Integrating TEX into a Document Imaging System

William M. Richter

Texas Life Insurance Company, 900 Washington Avenue, Waco, TX 76703, USA

hcswmr@texlife.com

Abstract

TEXmerge is an application programming interface for merging variable data into
a pre-existing TEX document. This paper introduces the API and discusses its
application in a document production and imaging environment.

Introduction

Modern computer hardware and software has made
possible the construction of “document-imaging”
systems. These systems maintain large repositories
of documents in electronic form. In production envi-
ronments of many large companies and in particular
the life insurance industry, a significant percentage
of printed documents are produced electronically in
an automated fashion, usually by merging variable
data into an existing document with some fixed
structure. Storing scanned images of these elec-
tronically produced print documents wastes time,
computing resources, and disk storage space. It is
useful to address the problem of document storage
along with the related problem of electronically for-
matting and producing printed documents. Then
the choice of document formatter can be made such
that the formatting engine used to produce printed
documents may be reused to display those same
documents in a document imaging environment.
TEX has been used as an important component
in building a document production and imaging sys-
tem at Texas Life Insurance Company. TEX’s macro
facilities, conditional typesetting, text-based source
files, a robust page formatting mechanism, and pre-
compiled format files allow it to play a central role
in the system. TEXmerge, a C-language API, was
developed to allow variable data to be merged, under
program control, with static TEX source documents
containing special merge tags to produce a final
output document. This API is used to prepare
policy contracts, produce automated client corre-
spondence, as well as in interactive document prepa-
ration and in application-specific document produc-
tion. Documents produced via the TEXmerge API
are filed in the imaging system using a minimalist
approach. TEX form files are stored once and sep-
arately from all document instances. Variable data
along with a pointer to its associated TEX form file is
all that comprise a stored document instance. When

the document is displayed a “just-in-time” compile
technique is used to reconstruct the document’s
.dvi file which is converted to PostScript for display
purposes.

TEX has additional attributes that make it
an excellent choice as document formatting engine.
The ability to convert raster bitmaps to TEX fonts
allow complex letter-head/footer macros to be de-
veloped and easily used in a fashion that lends itself
to effective revision management. Incorporation of
a Code 2-of-5 scalable barcode font has enabled
printed forms and documents that are returned to
the company from external individuals to be recog-
nized by the document imaging scanner and auto-
matically filed in the imaging system.

TEXmerge API

TeXmerge is a C-language API for merging variable
data into a pre-existing TEX document (referred to
as the “form”). The API is simple, light-weight, and
easy to integrate into applications.

The API consists of a small number of functions,
here listed in appendix A in the normal order of use.
Most functions return an integer result code. Zero
implies successful return. The integer result may be
passed to the function TeXmerge _GetErrorString()
to retrieve the corresponding error text string.

Example C Program A straightforward applica-
tion of the TEXmerge API is illustrated in fig. 1. This
program,

1. Creates an associative array with three ele-
ments.

2. Sets the elements to have names THISVAR,
THATVAR, and ANOTHERVAR, respectively.

3. Opens an output file.

4. Merges the associative array into an existing
TEX file called test_form.tex to create a tem-
porary file called temp.tex.

5. Closes the output file and processes it for view-
ing with xdvi.

120 TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

mailto:hcswmr@texlife.com

#include "stdio.h" #include "TeXmerge.h"

Integrating TEX into a Document Imaging System

int main(int argc, char **argv) { TeXmergeName_t *array; int
count=3; int ret; FILE *fp; char *out_pathname="temp.tex"; char

*form_pathname="test_form.tex";

array = TeXmerge_AllocNames(count) ;

TeXmerge_SetArrayEntry("THISVAR", "some value", &array[0]);
TeXmerge_SetArrayEntry ("THATVAR", "blah, blah", &array[1]);
TeXmerge_SetArrayEntry ("ANOTHERVAR", "la-te-dah", &array[2]);

ret = TeXmerge_OpenOutput (out_pathname, &fp, 0);

if (ret != TXM_OK) {

fprintf (stderr, "TeXmerge_OpenOutput(%s): %s\n", out_pathname,

TeXmerge_GetErrorString(ret));
return(1l);

}

ret = TeXmerge(form_pathname, array, count, 0);

if (ret != TXM_OK) {

fprintf(stderr, "TeXmerge(%s): %s\n", form_pathname,

TeXmerge_GetErrorString(ret));
return(1l);
}
TeXmerge_CloseOutput (fp) ;
TeXmerge_View(out_pathname, TXM_WAIT);
return(0);

Figure 1: C-language example application of the TEXmerge API

\batchmode
\def\THISVAR{some value}
\def\THATVAR{blah, blah}
\def\ANOTHERVAR{1la-te-dah}
\input test_form.tex

\bye

Figure 2: A TgX file produced by the sample C
program in fig. 1

After the call to TeXmerge _CloseOutput() the
contents of temp.tex would appear as in fig. 2.

test_form.tex can have any TEX code of your

choosing, including invocations of \THISVAR, \THATVAR,

and \ANOTHERVAR.

Python Binding A Python'binding for the TEX-
merge API is also available. A re-implementation of
the previous C-code is given in fig 3.
Notes:
1. The Python version is cleaner.
2. Error detection via return values has been
replaced with Python’s exception mechanism;
i.e., instead of methods returning integer result
codes, they throw exceptions of the appropriate

I http://www.python.org

type which may be caught via the try/except
construct.

3. The TeXmergeName_t arrays used in the C-
code example just use simple Python dictionary
objects. As a result the nagging count integer
with tracks the number of array elements is no
longer needed.

4. Constants defined in TeXmerge.h are accessed
as attributes of the Python TEXmerge module.

TEXmerge in Production

Figure 4 depicts data flow between applications
using TEXmerge and applications relating to the
document imaging system (DIS). Most of the lines
in the figure represent, not the flow of documents,
but the flow of data necessary to build documents.
Data from the policy administration system feeds
a number of print-producing applications. Print
producers come in four “flavors”.

Bulk and Custom Print Producers create large
volumes of documents such as annual reports to
policy-holders, billings for premium due, and auto-
mated client correspondence. Most of these docu-
ments are from one to three pages in length and
usually consist of three standard parts: a client copy,
an agent copy and a file copy. All three parts have

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting 121

http://www.python.org

William M. Richter

import TeXmerge import sys

array = {’THISVAR’: ’some value’,
’THATVAR’: ’blah, blah’,
’ANOTHERVAR’ : ’la-te-dah’}

out_pathname = ’temp.tex’ form_pathname =

’test_form.tex’ try: fp

= TeXmerge.openOutput (out_pathname) except IOError, errmsg:
sys.stderr.write(’TeXmerge.openOutput(%s): %s\n’ % (out_pathname, errmsg))
TeXmerge .merge (form_pathname, array, fp) TeXmerge.closeOutput (fp)

TeXmerge.view(out_pathname, TeXmerge.TXM_NOWAIT)

Figure 3: Python example.

le

Scanner#

Scan
Application

Document
Imaging
System

Imaging
Archiver

Bulk Print
Producers

Policy
Admin.
System

External
World

Laser
Printers

"%HHHHHg'

Print
Manager

Figure 4: Intra-application flow of document data.

content in common, but the agent and file copies
may have additional information.

Policy Print is a customized application which
produces policy contracts. Contents of policy con-
tract documents vary by product and state in which
the policy is issued. Typical contracts are 20 to
30 pages in length when printed duplex and their
structure can be complex formatting-wise. A num-
ber of pages contain variable tabular information,
certain pages must draw paper from an alternate
input paper source on the printer, and still other
pages must be landscape oriented. Because of the
volume of print produced by the policy print ap-

122

plication? its output is routed to a print manager
which tracks what documents are to be printed
and performs the task of driving print streams to
multiple printers. Work is currently under way to
deposit a copy of policy contracts into the DIS. Also
under construction is a mechanism which will allow
the print manager to access the DIS “on-the-fly” as
a document is being printed to retrieve an image
copy of the original “application for insurance” and
insert it into the print stream.?

2 As of this writing, Texas Life produces around 2,000
policy contracts per month.

3 This and other trickery such as selecting alternate in-
put paper sources on the printer are accomplished through
especially malicious abuse of the special macro.

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

General Queue Collection System Before dis-
cussing the last two print producer types we in-
troduce the General Queueing Collection System
(GQCS). Multi-user interactive applications pro-
duce multi-part documents that need to be saved
for later processing or printing. GQCS removes
the details of output handling from print producing
programs and becomes a central point for collect-
ing data related to print requests. It collects the
tagged data for these documents and stores it in sub-
queues. A single GQCS daemon can serve multiple
sub-queues. Usually it serves three for the standard
image, agent, and client copies of a document. At
night the contents of each sub-queue is extracted
in bulk to output files, each file being forwarded to
its destination system for final processing. Docu-
ments in the image sub-queue are routed the image
archiver for storage in the DIS. Documents in the
agent sub-queue are routed to the agent merge sys-
tem which correlates items destined to a given agent
into a consolidated print stream that is printed and
mailed as a single bundle to the agent. Documents
in the client sub-queue are printed and mailed to the
external world.

Interactive Print Producers The final two print
producer types are interactive in nature. Custom
Applications are stand-alone systems that integrate
TEXmerge to produce printed documents associated
with transactions executed against the policy ad-
ministrative system. Like the bulk print producers,
these programs create documents that usually con-
sist of the standard client / agent / file copies.

The TEXmerge Application The remaining print
producer is TrXmerge. It was the first application
developed to use the TEXmerge API, and its purpose
is to generate documents interactively from pre-
configured “form” letters. A detailed data flow
diagram of TgXmerge is shown in fig. 5. TEXmerge
uses a configuration file (XMC file) to declare the
constituent parts of a document and to which sub-
queue of a GQCS daemon each part of the document
should be deposited.

For illustrative purposes consider the following
files which together make a TEXmerge document.

Ezxample.xmc:

Example_client.tex client
Example_agent.tex agent
Example_image.tex image

Ezxample_client.tex:

% Example_client.tex - the client copy
\stdLetterHead

Integrating TEX into a Document Imaging System

\input Example_com.tex
\stdFooter

Ezxample_agent.tex:

% Example_client.tex - the agent copy
\stdLetterHead

\input Example_com.tex

\vfil \centerline{* AGENT COPY *}\vfil\stdFooter

Ezample_image.tex:

% Example_image.tex - the image copy
\stdLetterHead

\input Example_com.tex

\vfil \centerline{* FILE COPY *}\vfillstdFooter

FExample_com.tex:

% Example_com.tex - part of the document

yA common to all three parts
\texmergevar THISVAR \texmergevar THATVAR
\texmergevar ANOTHERVAR

This is just a sample document to show how the
multi-part document mechanism operates and how
merge variables work. Here we insert \THISVAR.
and now \THATVAR, and finally \ANOTHERVAR.

These four example .tex files and the .xmc file
correspond directly with the entities shown in fig.
5. The environment variable $TEXMBASEDIR connects
the TEXmerge application to the directory where the
.xmc and .tex files reside. It looks for .xmc files in
a subdirectory named xmc within $TEXMBASEDIR and
for .tex files in a subdirectory named tex within
$TEXMBASEDIR.

At startup TEXmerge scans the XMC directory
and assumes the files it finds there are XMC con-
figuration files and lists them in a chooser box as
in fig. 6. When a selection is made, the configu-
ration file is read to determine what .tex files will
be used in the document and to what GQCS sub-
queues the constituent parts will be deposited when
saved. Then each configured .tex file is scanned
recursively via the TEXmerge API to determine what
merge variables are declared and it displays a frame
as in fig. 7. With the frame displayed, TEXmerge’s
work is done and it’s the user’s turn to work. The
task of entering data into the merge fields may be
shortened in many cases. The TEXmerge application
has been programmed to recognize the names of
many merge variables and it assigns special meaning
to them. For example, ONAME represents a policy
owner’s name, INAME is the insured’s name, SDATE is
the system date, etc. By typing a policy number
into the POLNUM field and pressing enter TEXmerge

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting 123

William M. Richter

.xmc files

(Example.xmc)

TeXmerge
Application

UNIX IPC
Message Queue

Laser
Printer

Figure 5: TEXmerge multi-part document
configuration.

will access the policy administration system using
the entered value. If it finds data for the matching
number then all merge variable names found to have
special meaning will be filled with data from the
system. Once the merge fields are populated the
document can be saved via GQCS, printed, or viewed
via xdvi. The printing and viewing operations are
accomplished via functions in the TEXmerge API.

Workflow Management Using a 2-of-5 barcode
font with TEX has enabled a simple workflow en-
vironment to be established. A number of doc-
uments are intended to be completed by clients
externally and returned to the company for fur-
ther processing. The TEXmerge API has been
extended in the following way: When a docu-
ment is printed via the TeXmerge_Print () API call
the form document is scanned for the sequence
\def\WRKBARCODESTR{. . .}. If this macro is in the
document two things happen.

e A transaction identification number will be as-
signed to the document and stored in the policy
administration system.

e The transaction identification number will be
encoded as a barcode and printed in the footer
of the document. When the document is re-

A Multi-Document

Quewe Info.

agent_mema.xmc
certificate_for_duplicate_policy.xme
death_of_owner_contingent_named.xmc
endorse_bene_agent . xmc
endorse_benes_agent .xmc
endorsed_assign_to_bank.xmc

endorsed_bene_to_owner . xmc
endorsed_form_to_agent.xmc
endorsed_form_to_awner.xmc
endorsed_forms_mul_policy.xmc
endorsed_forms_mulpol_agt.xmc
endorsed_forms_to_agent.xmc
endorsed_forms_to_owner.xmc
endorsed_owner_pension.xmc
notice_of_address_change.xmc
rls_assign_ltr_owner.xmc
rls_assign_to_bank.xmc
send_bene_+orms . xmc
send_certificate_of_ins.=xmc
send_chz_of_owner .xmc

Figure 6: Top-level window of the TEXmerge
application.

turned and it is scanned, the transaction iden-
tification number will be recognized by the doc-
ument scanning equipment.

These events enable the document to be au-
tomatically archived into the DIS without operator
intervention. Future enhancements will also auto-
matically route and image of the document back
to the clerk who initiated the transaction for final
processing.

Integrating TEX into the Document Imaging
System

Finally we focus on the document imaging system
in use at Texas Life, and the storage of documents
produced via the TEXmerge API. A full description
of the DIS is outside the scope of this paper; however
a brief overview is appropriate here.

The DIS was originally designed to store two
types of documents.

1. Reports normally printed on an old-style IBM
line printer. These reports range from one to
10,000 pages or more, each page consisting of a

124 TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

P -0 X

Close Prsev Next Print Fax It! View... MNew Record Remove Record CANCEL

il

ABTNAME . ..o Ij A

AGTNUMB . v e et eeeeeeeeaaees Ij

Figure 7: Merge field input window of a
TEXmerge document.

fixed number of rows and columns of printable
characters from the ASCII codeset.

2. Scanned images. Usually stored in the CCITT
Group-3 fax format.

Over time document types based on Hewlett-
Packard’s PCL page formatting language (i.e., PCL
print streams normally destined to a LaserJet
printer), and Adobe’s PostScript page description
language were added, as well as several standard
graphics file formats such as GIF, JPEG, and TIFF.

The screen shots in figures 10 and 11 are of the
browser used to view documents stored in the DIS.
They show both the index panel used for reviewing
the document titles that are stored in the system,
and the document panel which actually displays the
documents. Folder tabs near the bottom of the
window allow quick switching between the index
and document displays and eliminate the need for
manipulating multiple windows.

From a storage perspective the DIS is split into
two components (see fig. 8). Contents of documents
are stored in files residing within a UNIX filesystem
(host files). Document titles are indexed into a hier-
archical system having a familiar “document/folder”
paradigm and is provided by a Relational Database
which associates each title with a host file containing

Integrating TEX into a Document Imaging System

Archival

Brow ser Programs

Web Adapter

Index Manager

\ RDBMS

%UNIX Filesystem %

Figure 8: Layer diagram of the document
imaging system.

the document’s content. Further, the index tracks
what folders own what documents.

Host files have a simple internal format. Each
host file contains a line-oriented metadata section,
which stores data about the document. The meta-
data section contains index information and can be
used to rebuild the DIS database index should it
become damaged. Format of the host file following
the metadata section is document type dependent.
ASCII- and PCL-based documents store multiple
pages per host file. Scanned documents in CCITT
Group-3 fax/JPEG/GIFF /etc. store each page in a
separate host file. The storage mechanism for TEX-
merge and PostScript documents will be discussed
in the next section.

Storage Strategy for TEXmerge Documents
The storage mechanism for archiving TEXmerge-
based documents provides several options which re-
sult in files sizes from only a few kilobytes (depend-
ing on the amount of variable data to be merged into
the document) up to the size required to hold a full
PostScript version of the document.* The different
options for storing TEXmerge-based documents are
rooted in the idea that this type of document can
exist in at least three forms:

1. A simple associative array of tagged data. Spe-
cial tags in the data specify what .tex file the
data should be merged with (TEXFILE) and
in what directory the .tex file is to be found
(TEXMBASEDIR). This is the canonical form
of a TEXmerge document (at least from a storage
perspective) and consumes the least amount of
disk space.

2. A file of TEX code ready to be compiled. A
TEXmerge document in this form would appear
as in fig. 2.

4 Most correspondence produced by Texas Life results in
PostScript file sizes of 70 kilobytes on average.

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting 125

William M. Richter

3. A PostScript file from dvips and is obtained
from processing the .dvi file which result when
compiling the file from item 2 above. From a
display/ rendering perspective PostScript is the
canonical form for TEXmerge documents since
they must be in this form before they can be
displayed.

There are benefits and disadvantages to storing TEX-
merge documents in each of these forms (a classic
speed vs. space dilemma), although the first and
last forms seem most useful. Operationally, storing
the PostScript is simplest and is least demanding
in CPU cycles. In the present DIS Ghostscript
is used to rasterize PostScript code for display on
an X-Windows terminal, and already having the
document in PostScript yields the least amount of
work to get the image displayed. Depending on
complexity of the document, number of fonts used,
etc. the size of a PostScript file produced by dvips
can be considerable, so storing TEXmerge documents
in this form does not minimize disk space usage.’
Option 1 above minimizes disk space usage at the
cost of CPU cycles and other complications. The
majority of documents will be stored and seldom, if
ever, viewed. Therefore, the constraint minimizing
disk space is the controlling consideration when
choosing a storage strategy.

The Minimalist Storage Strategy Saving disk
space costs in other areas. Each time the document
is displayed, it must be compiled by TEX and then
converted to PostScript via dvips which costs in
CPU cycles. Both of these operations can be ac-
complished via the TEXmerge API. The more subtle
problem is how to store the .tex form files.
TEX-Freeze and Revision Management Saving
the tagged data array in the document along with
the name of its associated .tex form file is not
sufficient to enable the document to be reproduced.
The form file (and any .tex files that it \input’s)
must somehow also be stored internal to the DIS.®
A complicating factor is that the original form files
themselves will be modified at various times and
new forms will be added. So while the form files
are living, evolving entities, the documents stored
in the DIS must be static and always appear exactly
as they did the day they were produced.

The mechanism which allows TgXmerge doc-
uments to appear static in the DIS “freezes” the

5 The current DIS stores over 500,000 TgXmerge docu-
ments. (And growing daily.)

6 Form files used by the TEXmerge application and other
TEXmerge-enabled applications are stored in UNIX filesystems
and are independent (but related) to the forms stored in the
DIS.

form files when TEXmerge documents are archived
into the DIS. The place where frozen form files
are stored is called the “TEXfreeze”, and it is sim-
ply the mount-point for a UNIX filesystem. Path-
names of form files in the TEXfreeze are derived
by concatenating the TpXfreeze pathname and the
form’s original pathname. For example, if we
have a form /x/y/z/tex/forml.tex and the TEX-
freeze directory is /texfreeze, then the path-
name of the frozen version of forml.tex would be
/texfreeze/x/y/z/tex/forml.tex.

Having a storage mechanism is only half the
picture; we still need a method to allow for mul-
tiple versions of the same form. We accomplish
this by inserting a timestamp into the filename
of the form document. So the frozen pathname
in the example above would become something
like /texfreeze/x/y/z/tex/form1_20010618.tex
. The most recent version of each form is pointed to
by a softlink. The name of the softlink is the forms’s
un-timestamped name. Continuing the example; in
/texfreeze/x/y/z/tex we would have a directory
entry that looks like:

forml.tex —> form1_20010618.tex.

Freezing of form files is the task of the TEX-
freeze manager. It detects changes between a form
file and its current frozen version by calculating an
MD5 cryptographic hash of the two files. If the
hash values differ the new version of the form is
stored in the TEXfreeze as discussed above and the
softlink is updated to point to the new version.” The
TEXfreeze manager also recursively follows \input
macros and freezes those files also®.

Within the document’s data there is a tag
(TEXMFORMAT) which controls the format TEX
should use when processing the input source. Hav-
ing laid out the scheme for tracking revisions of
TEXmerge forms, it should be pointed out that the
exact same process is carried out for freezing format
files.

With TgXfreeze providing archival and revision
management facilities for form files, we turn to the
process of archiving tagged data for a TEXmerge
document. The document’s data is stored in a host
file as discussed in the section “Storage Strategy for
TEXmerge Documents” with one slight modification.
The value of TEXFILE (the document’s associated
form filename) is adjusted to have the proper times-
tamp value (obtained from a readlink(2) system
call on the softlink) inserted into the filename. Also,

7 The MD5 hashes are also saved in the TEXfreeze for
efficiency purposes.

8 Using the environment variable TEXINPUTS to search
for non-explicit pathnames.

126 TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

TeX Form
Documents

TeXmerge
'/ Archiver
TeXfreeze
Manager Document Imaging

System

Host File
Storage

Document
Index

PostScript

Imaging
Browser

‘ TeX }—b{ Dvips }—»{GhostScript

Figure 9: Storage strategy for TEXmerge
documents.

the TEXMFORMAT tag will be adjusted with its
proper timestamp value.

“Just-in-Time” Compile With form files frozen
in the TEXfreeze and the document’s data archived
in the DIS the task of displaying the document
is almost trivial. The TgXmerge API is used to
convert the tagged data into a .tex file which is
compiled by TEX. The .dvi is passed through
dvips and the resulting PostScript is rasterized
and displayed. One “trick” here is getting TEX
to find the form file(s). There is a tag in the
document’s data, TEXMBASEDIR which originally
pointed to the directory in which the document’s
form resided. That value must now be prepended
with the directory of the TgXfreeze. We ac-
complish this by setting an environment variable,
TEXFREEZE, to point to the TEXfreeze directory.
Then, just before exec()’ing the TEX compiler,
the environment variable TEXINPUTS is prepended
with $TEXFREEZE/$TEXMBASEDIR/tex.

The pipeline sequence of tagged-data to .tex to
.dvi to .ps to pixmap is expensive computationally.
An easy way to limit this series of operations each
time a TEXmerge document is displayed is to insert
a cache manager at the beginning of the sequence.
The final PostScript output is saved in the cache.
Each time before a TEXmerge document is displayed
a check is made to see if the PostScript is already in

Integrating TEX into a Document Imaging System

. AR
0031780: 503-00 SEGME 1 2001
© 000917803-20010502-001:01 PCL SEGMENT 1 20010503
B—(DIRECT BILLING_FN FOLDI 0 20010503

ER
! 10091760 502-00 SEGME] 1 2001
[=5 INSTA ER 2001
R_MOI D_NEE] APP-2 201 erge 2001
ULD LAPSH ICE-2001-06-08:01 erge 3 200101
ULD GRACE PERIOD NOTICE ACTIVE BILLING-2001-05-07:01 TeXmerge 1 20010508

1000317803/LAPSE_REINSTATEMENT

Figure 10: Index panel of imaging browser
application.

the cache. If it is found there the whole compile
sequence is skipped. Files are dropped from the
cache after reaching an age of two weeks to keep
the size of the cache directory bounded.

Future Developments

TEXmerge-2 Development is complete for the TEX-
merge API and no further work on it is planned.
TEXmerge-2, a follow-on API, is being developed.
The monolithic .tex form files will be replaced with
a mechanism which assembles the .tex file from
a series of small text segments or paragraphs that
can be reused in various documents. The simple
\texmergevar variable declaration will expanded
to include other types of variables such as toggle
buttons and option boxes to make documents with
conditional elements easier to construct. All con-
figuration information, text segments, and variable
declarations will be stored in RDBMS tables. A
major reason for eliminating the .tex form files
is resistance from non computer-literate users to
embrace the TEX philosophy and learn a new skill.
Documents based on the TEXmerge-2 API will not
have the space efficiency that TEXmerge documents
have since all text for TEXmerge-2 documents will
be stored directly in the document’s data tags, and

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting 127

William M. Richter

e 4 2

R Policy N bONSITHE
Tecred Jodvo MeCldin

The pesenerd o SIT hal you recently snd e this orlicy has heen receive
that s pokicy hes lapsed in with s pranidins Tn neier 0 restire
imasrnce prods oy U & vecsssery thd you opgly foe reinotadirvert.

Dridd R Ky OKFS2ID.

= ILE COPY %

o e e oy oo 01 Wi T T8 70 T g 2 e BIADS

b i youi m 5.
Sincardy

Hiling Tt

Tureace Services

Figure 11: Document panel of imaging browser
application.

preparation of the finished document will be less
efficient due to the large number of database ac-
cesses that will be required to build the TEX code
for the document. It is the opinion of the author
that TEXmerge-2 is not the best track that new
development efforts should take; it is management
and end-users desire.

Web Interface to DIS As shown in fig. 4, work
is currently under way to serve documents from the
DIS to web browsers. A set of library routines is
being developed to render any document type in the
DIS to Adobe’s Portable Document Format (PDF).

This library will be used in the planned DIS web
server adapter. Security issues are a major con-
sideration that make this an extensive development
effort.

Integrate METAPOST into DIS Other authors
have integrated METAPQOST into applications. META-
POST is anticipated to be useful in designing forms
where lots of graphics primitives (lines, curves, etc.)
are required. An API similar in style to the TEX-
merge API is planned.

Utilize Advanced TEX Formats To date all form
documents are based essentially on the plain TEX
format. The TEXmerge API allows any TEX format
to be used via the TEXMFORMAT environment
variable. The KWTEX and ConTEXt formats are an-
ticipated to be useful tools in developing new policy
contract forms and for other documents needing a
consistent “look-and-feel.”

Utilize Other Typesetters Other typesetting en-
gines such as pdfTEX, zmitexr, and N'7S should be
investigated to see what benefits they might bring to
the document production and archival environment.

Conclusion

TEX is an excellent engine for integration into a
production environment where large volumes of doc-
uments need to be produced and archived efficiently.
The TEXmerge API allows that integration to occur
in many applications and for many purposes. Ef-
ficiency is gained by moving data between systems
instead of fully formatted documents. Finally, using
TEXmerge in the DIS has provided many benefits,
the most important being the space savings derived
from the method of storing TEXmerge documents,
and the ability to interactively produce documents
and archive them using the same formatting engine.

128 TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

Integrating TEX into a Document Imaging System

Appendix A TgXmerge API

TeXmergeName_t *TeXmerge_AllocNames(int count)
Variable data is passed to TEXmerge as an associative array. Each entry in the array is a name/value
pair. This function allocates an array of such name/value pairs containing count entries.
TeXmergeName_t *TeXmerge FreeNames(TeXmergeName t *array, int count)

This functions frees a name/value array. Obviously this one is not listed in order of use!

int TeXmerge_SetArrayEntry(char *name, char *value, TeXmergeName t *entry)
This function sets entry to the passed name and value strings. The next two functions are for
convenience and their use is not mandatory. In this and the next function, value may be passed as
NULL to indicate 'no value’.

int TeXmerge,SetName(char *name, char *value, TeXmergeName_t *array, int count)
This function searches array for an entry whose name value matches name, and then sets the entrie’s
value to value.

char *TeXmerge GetName(char *name, TeXmergeName t *array, int count)
This function searches array for an entry whose name value matches name, and then returns the
entries value string. The function returns NULL is name is not found in array.

char *TeXmerge GetNames(char *pathname, TeXmergeName_t **array, int *count)
This function searches the .tex file specified in pathname for occurrences of lines having the format:
\texmergevar NAME

Lines of this form enumerate the merge variables that the document will use. The function returns a
list of the names in the pointer variable pointed to by array. The number of elements in the array
is returned in the integer pointed to by count. array should be freed when no longer needed with a
call to TeXmerge FreeNames ().

int TeXmerge_OpenOutput(char *pathname, FILE **outFP, char *preamble)
This functions creates an output file named pathname. An opened FILE pointer is returned in outFP.
preamble is an optional “snippet” of TEX code that should be written at the beginning of the file. If
preamble is passed as null, then no preable code is generated.

int TeXmerge(char *pathname, TeXmergeName_t *array, int count, FILE *fp, int options)
This function is the heart of the API. pathname is the name of a TEX form file containing invocations
of macros whose names are the name values set in the passed array. £p is the FILE pointer returned
by TeXmerge OpenOutput(). options controls the merge operation. Currently the only option is
whether or not to draw a frame around the merged variables (TXM_FRAMEVARS).

int TeXmerge_CloseOutput (FILE *fp)
After all invocations of the above functions are complete, this function should be called to close the
output file. fp is the FILE pointer returned from TeXmerge OpenOutput ().

int TeXmerge Process(char *pathname, char *dvidrv_name)
Once the output file has been closed, it is ready for backend processing by TEX. This function invokes
TEX and then the dvi driver named in dvidrv_name. All temporary .log and .dvi files are removed
after use.

int TeXmerge View(char *pathname, int waitOption)
A convenience function to run TEX and then run xdvi. waitOption is one of TXM_WAIT or TXM_NOWAIT.
If TXM_NOWAIT is passed, then the current process if forked and then xdvi is run in a child process.

int TeXmerge Print(char *pathname, char *lpargs, char *output_pathname)

A convenience function to run TEX and then run dvilj. If lpargs is non-NULL then it is used as
switches for the 1p command and the resulting .1j file will be queued for printing via the 1p system.
The pathname of the resulting .1j is returned in the character array pointed to by output_pathname.

TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting 129

William M. Richter

char *TeXmerge MakeBarcodeStr(char *composite, TeXmergeName_t *array, int count);
Encodes the comma-separated list of data names in composite and corresponding values in a
character string. It does the encoding by converting the name/value pairs to a Python dictionary
object and passing it to the Python barcodeUtil module’s encode function.

TeXmergeName_t *TeXmerge DecodeBarcodeStr(char *str, int *count, int *ret);

Decode a barcode string and return its contents as an array of TeXmergeName_t structures. Caller is
responsible for disposing of the array with TeXmerge FreeNames (). If an error occurs, this function
returns NULL and returns an error code in the integer pointed to by ret. On successful return a
pointer to the array is returned, the number of elements in the array is returned in the integer pointed
to by count and 0 is returned in the integer pointed to by ret.

char *TeXmerge MakeTeXBarcodeMacro(char *name, char *composite, TeXmergeName_t *array, int count);

Build a snippet of TEX code encoding the values from array for names listed in comma-separated
list passed in composite appropriate for printing with a Code 2-of-5 barcode font. The name of the
macro will be the string value pointed to by name. The returned value is in a static char char array;
it must not be freed and will be overwritten on subsequent calls.

char *TeXmerge GetErrorString(int)

This functions returns a character string description corresponding to the passed integer value.

130 TUGboat, Volume 22 (2001), No. 3— Proceedings of the 2001 Annual Meeting

	Introduction
	TeXmerge API
	c example
	python binding

	TeXmerge in Production
	Bulk and Custom Print Producers
	Policy Print
	General Queue Collection System
	Interactive Print Producers
	The TeXmerge Application
	Workflow Management

	Integrating TeX into the Document Imaging System
	Storage Strategy for TeXmerge Documents
	The Minimalist Storage Strategy
	TeX-Freeze and Revision Management
	``Just-in-Time'' Compile

	Future Developments
	TeXmerge-2
	Web Interface to DIS
	Integrate Metapost into DIS
	Utilize Advanced TeX Formats
	Utilize Other Typesetters

	Conclusion
	TeXmerge API
	allocnames
	freenames
	setarrayentry
	setname
	getname
	getname
	openoutput
	merge
	closeoutput
	process
	view
	print
	mkbarcode
	decodebarcode
	mkbarcodemacro
	geterrorstring

