here includes some comments; literate
programs usually need comparatively few com-
ments. RAMBUTAN knows about the // comment
syntax in Java but not about /*...*/ comments.

If you need to include strings in the . java file that
RAMBUTAN can’t parse, enclose them in @=...@>.
A @=/** javadoc comment */@> can be inserted
in this way.

(Fields 12) =

int NI «— 0, N2 « 0; TextField N1_txt, N2_tzt;

Button run; Panel panel; . for input

TextArea disp; . for output

This code is used in section 5.

13. This method makes a labelled TextField and
attaches it to panel.

306

{ Code for initializing 13) =
TextField new_tf (String str,int n)
{ Panel p — new Panel();
TextField t «— new TextField(n);
p.add (new Label (str, Label. CENTER));
p.add (t);
p.add (new Label("", Label. CENTER));
panel.add (p);
return ¢;
}
See also section 15.

This code is used in section 5.

14. Section 15 has the same section name as
section 13. When two or more sections have the
same name, RAMBUTAN automatically concatenates
them. Note the forward reference in section 13 and
the continuation mark ‘+ =’ in section 15.

15. The applet’s init() method. Because disp
here is Center in a BorderLayout, it will take up
any spare space.
(Code for initializing 13)+ =
public void init()
{ panel «— new Panel();

N1_tzt «— new_tf ("N1", 4);

N2_tat — new_tf ("N2",4);

run < new Button ("run");

panel.add (run);

run.addActionListener (this);

disp «— new TextArea();

disp .setEditable(false);

setLayout (new BorderLayout());

add ("North", panel); add("Center", disp);

16. Some (very rare) sections have a definitions
part.
define ntN (i) =

Integer.parselnt(NQ& iQ& _tat.getText())

17. In section 16 we have a macro. The @&
removes any space between its neighbors in the
java file. Accordingly, intN (1) will do something
with the variable N1_tzt, and so on.

18. (The event handler 18) =
public void actionPerformed (ActionEvent event)
{ run.setEnabled (false);
try
{ int nl — intN(1); int n2 — intN(2);
if (n1 >1An2>nl)
{ N1 «— nl; N2 « n2;

TUGboat, Volume 23 (2002), No. 3/4

(Compute and display primes 20)
}
else

{ (Restore old values of N1, N2 19)
}

}

catch (NumberFormatEzception ex)
{ (Restore old values of NI, N2 19)
}

run.setEnabled (true);

}

This code is used in section 5.

19. (Restore old values of N1,N2 19) =

if (N1 =0)
{ Ni_tzt.setText(""); NI1_tat.setText("");
}

else
{ NI_tat.setText(Integer.toString(N1));

N2_txt.setText (Integer.toString (N2));

}

This code is used in section 18.

20. (Compute and display primes 20) =

(If too extravagant return o1f)
StringBuffer lyne «— new StringBuffer();
disp.setText("");
(Arrays for computing primes 10)
for (int k — 1; k < N2; k++)
{ (Compute primelk] 9)
String num <«
new String (Integer.toString (prime[k]) +
"u")§
if (k> N1)
{ lyne.append (num);
if (lyne.length() < 64)
disp .append (num);
else
{ disp.append ("\n" + num);
lyne «— new StringBuffer (num);
}
}
¥

This code is used in section 18.

21T, (If too extravagant return o1t) =
if (N2 — N1 > 2000)

{ disp.setText("Printing, more jthan ");
disp.append ("2000 primes ");
disp.append ("is too boring\n");
disp.append ("Try increasing N1");
run.setEnabled (true);
return;

TUGDboat, Volume 23 (2002), No. 3/4

This code is used in section 20.

221, The source of this program is actually in the
file Primes.w, while Manual .w says

@i Primes.w
to include that file.

If you look in Primes.w, you will find that it
considers printing > 1000 primes as already too
boring, rather than > 2000 primes. The relevant
lines of code have been overridden by the change

file Manual.ch. This last file contains
0x

if (N2-N1 >= 1000)
{ disp.setText("Printing more than ");
{ disp.setText("1000 primes ");
Qy
if (N2-N1 >= 2000)
{ disp.setText("Printing more than ");
{ disp.setText("2000 primes ");
0z

and continues with a similar construction containing
this section. The section numbers 21 and 22 have
daggers attached to indicate that a change file is
involved.
A change file consists of constructions of the type
0x
(Lines quoted from the source file)
Cy
(Replacement lines)
0z

The change-file name is an optional second input
parameter on the command line. Thus
javatangle Manual.w Manual.ch
or simply
javatangle Manual Manual

and similarly for javaweave.

23. Control codes. Following are the complete
set of control codes understood by RAMBUTAN.
Only the first two sections are really important.

24. Basic controls. These cover the essentials of a
literate programming system.

@(space) Begins a new section. (A tab or newline
is also read as space here.)

@*(group title). Begins a starred section.

@<(section name)@>= Section definition, which is
really the code-part definition. A section can
have at most one such definition. The code can
be continued in later sections (see examples in
sections 13 and 15).

307

@<(section name)@> Code-part of the named sec-
tion used. A section can have any number of
these.

After a section name has first appeared (whether
as definition or use) it can be abbreviated using
three trailing dots. (See example in section 11).

@((filename)@>= Output-section definition. Writ-
ten to the named file.

This feature allows javatangle to write multiple
.java files from a single source, which is useful if
you have many short public classes. javaweave still
generates a single .tex file.

Gu “Unnamed” output-section; the filename is
inferred by replacing the main source file’s extension
with java. For this program, that default file would
be Manual. java (but it is not in fact used).

In WEB and CWEB a feature analogous to @u is the
only way to output code, but in RAMBUTAN @u is
less important.

25. File controls. These are for using multiple
RAMBUTAN source files:

@i (filename) Includes the file. Must be followed

by a newline.

@x(...)@y(...)@z Valid only in change files. The
control codes @x, @y, @z, must appear at the
beginning of a line, and the rest of such a line
is ignored. Any material outside the blocks
@x(...)@y(...)@z is also ignored.

26. Special tangle controls. These are for getting
special effects in the output java file. We have met
the first three in the prime-numbers example.

@d (name) = (defn) Defines a macro.

equivalent.]

(tokenl) @& (token2) javatangle outputs the two
tokens without intervening space.

[@D is

@=(code text)@> javatangle passes the (code text)
verbatim into the java file.

@’ (digits) An octal constant (must be positive).
For example, @°100 tangles to 64 and weaves to
‘100.

@"(digits) A hexadecimal constant. For example,
@"DODO tangles to 53456 and weaves to “DODO.

27. Special weave controls. These are for fine-
tuning the typesetting. We have met the first one
in the prime-numbers example.

308

[{code fragment)| TUsed in text, or section names,
to format a code fragment in code-style. The
(code fragment) must not contain section names.
[This is the only RAMBUTAN control code not
involving @.]

@t (text)@ The (text) is put into a TEX \hbox.
For example, |size < @t$2°{15}$@>| produces
size < 215, The (text) must not contain newlines.

@f (idl) (id2) Format definition; an optional
comment enclosed in braces can follow. [QF is
equivalent.] Makes javaweave treat (idl) as it
currently treats (id2). Format definitions appear
between the text part and the code part of a section,

together with @d macros (in any order).

@/ Produces a line break. [Should not be used

inside expressions.]
@# Like @/ but adds some extra vertical space.

@- Like @/ but indents the next line, to show that
it is a continuation line.

@l Recommends a line break, but does not force
one. [Can be used inside expressions.]

@+ Cancels a line break that might otherwise be
inserted by javaweave.

@, A thin space.
@; Formats code as if there were a semicolon there.

@@ javaweave outputs a single @. This cannot
be used inside @<(text)@> or similar contexts. An
alternative is \AT! in text.

28. Index controls. These are for fine-tuning the
index, and ignored by javatangle.

A reserved word or an identifier of length one will
not be indexed except for underlined entries.

@~ (text)@ The (text) will appear in the index in
roman type.

@.(text)@ The (text) will appear in the index in
typewriter type.

@:(text)@ In the index, the TEX file will have
\9{(text)} and the user can define \9 freely in TEX.

@!(token) In the index entry for (token) the
section number will be underlined.

29. Other information. The input syntax for
javatangle is

javatangle (source file) (change file) -I(path)

TUGboat, Volume 23 (2002), No. 3/4

The (source file) has default extension .w while the
optional (change file) has default extension .ch and
the default (path) is the current directory.

The input syntax for javaweave is similar:

javaweave (source file) (change file) -x -I{path)

The additional -x option omits the index.
Both programs also implement the --version
and --help options.

30. If you use pdftex on the output of javaweave,
section-number cross-references will be clickable.
Using \LP{(section number)} in text will also give
you a clickable link.

31T, TEX macros are in javaweb.tex, which is
based on the original webmac.tex but considerably
modified and reorganized. The default format is a
standalone Plain TEX document, but if you want
to use IMTEX, or embed within a larger document
(such as this article in TUGboat style) minimal
changes are necessary.

32. To get a table of contents (listing the starred
sections), put
\contents

at the very top of the input file. Unlike in WEB and
CWEB, the table of contents comes first. So you will
have to run TEX twice to get an up-to-date list.

If you use pdftex the contents will also appear
as bookmarks.

33. If you are using a change file and want to
view only the changed sections, put

\let\maybe\iffalse

in the source file or the change file, in the limbo
part.

Using this option with pdftex will generally
produce a lot of clickable links to absent sections,
but such links will still behave sensibly.

34. Bibliography. The basic introductory refer-
ence on literate programming in general is Knuth’s
article:

Literate Programming, in The Computer Journal

27, 97-111 (1984).
which is also reprinted in Knuth’s anthology of the
same title. (The prime-numbers example in this
manual is adapted from the Knuth article.)

For reviews and links on all aspects of literate pro-
gramming, see Daniel Mall’s literate programming
web site:

www.literateprogramming.com

http://www.literateprogramming.com

TUGboat, Volume 23 (2002), No. 3/4

Normal Ramsey’s Spidery WEB (a generator for
tangle and weave programs) is described in:
Literate programming: Weaving a language-
independent WEB, Communications of the ACM,
32, 1051-1055 (1989)
and archived on CTAN. I made a few modifications
(such as adding hyperlinks) to the Spidery WEB
system itself; such modifications are through change
files, so Ramsey’s original code is untouched.
The change files are included in the RAMBUTAN
distribution. Ramsey himself now deprecates
Spidery WEB and favors the simpler noweb system:
Literate programming simplified, IEEE Software,
11, 97-105 (1994)
which is language independent but sacrifices many
features, including automatic cross-referencing. See
also Ramsey’s web site:
www.eecs.harvard.edu/"nr
I use noweb too, but I think Spidery WEB still has a
place.
Finally, the RAMBUTAN distribution is available
from my web site:
ankh-morpork.maths.qmul.ac.uk/ saha
and is also archived on CTAN.

I thank Karl Berry for several improvements to
this article.

¢ Prasenjit Saha
Astronomy Unit
Queen Mary and Westfield College
University of London
London E1 4NS
United Kingdom
p.saha@gmul.ac.uk

309

http://www.eecs.harvard.edu/~nr
http://ankh-morpork.maths.qmul.ac.uk/~saha

	1. Computing primes
	23. Control codes
	29. Other information
	34. Bibliography

