
Typographical journey

Exploring type [with computer] is fun,

and ultimately, it changes the way you

think about type and work with it.

— ROB CARTER, Experimental Typography

Throughout history people used have symbols
to visually encode thoughts and feelings. The oldest
example I was able to find in the literature is an
inscription from La Pasiega cave.

Fig. 1. Inscription from La Pasiega cave
(Spain, ca. 10000 B.C.)

Unfortunately, the meaning of the symbols was
lost in the past, so that we don’t know how to
decode this inscription. As a result, we don’t know
exactly what it means — we can only guess. Other

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 27

The Tao of Fonts

W lodzimierz Bzyl
matwb@univ.gda.pl

Abstract

Fonts are collections of symbols which allow people to express what they want
to say, what they think or feel. Writing is a technique and as each technique
has something to offer and has limitations. For example, the shapes of symbols
depend on the tools and materials used for writing.

In the first part, I illustrate some writing techniques with examples. In
the second part, I present a new technique for creating fonts and illustrate it
with several examples. It is based on the METAPOST language [1] and could be
viewed as Knuth’s method [2–5] adapted to METAPOST. Knuth uses METAFONT

to program fonts and an mf compiler to translate programs into bitmap fonts.
Unfortunately, today’s standards are based on PostScript fonts [6–9]. So, to keep
the Knuth’s idea of programmable shapes alive, fonts should be programmed in
PostScript. This is difficult, because PostScript is a low level language.

The approach presented here is to program fonts in METAPOST. Although
the mpost compiler is not able to output a font directly, its output can be
assembled into a PostScript font [10–13]. A font programming environment
is based on a revised version of the mft pretty-printer. The original mft

understands only METAFONT, but changed mft understands METAPOST too.
In the third part, I present a simple font programmed as a Type 3 and as a

Type 1 font. These examples will give an idea of font programming.
In the Appendix, I present a detailed description of Type 3 fonts [6, 9].

Fig. 2. ‘Magical’ stamps

ancient symbols are found on pikes and bows. It
is assumed that they are some kind of owner’s
signature or that they have a magical value, so that
they bring luck to the owner, etc. Nowadays, we
still use symbols in similar way. Probably everyone
has at least once received a mail overprinted with
“CONFIDENTIAL – you have been chosen to be
rich. You can take part in our lottery draw. All
you have to do is to subscribe our magazine.”

Pictographs, ideograms, and alphabets have
been written and reproduced on papyrus, stones,
wood, clay tablets, paper, and computer displays;

and different techniques have been used to write,
carve, cut, and print symbols.

Handwriting used to be the most common
technique. The Phoenicians invented an alphabetic
font which is a precursor of the Greek, Latin,
and Cyrillic fonts. The inscription of Fig. 3 was
originally written on papyrus.

Fig. 3. Phoenician inscription
(Byblos, 1100 B.C.)

Handwriting can reveal the author’s personality,
which makes this technique interesting. Wouldn’t
it be nice to have a psychological portrait of this
author?

Fig. 4 shows a fragment of a poem written by
probably the greatest Polish poet Cyprian Kamil
Norwid. This poem seems to move every Pole
who reads it. I think that the same poem printed
along with several others in Computer Modern,
Garamond, Times, or Palatino would not have the

Fig. 4. Cyprian K. Norwid, Vade-mecum
(manuscript in Polish, 1865–1866)

28 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

Fig. 5. Calendarium Parisiense
(manuscript Latin, ca. 1425)

same impact on readers. Maybe this is why I don’t
like reading poems which all look the same.†

But the main problem caused by handwriting
(and computer typesetting too) is the appearance
of overfull and underfull lines. These, in some cases,
can not be eliminated. Fig. 5 shows the earliest
example I was able to find.

Another technique is cutting in stone. The
shapes in Fig. 6 are more regular, partly because
bigger letters were sketched beforehand.

This picture shows the earliest example of serifs
ever found. The serifs are functioning here as a
way of finishing letters, which otherwise would be
irregular and wiggly ended. Nowadays, we think
that serif fonts are easier and quicker to read. This
is generally true, because letters without serifs in
some cases looks similar to each other, for example:
I – l – 1.*

† But I would be very grateful if my doctor chose
to use Computer Modern on my prescriptions.

* I cannot imagine books or newspapers carved
in stone. Nevertheless, there was once an exception:
I have seen Fred Flintstone reading newspapers.
But this was a long time ago down in the Bed Rock.

Fig. 6. Rome, (ca. 200 B.C.)

Fig. 7 shows the 32nd page of one of the
first printed books in Poland. This book is very
important, because it contains designs for Polish
diacritics: aogonek, eogonek etc. The borders were
cut in wood and letters in metal. The printed letters
are much smaller than carved ones, so cutting them
was a real challenge, yet even tiny serifs are present.
This technique was perfected over the years. The
results are seen on Fig. 8. Here borders were cut in
wood and the type was cut in metal.

Finally we get to Fig. 9 showing what com-
puters are good at. The ‘shapes’, drawn by a
computer, are almost ideal. Typographical embel-
lishments are not present — instead the letters are
colored and a background photo is used to improve
the typography of the page.

Each new technique starts from the point where the
old one ends.

When we make a letter with a computer, the
mouse is used to put points on an ‘imaginary
sheet’. As the points are laid down, the computer
joins them with curves. Next, the inflexion points
(red) and the endings of tangents (green lines) are
adjusted by hand. At the same time, the computer

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 29

TAO

Fig. 7. New Polish Character
(Jan Januszowski, 1594 Cracow)

Fig. 8. The Story of the Glittering Plain
(Kelmscott Press, 1891)

Fig. 9. “Playboy” (Polish edition, 2001)

Fig. 10

redraws the shape (see Fig. 10). We have replaced a
chisel by a mouse and wood/metal by the computer
screen. With these tools, we can polish the shape
as long as we wish, and we can not ruin the shape
with the one wrong decision as can happen with
traditional tools and materials.

One of the limitations of this technique is shown
in Fig. 11. Printing a symbol by computer means
putting the imaginary sheet on the screen. This
sheet can be expanded, contracted, or skewed —
we can apply any geometrical transformation to it.
Unfortunately, the results may not be satisfactory;

30 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

STOP !
STOP !

STOP !

STOP !

Fig. 11

for example, the stop sign in the third row has
lost its white border and the inscription is hardly
readable. We could repair this if it would be
possible to drop the border and scale the inscription
less, but the operation is unfeasible, because the
computer does not know which numbers in the
character design are responsible for the border and
which for the inscription.

So the only way to produce a better font at
small sizes is to make it from scratch. Since some
will inevitably use an enlarged version of this font
instead of the original one, and chaos will ensue.
Imagine a country where each town has slightly
different traffic signs!

Programming fonts

Typographic standards make type more readable,
but readability has become a relative concept. The
immediacy of personal computers and the World
Wide Web has raised the level of ‘typographic
literacy’: computers are used to stretch typographic
boundaries [14].

Before we start to explore type with computers,
we should ask: What is the right way to create
digitized patterns for printing or displaying? In this
section, I will try to convey some of my excitement
about experiments with the tools I have created,
since I think that I am going in the right direction
[see also 3].

To play with and to explore fonts I use a set
of UNIX tools. To this set I added the DOS batch
files forming the METATYPE1 package by the JNS
team [11], which I converted to UNIX scripts.

The language for font programming is META-
POST. To make a METAPOST font usable we must
convert it into something that printing and type-
setting systems can understand. I chose PostScript
Type 1 or Type 3 font programs, mainly be-
cause Ghostscript — a free PostScript interpreter —
is available on almost every computer platform.

The Linux version of the tools consists of
METAPOST font libraries and four scripts:

METAPOST FONT SOURCES

METAPOST FONT LIBRARIES

mkfont[13] mkproof[13]

FONT FILES AND HARDCOPY PROOFS

Fig. 12. Fonts programming

mkfont1 – converts METAPOST font sources
to Type 1 font: a shell script that uses programs
mpost, t1asm from the t1utils package and awk.

mkfont3 – converts METAPOST font sources to
Type 3 font; a perl script that calls mpost

mkproof1 and mkproof3 – scripts that produce
hardcopy proofs and are used as debugging tools:
they call mpost and the mft pretty-printer.

SIGN-000.MP

1

2

3

4

5

0

beginpic(127, 250, 125, 0); "Dangerous bend";
draw post ; draw info signboard ;
clearxy;
% the dangerous bend
numeric heavyline; heavyline := 27;
x5 = w − x0; x5 − x0 = 80; x1 = x2 = x5; x0 = x3 = x4;
y0 = −y5 = 1/2 h; y1 = −y4 = 1/3 h; y2 = −y3 = 1/11 h;
pickup pencircle scaled heavyline;
interim linecap := butt ;
draw z0 - - z1{z1 − z0} . . z2 - - - z3 . . z4{z5 − z4} - - z5

withcolor c.Dangerous Bend ;
labelcolor := white; dotcolor := white;
labels lft(1, 2, 3, 4, 5); labels rt(0);

endpic;

11:57 11 VII 2001 7

Fig. 13. Hardcopy proof of the dangerous bend

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 31

TAO

In font programming two type of errors appear:
bugs in font program and design errors. Bugs are
treated in an ordinary way. To catch design errors
I use hardcopy produced by the mft program.

We have the tools, so it’s high time to start
programming. Let’s start from the beginning.

The Phoenician font lacks vowels. There are
three ways of writing with this font. Lines may be
written from left to right, right to left, or left to
right, right to left, etc., with letters on every other
line reflected vertically. It could be a real challenge
to typeset a Phoenician script with TEX.

To [our] Lady Ishtar
This is the holy place

Fig. 14. Phoenician font [26]

TEX could be used to communicate with the
STAR TREK crew: we only need their font. No
problem: there is nothing special about this font,
except the extraordinary shapes of the symbols and
the use of few ligatures.

Listen sons of Kahless!
Listen his daughters!

Fig. 15. Klingon font [23]

We can also send our classic love poems to
elves. The elves write vowels over the preceding
letter, unless it is also a vowel. This case, and the
case when a vowel starts a word, are handled by
other rules [18].

— JAN KOCHANOWSKI, About love

Fig. 16. Tengwar font [24]

It appears that that all these rules can be imple-
mented with an appropriate ligature and kerning
table.

What was considered unreadable yesterday is
readable today. People are more visually sophisti-
cated and typographically savvy than ever before,
so my next font contains ideograms for love and for
some other emotions, as well as letters.

Fig. 17. Redis font (see also [28])

Special math fonts can be useful, too. We
could use them on title pages or on slides. In
the example below, math characters are colored
according to their math class as defined in plain
format. Below, binary operators are painted in
green, large operators in magenta, etc. (In the pdf
version, not on paper.)

Fig. 18. New Punk Math font (see also [19])

Fig. 19 shows a piece of text typeset with a
computer replica of the font used in the Polish
Alphabet Primer by Falski. I learned to write
letters with the help of Falski’s primer, as did my
wife and my daughter. In fact, all children in
Poland learn Falski’s letters.

32 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

Fig. 19. Ala font [27]

The characteristic features of this font are listed
below:

size of characters: BIG,
width: PROPORTIONAL,
slanting: UPRIGHT,
interletter spacing: BIG,
uniformity of pressure: CONSTANT,
strength of pressure: AVERAGE,
interword spacing: BIG,
overall appearance: OVAL,
readability: CLEAR.

Handwriting can reveal the personality of the writer.
The writer in this case is my computer so we can get
‘his’ psychological portrait easily: A person which
writes this way is well-wishing, Easy to cooperate
with and friendly. Usage of uppercase letters and big
interletter spacing indicates this. Constant pressure
means emotional maturity. Oval appearance might
mean uncertainty and submissiveness. Finally,
constant and average pressure and wide characters
indicate an uneasy and over excitable person.

The most important thing about this example
is how easy it is to make this font to look differently,
for example more ‘technical’. It suffices to change
few numbers which define this font. But it would
be difficult to simulate other important features
of handwritten scripts, such as variable baseline,
variable letters shape, pressure of script.

The next example shows the I-Ching font (see
also [29]). The I Ching or “The Book of Changes”
is an old Chinese oracle. This font could be used to
do divinations. With computers it is easy. Ask a
question, press Enter key and your computer will do
the rest. On the next page I put results obtained

LI
To Shine Brightly, to Part

INTERPRETATION

To Part. It is useful to stand firm and behave well. This will bring

success. Take care of the cows. There will be good fortune.

Interpretation of the 4 th change line

It comes unexpectedly. It is like a fire which dies down and is discarded.

during my presentation at the TUG 2002 meeting
in Trivandrum.

Nowadays, children in Poland have more and
more problems with orthography. There are many
pairs of letters which cause them problems. For
example the letters ‘oacute’ and ‘u’ are pronounced
the same way, ‘b’ and ‘p’ are pronounced almost
the same way, etc. The following trick is used to
teach orthography to children with dyslexia [22].
Each problematic letter is mapped to a crayon with
different colors corresponding to different letters.
Instead of writing a problematic letter, the child
uses the appropriate crayon to draw a rectangle.
After a while the crayons are removed. This
method is supplemented by appropriate books and
dictionaries.

The following ‘text’ demonstrates the extreme
case in which every letter is problematic.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 33

TAO

I like this kind of writing, so why take off crayons?

— DONALD E. KNUTH, The METAFONTbook

Type 3 font example

Fonts are collections of programmed shapes. There
are several kinds of fonts. Each type of font has
its own convention for organizing and representing
the information within it. The PostScript language
defines the following types of fonts [8, p. 322]: 0,
1, 2, 3, 9, 10, 11, 14, 32, 42. Text fonts are
mostly of Type 1, which are programmed with
special procedures. To execute efficiently and to
produce more legible output, these procedures use
features common to collections of black & white
letter-like shapes. The procedures may not be used
outside a Type 1 font. While any graphics symbol
may be programmed as a character in a Type 1
font, non-letter shaped symbols are better served
by the Type 3 font program which defines shapes
with ordinary PostScript procedures including those
which produce color. Other font types are used
infrequently.

Although Type 3 fonts are PostScript pro-
grams, I prefer to program shapes in the META-
POST language and convert the mpost output into
a Type 3 font, because METAPOST simplifies the
programming due to its declarative nature. In
PostScript each curve is built from lines, arcs of
circle and Beziér curves [p. 393, 9]. For complicated
shapes this requires a lot of nontrivial program-
ming. METAPOST implements a ‘magic recipe’ [10]
for joining points in a pleasing way, which helps a
lot. Even if you are not satisfied with the shape,
you can give the program various hints about what
you have in mind, therefore improving upon the
automatically generated curve. To use a font with
TEX the font metric file is required. It contains
data about width, height and depth of each shape
from the font. Because mpost could generate metric
file on demand, fonts prepared with METAPOST are
immediately usable with TEX.

Creation of a Type 3 font is a multi-step process.

1. A font must be imagined and designed.
2. The design must be programmed. This step is

supported by a specially created library.
3. The METAPOST font program must be com-

piled.
4. The files thus created must be assembled into

a font. This task is done by the mkfont3 Perl

script.

Additionally, the font must be made available to
TEX and instructions must be given to tell TEX how
to switch to this font.

Let’s create a font which contain one character
named plus. Use an ascii text editor — it does not
have to be your favorite, any such editor works — to
create a file called plus-000.mp that contains the
following lines of text.

Each font program should name the font it creates.

font_name "Plus-000";

These names are merely comments which help to
understand large collections of PostScript fonts.

family_name "Plus";

font_version "0.0final";

is_fixed_pitch true;

and following names play similar rôle in the TEX
world.

font_identifier:="PLUS 000";

font_coding_scheme:="FONT SPECIFIC";

The mpost program does all its drawing on its
internal ‘graph paper’. We establish a 100 × 100
coordinate space on it.

34 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

grid_size:=100;

The font matrix array is used to map all
glyphs to PostScript’s 1× 1 coordinate space. This
convention allows consistent scaling of characters
which come from different fonts.

font_matrix

(1/grid_size,0,0,1/grid_size,0,0);

This particular font matrix will scale a plus shape
by the factor 1/100 in the x dimensions and by the
same factor in the y dimension. If we had choosen
scaling by the factor 1/50 then the plus shape
would have appeared twice as large as characters
from other fonts.

The data below provides information about
how to typeset with this font. A font quad is the
unit of measure that a TEX user calls one ‘em’ when
this font is selected. The normal space, stretch,
and shrink parameters define the interword spacing
when text is being typeset in this font. A font
like this is hardly ever used to typeset anything
apart from the plus, but the spacing parameters
have been included just in case somebody wants to
typeset several pluses separated by quads or spaces.

font_quad:=100;

font_normal_space:=33;

font_normal_stretch:=17;

font_normal_shrink:=11;

Another, more or less ad hoc, unit of measure
is x_height. In TEX this unit is available under the
name ‘ex’. It it used for vertical measurements that
depend on the current font, for example for accent
positioning.

font_x_height:=100;

The plus font is an example of a parameterized
font. A single program like this could be used
to produce infinite variations of one design. For
example, by changing the parameters below we
could make the plus character paint in a different
color, or make it thicker.

color plus_color;

plus_color:=red;

u:=1; % unit width

pen_width:=10;

The mode_setup macro could be used to over-
ride all the settings done above. Typically, it is used
to tell the mpost program to generate a font metric
file or proofsheets. Additionally, mode_setup could
execute any piece of valid METAPOST code at this
point. For example, we could change the color of
plus to yellow and the pen width to 5 units. The
code to be executed could be read from a separate
file (see below on how to prepare and use such a

file). Thus we can make a variation of this design
or re-parameterize the font without changing the
master plus-000.mp file. Such a mechanism is
required, to avoid populating our hard disks with
similar files.

mode_setup;

The Type3 library makes it convenient to define
glyphs by starting each one with:

beginpic (〈code〉, 〈width〉, 〈height〉, 〈depth〉)
where 〈code〉 is either a quoted single character like
"+" or a number that represents the glyph position
in the font. The other three numbers say how
the big the glyph bounding box is. The command
endpic finishes the plus glyph.

Each beginpic operation assigns values to
special variables called w, h, and d, which represent
respective width, height, and depth of the current
glyph bounding box. Other pseudo-words are part
of METAPOST language and are explained in [6].

beginpic("+",100u,100,0); "+ plus";

interim linecap:=butt;

drawoptions(withcolor stem_color);

pickup pencircle scaled stem_width;

draw (w/2,-d)--(w/2,h);

draw (0,(h-d)/2)--(w,(h-d)/2);

endpic;

Finally, each font program should end with the
endfont command.

endfont

Now, we are ready to compile the font with
mpost and assemble generated glyphs into Type 3
font with one command:

mkfont3 plus-000

To use Plus-000 font in a TEX document it
suffices to insert these lines:*

\font\X=plus-000 at 10pt

\centerline{\X +\quad+ +++ +\quad+}

This code produces the seven red pluses below.

A font cannot be proved faultless. If some
glyphs are defective, the best way to correct them
is to look at a big hardcopy proof that shows
what went wrong. The hardcopy for the Plus-000

font could be generated with the following shell
command:

mkproof3 -u plus-000.map plus-000.mp

* To see characters from a PostScript Plus-000

font, the DVI file must be processed by DVIPS (see
the explanations at the end of this section).

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 35

TAO

As mentioned above, it is not wise to make
one-time-only variation of a font by changing the
font source. To change font parameters mode_setup
is used in conjuction with the change_mode macro.
used. I will explain this last sentence with an
example.

Assume that fictitious document doc.tex uses
Plus-000 font and the font program reside in the
file plus-000.mp.

The default color of the plus symbol is red. To
create a variation of the font with the plus symbol
painted in yellow we re-parameterize it using a file
named doc.mp, with the following content:

mode_def plus_yellow = message "yellow +";

final_; % create metric file
font_name "Plus-b00";

plus_color:=(1,1,0);

enddef;

Now, we can create a TFM file, Type 3 font, and
dvips fontmap file with the command:

mkfont3 --change-mode=doc,plus_yellow \

--change-name=plus-b00 plus-000.mp

To test the font, create a file named doc.tex with
the following content:

\font\Y=plus-b00 at 10pt

\centerline{\Y +\quad+ +++ +\quad+}

typeset it and convert to PostScript:

tex doc.tex

dvips -u plus-b00.map doc.dvi -o doc.ps

This should generate file named doc.ps which
may be viewed and printed, for example with the
Ghostscript program. The programmed yellow plus
is printed below.

Generating hardcopy proofs, compiling fonts,
typesetting documents requires remembering and
executing a lot of shell commands. Here, the make

utility helps a lot [20].

Type 1 font example

Type 1 font programming differs from Type 3 font
programming. Type 3 glyphs can use any Post-
Script command, but Type 1 glyphs use a subset of
PostScript. Moreover, we must construct an outline
of glyph instead of drawing it. The outline is filled
when the glyph is printed.

Each METAPOST font should input the META-
POST Type1 library. The library contains macros
which help to compute outlines, and to output

various font data to several files. These data are
used by the mkfont1 script which assembles Type 1
font and mkproof1 script which typesets hardcopy
proofs.

The Type 1 font programmed below contains noth-
ing but a plus symbol. Let’s start with reading
basic macros.

input type1;

Next follows the usual font administration stuff.
Each font should define several variables [9, Tables
5.1–4].

pf_info_familyname "Plus";

pf_info_fontname "Plus-Regular";

pf_info_weight "Normal";

pf_info_version "1.0";

pf_info_fixedpitch true;

pf_info_author "Anonymous 2002";

pf_info_creationdate;

The mpost program does all its drawing on its
internal ‘graph paper’ with 1000× 1000 coordinate
space on it. The data below provides information
about how to typeset with this font.

pf_info_quad 760;

pf_info_capheight 760;

pf_info_xheight 760;

pf_info_space 333;

The adl suffix here is a mnemonic for Ascender,
Descender, and Lineskip.

pf_info_adl 750, 250, 0;

The PostScript fill operator is used to paint the
entire region closed by the current path. For each
path, the non-zero winding number rule [9, p. 161]
determines whether a given point is inside a path.
This behaviour is simulated by the Fill and unFill

macros. The fill_outline macro, for each closed
path stored in the array s[1..s.num], fills or unfills
it based on its turning number [4, p. 111].

def fill_outline suffix s =

for i:=1 upto s.num:

if turningnumber s[i] > 0: Fill

else: unFill fi s[i];

endfor

enddef;

The plus sign has squared-off ends. Macro butt_end

simplifies the task of cutting of ends of paths.

def butt_end(text nodes) =

cut(rel 90)(nodes)

enddef;

A horizontal line of the same width as a vertical
line seems thicker. To avoid this optical illusion we
use an elliptical pen.

36 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

numeric px; px:=100;

numeric py; py:=90;

default_nib:=fix_nib(px,py,0);

These names are intended to make the code more
readable.

path vertical_stem, horizontal_stem;

path glyph;

Each glyph should be defined within a block defined
by beginfont and endfont commands.

beginfont

Programmed symbols must be given names as well
as positions in the font.

encode("plus",43);

Each glyph starts with beginglyph and ends with
endglyph macro. The following macros initialize
several variables, used for the glyph data bookkeep-
ing.

standard_introduce("plus");

beginglyph("plus");

For convenience, the width, height and depth of the
character are assigned to variables w, h, and d.

w:=760; h:=760; d:=0;

The horizontal and vertical bars of the plus glyph
are centered with respect its bounding box.

z0=(w/2,d); z1=(w/2,h);

z2=(0,(h-d)/2); z3=(w,(h-d)/2);

To draw paths z0--z1 and z2--z3 the pen with
a default_nib-shaped nib is used. The macro
pen_stroke finds the outline of each path. Out-
lines are assigned to the paths vertical_stem and
horizontal_stem. The macro butt_end cuts off
the ends of these paths at times 0 (beginning) and
1 (end).

pen_stroke(butt_end(0,1))(z0--z1)

(vertical_stem);

pen_stroke(butt_end(0,1))(z2--z3)

(horizontal_stem);

Programming a Type 1 glyph means constructing
its outline (which could be made up of several cyclic
paths). The macro below finds the outline of the
paths constructed above and stores it in the array
named in the second argument.

find_outlines

(vertical_stem,horizontal_stem)(glyph);

Now, we are ready to draw the plus symbol.

fill_outline glyph;

Finally, we fix the width of the glyph to w and its
left and right sidebearings to 0.

fix_hsbw(w,0,0);

Each symbol should include so-called hints [8, p. 56–
57] that make it render better on a wide variety of
devices.

fix_hstem(py)(horizontal_stem);

fix_vstem(px)(vertical_stem);

To make our hardcopy proofs more readable we
define some construction points (see the figure
below).

dotlabels(0,1,2,3);

The last two macros end the subprogram for plus
symbol and the whole font program.

endglyph;

endfont;

Now, we can create a TFM file, Type 1 font,
and dvips fontmap file with the command:

mkfont1 plus.mp

The plus character just constructed is used to print
the divider line below.

+ + +++ + +

The hardcopy proof below was typeset with the
command:

mkproof1 -u plus.map plus.mp

def fill outline suffix s =
for i := 1 upto snum:

if turningnumber s[i] > 0: Fill else: unFill fi s[i] ;
endfor

enddef ;

def butt end(text nodes) = cut(rel 90)(nodes) enddef ;

numeric px ; px := 100 ;

numeric py ; py := 90 ;

default nib := fix nib(px , py , 0) ;

path vertical stem, horizontal stem, glyph ;

beginfont

0

1

2 3

encode("plus", 43) ;

standard introduce("plus") ;

beginglyph("plus") ;

w := 760 ; h := 760 ; d := 0 ;

z0 = (w/2, d) ; z1 = (w/2, h) ;

z2 = (0, (h− d)/2) ; z3 = (w, (h− d)/2) ;

pen stroke(butt end(0, 1))(z0 - - z1)(vertical stem) ;

pen stroke(butt end(0, 1))(z2 - - z3)(horizontal stem) ;

find outlines(vertical stem, horizontal stem)(glyph) ;

fill outline glyph ;

fix hsbw(w, 0, 0) ;

fix hstem(py)(horizontal stem) ;

fix vstem(px)(vertical stem) ;

dotlabels(0, 1, 2, 3) ;

endglyph ;

endfont ;

21:05 17 X 2002 PLUS 3

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 37

TAO

Appendix

This description is somewhat simplified in respect
to the examples to be found in [6, 9].

Each Type 3 font should begin with two lines
of comments.

%!PS-AdobeFont-1.0: Square 1.00

%%CreationDate: 1 May 2001

A Type 3 font consists of a single dictionary,
possibly containing other dictionaries, with certain
required entries. The dictionary of size 99 should
suffice for fonts which consists of several characters.

99 dict begin

This dictionary should include following entries:

Variable FontType indicates how the character
information is organized; for Type 3 fonts it
has to be set 3.
Variable LanguageLevel is set to the minimum
PostScript language level required for correct
behavior of the font.
Array FontMatrix transforms the character
coordinate system into the user coordinate
system. This matrix maps font characters to
one-unit coordinate space, which enables the
PostScript interpreter to scale font characters
properly. This font uses a 1000-unit grid.
Array (of four numbers) FontBBox gives lower-
left (lx, ly) and upper-right (ux, uy) coordinates
of the smallest rectangle enclosing the shape
that would result if all characters of the font
were placed with their origins coincident, and
then painted. This information is used in
making decisions about character caching and
clipping. If all four values are zero, no as-
sumptions about character bounding box are
made.

/FontType 3 def

/LanguageLevel 2 def

/FontMatrix [0.001 0 0 0.001 0 0] def

/FontBBox [0 0 1000 1000] def

The FontInfo dictionary is optional. All infor-
mation stored there is entirely for the benefit of
PostScript language programs using the font, or for
documentation.

FamilyName— a human readable name for a
group of fonts. All fonts that are members
of such a group should have exactly the same
FamilyName.
FullName— unique, human readable name for
an individual font. Should be the same name
as one used when registering the font with the
definefont operator below.
Notice— copyright, if applicable.

Weight— name for the “boldness” attribute of
a font.
version— version number of the font program.
ItalicAngle— angle in degrees counterclock-
wise from the vertical of the dominant vertical
strokes of the font.
isFixedPitch— if true, indicates that the font
is a monospaced font; otherwise set false.
UnderlinePosition— recommended distance
from the baseline for positioning underlining
strokes (y coordinate).
UnderlineThickness— recommended stroke
width for underlining, in units of the char-
acter coordinate system.

/FontInfo <<

/FamilyName (Geometric)

/FullName (Square)

/Notice (Type 3 Repository.

Copyright \(C\) 2001 Anonymous.

All Rights Reserved.)

/Weight (Medium)

/version (1.0)

/ItalicAngle 0

/isFixedPitch true

/UnderlinePosition 0.0

/UnderlineThickness 1.0

>> def

The Encoding array maps character codes (integers)
to character names. All unused positions in the
encoding vector must be filled with the name
.notdef. It is special in only one regard: if some
encoding maps to a character name that does not
exist in the font, .notdef is substituted. The effect
produced by executing .notdef character is at the
discretion of the font designer, but most often it is
the same as space.

/Encoding 256 array def

0 1 255

{Encoding exch /.notdef put}

for

The CharacterProcedures dictionary contains in-
dividual character definitions. The name is not
special — any name could be used — but this name
is assumed by the BuildGlyph procedure below.

/CharacterProcedures 256 dict def

Each character must invoke one of the setcachede-
vice and setcharwidth operators before executing
graphics operators to define and paint the char-
acter. The setcachedevice operator stores the
bitmapped image of the character in the font cache.
However, caching will not work if color or gray is
used. In such cases the setcharwidth operator

38 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

should be used, which is similar to setcachede-

vice, but declares that the character being defined
is not to be placed in the font cache.

wx wy lx ly ux uy setcachedevice –
wx, wy — comprise the basic width vector, i.e.,
the normal position of the origin of the next
character relative to origin of this one
lx, ly, ux, uy — are the coordinates of this
character bounding box

wx wy setcharwidth –
wx wy — comprise the basic width vector of
this character

CharacterProcedures /.notdef {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 32 /space put

CharacterProcedures /space {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 83 /square put % ASCII ‘S’

CharacterProcedures /square {

1000 0 setcharwidth

0 1 1 0 setcmykcolor % red

0 0 1000 1000 rectfill

} put

The BuildGlyph procedure is called within the
confines of a gsave and a grestore, so any changes
BuildGlyph makes to the graphics state do not
persist after it finishes.

BuildGlyph should describe the character in
terms of absolute coordinates in the character
coordinate system, placing the character origin at
(0, 0) in this space.

The Current Transformation Matrix (CTM)
and the graphics state are inherited from the envi-
ronment. To ensure predictable results despite font
caching, BuildGlyph must initialize any graphics
state parameter on which it depends. In particular,
if BuildGlyph executes the stroke operator, it
should explicitly set: dash parameters, line cap, line
join, line width. These initializations are unneces-
sary if characters are not cached, for example if the
setcachedevice operator is not used.

When a PostScript language interpreter tries
to show a character from a font, and the character
is not already present in the font cache it pushes
current font dictionary and character name onto
the operand stack. The BuildGlyph procedure
must remove these two objects from the operand

stack and use this information to render the re-
quested character. This typically involves finding
the character procedure and executing it.

/BuildGlyph { % stack: font charname

exch

begin

% initialize graphics state parameters

% turn dashing off: solid lines

[] 0 setdash

% projecting square cap

2 setlinecap

% miter join

0 setlinejoin

% thickness of lines rendered by

% execution of the stroke operator

50 setlinewidth

% the miter limit controls the stroke

% operator’s treatment of corners;

% this is the default value and it

% causes cuts off mitters at

% angles less than 11 degrees

10 setmiterlimit

CharacterProcedures exch get exec

end

} bind def

currentdict

end % of font dictionary

Finally, we register the font name as a font dic-
tionary defined above and associate it with the
key Square. Additionally the definefont operator
checks if the font dictionary is a well-formed.

/Square exch definefont pop

If the following lines are not commented out the
Ghostscript program (a public domain PostScript
interpreter) will show the text below online. Obvi-
ously, these lines should be commented out in the
final version of the font program.

/Square findfont

72 scalefont setfont

0 72 moveto (S) show

showpage

References

[1] John D. Hobby. 1992. A User’s Manual for Meta-
Post. Technical Report 162. AT&T Bell Labora-
tories, Murray Hill / New Jersey. Available online
as a part of METAPOST distribution.

[2] Donald E. Knuth. 1982. “The Concept of a
Meta-Font.” Visible Language 16, 3–27.

[3] Donald E. Knuth. 1985. “Lessons Learned from
METAFONT.” Visible Language 19, 35–53.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 39

TAO

[4] Donald E. Knuth. 1986. The METAFONTbook.
American Mathematical Society and Addison
Wesley.

[5] Donald E. Knuth. 1992. Computer Modern
Typefaces. Addison Wesley.

[6] Adobe Systems Incorporated. 1985. Tutorial and
Cookbook. Addison Wesley.

[7] Adobe Systems Incorporated. 1992. The Post-
Script Font Handbook. Addison Wesley.

[8] Adobe Systems Incorporated. 1993 (3rd print-
ing), Version 1.1. Adobe Type 1 Font Format.
Addison Wesley.

[9] Adobe Systems Incorporated. 1999 (3rd print-
ing). PostScript Language Reference Manual. Ad-
dison Wesley.

[10] Bogus law Jackowski et al. 1999. “Antykwa
Pó ltawskiego: a parameterized outline font.” Eu-
roTEX 99 Proceedings. Ruprecht-Karls-Univerität
Heidelberg, 117–141.

[11] Bogus law Jackowski, Janusz M. Nowacki, and
Piotr Strzelczyk. 2001. “METATYPE1: A Meta-
Post-based engine for generating Type 1 fonts.”
EuroTEX 2001 Proceedings. Kerkrade, the Nether-
lands, 111–119.

[12] W lodzimierz Bzyl. 2001. “Re-introducing Type 3
fonts to the world of TEX.” EuroTEX 2001 Pro-
ceedings. Kerkrade, the Netherlands, 219–243.

[13] Apostolos Syropoulos. 2000. “The MF2PT3

tool.” Available online from
www.obelix.ee.duth.gr/~apostolo.

[14] Rob Carter. 1997. Experimental Typography.
A RotoVision Book. Watson Guptill Publications.

[15] Frantǐsek Muzika. 1965. Die Schöne Schrift.
Verlag Werner Dausien, Hanau/Main. Vol I & II.

[16] Halina Thórzewska Ed. 2000. More Precious
Than Gold. Treasures of the Polish National Li-
brary. Biblioteka Narodowa. Warszawa.

[17] Charlotte & Peter Fiell. 1999. William Morris
(1834–1896). Benedikt Taschen Verlag GmbH.

[18] J.R.R. Tolkien. 1981. The Fellowship of the
Ring. Sṕ ldzielnia Wydawnicza “Czytelnik”.
Warszawa.

[19] Donald E. Knuth. 1988. “A Punk Meta-Font”.
TUGboat 9, 152–168.

[20] Richard M. Stallman and Roland McGrath.
GNU Make. Available online as a part of GNU

MAKE package.
[21] Per Cederqvist et al. Version Management with

CVS. Available online with the CVS package.
Signum Support AB.

[22] Mark Shoulson, 1994. Okuda Font. METAFONT

source available online from CTAN/fonts/okuda.
[23] Karol Jarmakiewicz. 2002. Czcionka Klingońska.

Instytut Matematyki, Uniwersytet Gdański.

[24] Mieszko Zieliński. 2002. Kto i dlaczego wymyśli l
Tengwar. Instytut Matematyki, Uniwersytet Gda-
ński.

[26] Wojciech Górski. 2002. Font Fenicki. Instytut
Matematyki, Uniwersytet Gdański.

[27] S lawomir Lis. 2002. Pismo Rȩczne. Instytut
Matematyki, Uniwersytet Gdański.

[28] Jacek Neuman. 2002. Just Smiley!. Instytut
Matematyki, Uniwersytet Gdański.

40 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

W lodzimierz Bzyl

[29] Alan M. Stanier. 1994. METAFONT source
available online from CTAN/fonts/iching.

[30] Les law Furmaga. 1999. Ortofrajda. Pamieciowo-
wzrokowy s lownik ortograficzny dla dzieci. INTE-

GRAF, Sopot.
[31] Jan Jelinek. 1977. Wielki Atlas Prahistorii

Cz lowieka. Państwowe Wydawnictwo Rolnicze
i Leśne. Warszawa.

