
TUGboat, Volume 19 (1998), No. 2 101

Graphics Applications

pst-fill — a PSTricks package for filling and

tiling areas

Denis Girou

Abstract

pst-fill is a PSTricks (van Zandt, 1993), (Girou,
1994), (van Zandt and Girou, 1994), (Hoenig, 1998),
(Goossens, Rahtz, and Mittelbach, 1997) package
for simple drawing of various kinds of filling and
area tiling. It is also a good example of the great
power and flexibility of PSTricks, as it is very short
(around 200 lines long) but nevertheless extremely
powerful.

The package was written in 1994 by Timothy
van Zandt but publicly available only in PSTricks 97
and without any documentation. We describe here
version 97 patch 2 of December 12, 1997, which is
the original one modified by Denis Girou to manage
tilings in so-called automatic mode. This article
serves as both reference manual and user’s guide.1

This package is available on CTAN in the
graphics/pstricks directory (files latex/

pst-fill.sty and generic/pst-fill.tex).

1 Introduction

We use filling to describe the operation which con-
sists of filling a defined area by a pattern (or a
composition of patterns), and tiling as the operation
which is like filling, but with control of the starting
point (we use the upper left corner), where the
pattern is positioned relative to this point. There
is an essential difference between the two modes, as
without control of the starting point we cannot cre-
ate the tilings (sometimes called tesselations) used
in many fields of Art and Science2.

Tilings are a wide and difficult field of mathe-
matics, and this package is limited to simple ones,
mainly monohedral tilings with one prototile (which

1 Great thanks are due to Sebastian Rahtz for his help in
correcting my English and of course to Timothy van Zandt
for his impressive development of the PSTricks package.

2 For an extensive description of tilings, and their history
and usage in many fields, see the reference book (Grünbaum
and Shephard, 1987). French readers can also find much
explanation and reference material in (André and Girou, To
appear), and especially in (Girou, To appear).

In the TEX world, very little work has been done on tilings.
There is mainly the tile extension of the XY-pic package
(Rose and Moore, 1991-1998), the article of Kees van der
Laan (van der Laan, 1996, paragraph 7) (the tiling was in
fact done directly in PostScript) and the MetaPost program
(available in graphics/metapost/contrib/macros/truchet)
by Denis Roegel for the Truchet contest in 1995 (Esperet
and Girou, To appear).

can be composite, see section 3.1). With some
experience and wiliness we can do more, and eas-
ily obtain quite sophisticated results, but obviously
hyperbolic tilings like the famous Escher ones or
aperiodic tilings like the Penrose ones are not within
the capabilities of this package. For more complex
needs, we must use low level and more painfull tech-
niques, with the basic \multido and \multirput

macros.

2 History of the package, and its two

different modes

This package was written in 1994 by Timothy van
Zandt. Two modes are defined, called respectively
manual and automatic. For both, the pattern is
generated on contiguous positions in a large area
which includes the region to fill, which is later cut
to the required dimensions by a clipping mechanism.
In the first mode, the pattern is explicitely inserted
in the PostScript output file each time. In the
second, the result is the same but with a single
insertion of the pattern and a repetition done by
PostScript. Control over the starting point was lost,
so it allowed only filling a region and not to tiling
it.

The difference between the two modes is shown

here; filling: or also where,
as you can see, the initial position is arbitrary and

depends on the current point, and tiling:
It is clear that filling is very restrictive com-

pared to tiling, as the desired effect very often
requires the possibility of controlling the starting
point. The automatic mode was therefore of lim-
ited interest, but unfortunately the manual one has
the very big disadvantage of requiring very large
resources, in disk space and subsequently in printing
time. A small tiling can sometimes require several
megabytes in manual mode! The original package
was thus not really usable in practice for tilings.

I modified the code to allow tiling in automatic
mode, also giving control over the starting point.
Most of the time, if some special options are not
used, the tiling is done exactly in the region de-
scribed, which make it faster. There is little reason
to use the manual mode, apart very special cases
where the automatic one cannot work, as explained
later – currently, we know of only one case.

To load this modified automatic mode, with
LATEX use simply:

102 TUGboat, Volume 19 (1998), No. 2

\usepackage[tiling]{pst-fill}

and in plain TEX after:
\input{pst-fill}

add the following definition:
\def\PstTiling{true}

To obtain the original behaviour, simply do not
use the tiling optional.

Users should be aware that in tiling mode, some
other changes were introduced. Aliases for some
parameter names were defined for consistancy (all
parameters begin with the fill prefix) and some
default values which were not well adapted for tilings
were changed (fillsep is set to 0 and fillsize set
to auto). fillcycle was renamed to fillcyclex,
and the normal behaviour was restored whereby the
frame of the area is drawn and all line (linestyle,
linecolor, doubleline, etc.) parameters are now
active (but not in non tiling mode). Some new pa-
rameters were introduced to control tiling, described
below.

In all the following examples, we always

use tiling mode.

To do a tiling, we just have to define the pattern
with the \psboxfill macro and to use the new
fillstyle boxfill . Note that tilings are drawn
from left to right and top to bottom, which can can
be important in some circumstances.

PostScript programmers may be interested to
know that, even in automatic mode, the iterations of
the pattern are managed directly by the PostScript
code of the package, which uses only PostScript
Level 1 operators. The special ones introduced in
Level 2 for drawing patterns (Adobe, 1995, section
4.9) are not used.

First, for convenience, we define a simple
\Tiling macro, which will simplify our examples:

1 \newcommand{\Tiling}[2][]{%
2 \edef\Temp{#1}%
3 \begin{pspicture}#2
4 \ifx\Temp\empty
5 \psframe[fillstyle=boxfill]#2
6 \else
7 \psframe[fillstyle=boxfill,#1]#2
8 \fi
9 \end{pspicture}}

2.1 Parameters

There are 14 parameters available to change the
way the filling/tiling is defined, and one debugging
option.

fillangle (real): the value of the rotation applied
to the patterns (Default: 0).

In this case, we must force the tiling area to be
noticeably larger than the area to cover, to be sure
that the defined area will be covered after rotation.

1 \newcommand{\Square}{%
2 \begin{pspicture}(1,1)
3 \psframe[dimen=middle](1,1)
4 \end{pspicture}}
5

6 \psset{unit=0.5}
7 \psboxfill{\Square}
8 \Tiling[fillangle= 45]{(3,3)}\hspace{3cm}
9 \Tiling[fillangle= -60]{(3,3)}

fillsepx (real|dim): value of the horizontal separa-
tion between consecutive patterns (De-
fault: 0 for tilings3, 2pt otherwise).

fillsepy (real|dim): value of the vertical separa-
tion between consecutive patterns (De-
fault: 0 for tilings3, 2pt otherwise).

fillsep (real|dim): value of horizontal and vertical
separations between consecutive pat-
terns (Default: 0 for tilings3, 2pt oth-
erwise).

These values can be negative, which allow the
tiles to overlap.

1 \psset{unit=0.5}
2 \psboxfill{\Square}
3 \Tiling[fillsepx= 2mm]{(3,3)}\hfill
4 \Tiling[fillsepy= 1mm]{(3,3)}\hfill
5 \Tiling[fillsep= 0.5]{(3,3)}\hfill
6 \Tiling[fillsep= -0.5]{(3,3)}

fillcyclex4 (integer): Shift coefficient applied to
each row (Default: 0).

fillcycley3 (integer): Same thing for columns (De-
fault: 0).

fillcycle3 (integer): Allow for setting both
fillcyclex and fillcycley to the
same value (Default: 0).

For instance, if fillcyclex is 2, the second row
of patterns will be horizontally shifted by a factor

3 This option was added by me. It is not part of the
original package and is available only if the tiling keyword
is used when loading the package.

4 It was fillcycle in the original version.

TUGboat, Volume 19 (1998), No. 2 103

of 1

2
= 0.5, and by a factor of 0.333 if fillcyclex

is 3, etc. These values can be negative.

1 \psset{unit=0.5}
2 \psboxfill{\Square}
3 \newcommand{\TilingA}[1]
4 {\Tiling[fillcyclex= #1]{(3,3)}}
5

6 \TilingA{ 0}\hfill
7 \TilingA{ 1}\hfill
8 \TilingA{ 2}\hfill
9 \TilingA{ 3}

10

11 \vspace{3mm}
12 \TilingA{ 4}\hfill
13 \TilingA{ 5}\hfill
14 \TilingA{ 6}\hfill
15 \TilingA{ -3}
16

17 \vspace{3mm}
18 \Tiling[fillcycley= 2]{(3,3)}\hfill
19 \Tiling[fillcycley= 3]{(3,3)}\hfill
20 \Tiling[fillcycley= -3]{(3,3)}\hfill
21 \Tiling[fillcycle= 2]{(3,3)}\hfill

fillmovex3 (real|dim): value of the horizontal
move between consecutive patterns
(Default: 0).

fillmovey3 (real|dim): value of the vertical
move between consecutive patterns
(Default: 0).

fillmove3 (real|dim): value of horizontal and verti-
cal move between consecutive patterns
(Default: 0).

These parameters allow the patterns to overlap
and to draw some special kinds of tilings. They
are implemented only for the automatic and tiling
modes and their values can be negative.

In some cases, the effect of these parameters
will be the same as that with the fillcycle? ones,
but this is not true for all values.

1 \psset{unit=0.5}
2 \psboxfill{\Square}

3 \Tiling[fillmovex= 0.5]{(3,3)}\hfill
4 \Tiling[fillmovey= 0.5]{(3,3)}\hfill
5 \Tiling[fillmove= 0.5]{(3,3)}\hfill
6 \Tiling[fillmove= -0.5]{(3,3)}

fillsize

(auto|{(real|dim,real|dim)(real|dim,real|dim)}):
The choice of automatic mode or the size of the
area in manual mode. If first pair values are
not given, (0,0) is used. (Default: auto when
tiling mode is used, (-15cm,-15cm)(15cm,15cm)
otherwise).

As explained in the introduction, the manual
mode can use up a large amount of computer re-
sources. It’s usage is therefore discouraged in favour
of automatic mode. It only seems useful in special
circumstances, when the automatic mode fails; only
one case is known, when some kinds of EPS files are
used, such as the ones produced by partial screen
dumps (see 3.2).

fillloopaddx3 (integer): number of times the pat-
tern is added on left and right positions
(Default: 0).

fillloopaddy3 (integer): number of times the pat-
tern is added on top and bottom posi-
tions (Default: 0).

fillloopadd3 (integer): number of times the pat-
tern is added on left, right, top and
bottom positions (Default: 0).

These parameters (exclusively for the tiling
mode) are only useful in special circumstances, such
as in complex patterns when the size of the rectan-
gular box used to tile the area does not correspond
to the pattern itself (there is an example in Figure 1)
and also sometimes when the size of the pattern
is not a divisor of the size of the area to fill and
when the number of loop repeats is not properly
computed, which can occur.

PstDebug3 (integer, 0 or 1): to see the exact tiling
done, without clipping (Default: 0).

This is mainly useful for debugging or to un-
derstand better how the tilings are done. It is
implemented only for the tiling mode.

1 \psset{unit=0.3,PstDebug=1}
2 \psboxfill{\Square}
3 \psset{linewidth=1mm}
4 \vspace*{7mm}
5 \Tiling{(2,2)}\hspace{1cm}

104 TUGboat, Volume 19 (1998), No. 2

6 \Tiling[fillcyclex=2]{(2,2)}\hspace{2cm}
7 \Tiling[fillmove=0.5]{(2,2)}

3 Examples

The single \psboxfill macro has many variations
and different uses. We will try here to demonstrate
many of them:

3.1 Kind of tiles

Since we can access all the power of PSTricks macros
to define the tiles (patterns) used, very complicated
ones can be created. Here we give four Archimedian
tilings (those built with only some regular polygons)
from the eleven known, first discovered completely
by Johanes Kepler at the beginning of 17th century
(Grünbaum and Shephard, 1987), the two regular
ones with the tiling by squares, formed by a single
regular polygon, and two formed by two different
regular polygons.

1 \newcommand{\Triangle}{%
2 \begin{pspicture}(1,1)
3 \pstriangle[dimen=middle](0.5,0)(1,1)
4 \end{pspicture}}
5 \newcommand{\Hexagon}{%
6 % sin(60)=0.866
7 \begin{pspicture}(0.866,0.75)
8 \SpecialCoor
9 % Hexagon

10 \pspolygon[dimen=middle]
11 (0.5;30)(0.5;90)(0.5;150)
12 (0.5;210)(0.5;270)(0.5;330)
13 \end{pspicture}}
14

15 \psset{unit=0.5}

16 \psboxfill{ \Triangle}

17 \Tiling{(4,4)}\hfill
18 % The two other regular tilings
19 \Tiling[fillcyclex=2]{(4,4)}\hfill

20 \psboxfill{ \Hexagon}

21 \Tiling[fillcyclex=2,fillloopaddy=1]{(5,5)}

1 \newcommand{\ArchimedianA}{%
2 % Archimedian tiling 3.4.6.4

3 \psset{dimen=middle}
4 % sin(60)=0.866
5 \begin{pspicture}(1.866,1.866)
6 \psframe(1,1)
7 \psline(1,0)(1.866,0.5)(1,1)
8 (0.5,1.866)(0,1)(-0.866,0.5)
9 \psline(0,0)(0.5,-0.866)

10 \end{pspicture}}
11 \newcommand{\ArchimedianB}{%
12 % Archimedian tiling 3.12^2
13 \psset{dimen=middle,unit=1.5}
14 % cos(22.5) + sin(22.5) = 1.3066
15 % cos(22.5) - sin(22.5) = 0.6533
16 \begin{pspicture}(1.3066,0.6533)
17 \SpecialCoor
18 % Octogon
19 \pspolygon(0.5;22.5)(0.5;67.5)
20 (0.5;112.5)(0.5;157.5)(0.5;202.5)
21 (0.5;247.5)(0.5;292.5)(0.5;337.5)
22 \end{pspicture}}
23

24 \psset{unit=0.5}

25 \psboxfill{ \ArchimedianA}
26 \Tiling[fillmove=0.5]{(7,7)}\hfill

27 \psboxfill{ \ArchimedianB}
28 \Tiling[fillcyclex=2,fillloopaddy=1]{(7,7)}

We can of course tile an arbitrarily defined area;
with the addfillstyle parameter5, we can easily
mix the boxfill style with another one.

1 \psset{unit=0.5,dimen=middle}
2 \psboxfill{%
3 \begin{pspicture}(1,1)
4 \psframe(1,1)
5 \pscircle(0.5,0.5){0.25}
6 \end{pspicture}}
7 \begin{pspicture}(4,6)
8 \pspolygon[fillstyle=boxfill,
9 fillsep=0.25]

10 (0,1)(1,4)(4,6)(4,0)(2,1)
11 \end{pspicture}
12 \hspace{2cm}
13 \begin{pspicture}(4,4)
14 \pscircle[linestyle=none,fillstyle=solid,
15 fillcolor=yellow,fillsep=0.5,
16 addfillstyle=boxfill](2,2){2}

17 \end{pspicture}

5 Introduced in PSTricks 97.

TUGboat, Volume 19 (1998), No. 2 105

Various effects can be obtained; sometimes
complicated ones are surprisingly easy, as in this
example reproduced from one by Slavik Jablan in
the field of OpTiles, inspired by Op-art :

1 \newcommand{\ProtoTile}{%
2 \begin{pspicture}(1,1)
3 % 1/12=0.08333
4 \psset{linestyle=none,linewidth=0,
5 hatchwidth=0.08333\psunit,
6 hatchsep=0.08333\psunit}
7 \psframe[fillstyle=solid,fillcolor=black,
8 addfillstyle=hlines,
9 hatchcolor=white](1,1)

10 \pswedge[fillstyle=solid,fillcolor=white,
11 addfillstyle=hlines]{1}{0}{90}
12 \end{pspicture}}
13

14 \newcommand{\BasicTile}{%
15 \begin{pspicture}(2,1)
16 \rput[lb](0,0){\ProtoTile}
17 \rput[lb](1,0){\rotateleft{\ProtoTile}}
18 \end{pspicture}}
19

20 \ProtoTile\hfill\BasicTile\hfill
21 \psboxfill{\BasicTile}
22 \Tiling[fillcyclex=2]{(4,4)}

It is also possible to superimpose several dif-
ferent tilings. Here is the splendid visual proof of
the Pythagore theorem done by the Arab mathe-
matician Annairizi around the year 900, given by
superposition of two tilings by squares of different
sizes.

1 \psset{unit=1.5,dimen=middle}
2 \begin{pspicture*}(3,3)
3 \psboxfill{\begin{pspicture}(1,1)
4 \psframe(1,1)
5 \end{pspicture}}
6 \psframe[fillstyle=boxfill](3,3)

7 \psboxfill{\begin{pspicture}(1,1)
8 \rput{-37}{\psframe[linecolor=red]
9 (0.8,0.8)}

10 \end{pspicture}}
11 \psframe[fillstyle=boxfill](3,4)
12 \pspolygon[fillstyle=hlines,hatchangle=90]
13 (1,2)(1.64,1.53)(2,2)
14 \end{pspicture*}

In a same way, it is possible to build tilings
based on figurative patterns, in the style of the
famous Escher ones. Following an example of André
Deledicq (Deledicq, 1997), Figure 1 shows a simple
tiling of the p1 category (according to the inter-
national classification of the 17 symmetry groups
of the plane first discovered by the Russian crysta-
lographer Jevgraf Fedorov at the end of the 19th
century).

Figure 2 shows a tiling of the pg category (the
code for the kangaroo itself is too long to be shown
here, but has no difficulties; the kangaroo is re-
produced from an original picture by Raoul Raba
and here is a translation into PSTricks from the one
drawn by Emmanuel Chailloux and Guy Cousineau
for their MLgraph system (Chailloux, Cousineau,
and Suárez, 1996)).

And now a Wang tiling (Wang, 1965),
(Grünbaum and Shephard, 1987, chapter 11),
based on very simple tiles in the form of a square
and composed of four colored triangles. Such tilings
are simply built with a matching color constraint.
Despite its simplicity, it is an important kind of
tiling, as Wang and others used them to study the
special class of aperiodic tilings, and also because it
was shown that (surprisingly) this tiling is similar
to a Turing machine.

1 \newcommand{\WangTile}[4]{%
2 \begin{pspicture}(1,1)
3 \pspolygon*[linecolor=#1](0,0)(0,1)(0.5,0.5)
4 \pspolygon*[linecolor=#2](0,1)(1,1)(0.5,0.5)
5 \pspolygon*[linecolor=#3](1,1)(1,0)(0.5,0.5)
6 \pspolygon*[linecolor=#4](1,0)(0,0)(0.5,0.5)
7 \end{pspicture}}
8

106 TUGboat, Volume 19 (1998), No. 2

1 \newcommand{\SheepHead}[1]{%
2 \begin{pspicture}(3,1.5)
3 \pscustom[liftpen=2,fillstyle=solid,fillcolor=#1]{%
4 \pscurve(0.5,-0.2)(0.6,0.5)(0.2,1.3)(0,1.5)(0,1.5)(0.4,1.3)(0.8,1.5)
5 (2.2,1.9)(3,1.5)(3,1.5)(3.2,1.3)(3.6,0.5)(3.4,-0.3)(3,0)(2.2,0.4)(0.5,-0.2)}
6 \pscircle*(2.65,1.25){0.12\psunit} % Eye
7 \psccurve*(3.5,0.3)(3.35,0.45)(3.5,0.6)(3.6,0.4) % Muzzle
8 \pscurve(3,0.35)(3.3,0.1)(3.6,0.05) % Mouth
9 \pscurve(2.3,1.3)(2.1,1.5)(2.15,1.7)\pscurve(2.1,1.7)(2.35,1.6)(2.45,1.4) % Ear

10 \end{pspicture}}
11

12 \psboxfill{\psset{unit=0.4}\SheepHead{yellow}\SheepHead{cyan}}
13 \Tiling[fillcyclex=2,fillloopadd=1]{(10,5)}

Figure 1: Tiling of p1 category

1 \psboxfill{\psset{unit=0.4}
2 \Kangaroo{yellow}\Kangaroo{red}\Kangaroo{cyan}\Kangaroo{green}%
3 \scalebox{-1 1}{\rput(1.235,4.8){%
4 \Kangaroo{green}\Kangaroo{cyan}\Kangaroo{red}\Kangaroo{yellow}}}}
5 \Tiling[fillloopadd=1]{(10,6)}

Figure 2: Tiling of pg category

TUGboat, Volume 19 (1998), No. 2 107

9 \newcommand{\WangTileA}{%
10 \WangTile{cyan}{yellow}{cyan}{cyan}}
11 \newcommand{\WangTileB}{%
12 \WangTile{yellow}{cyan}{cyan}{red}}
13 \newcommand{\WangTileC}{%
14 \WangTile{cyan}{red}{yellow}{yellow}}
15

16 \newcommand{\WangTiles}[1][]{%
17 \begin{pspicture}(3,3)
18 \psset{ref=lb}
19 \rput(0,2){\WangTileB}%
20 \rput(1,2){\WangTileA}%
21 \rput(2,2){\WangTileC}
22 \rput(0,1){\WangTileC}%
23 \rput(1,1){\WangTileB}%
24 \rput(2,1){\WangTileA}
25 \rput(0,0){\WangTileA}%
26 \rput(1,0){\WangTileC}%
27 \rput(2,0){\WangTileB}
28 #1
29 \end{pspicture}}
30

31 \WangTileA\hfill\WangTileB
32 \hfill\WangTileC\hfill
33 \WangTiles[{\psgrid[subgriddiv=0,
34 gridlabels=0](3,3)}]
35

36 \vspace{2mm}
37 \psset{unit=0.4}

38 \psboxfill{ \WangTiles}

39 \Tiling{(12,12)}

3.2 External graphic files

We can fill an arbitrary area with an external
PostScript image. We have only, as usual, to worry
about the BoundingBox definition if there is not one
provided or if it is inaccurate, as in the case of the

well known tiger picture (part of the Ghostscript

distribution).

1 \psboxfill{%
2 \raisebox{-1cm}{%
3 \includegraphics[bb=17 176 562 740,
4 width=3cm]{ tiger}}}

5 \Tiling{(6,6.2)}

Be warned there are some types of PostScript
file for which the automatic mode does not work,
specifically those produced by a screen dump. This
is demonstrated in the next example, where a pic-
ture was reduced before conversion to the Encap-
sulated PostScript format by a screen dump utility.
In this case, use of the manual mode is the only
alternative, at the price of real multiple inclusion
of the EPS file. We must take care to specify
the correct fillsize parameter, because otherwise
the default values are large and will load the file
too many times, perhaps just actually using a few
occurrences as the other ones are clipped away. . .

1 \psboxfill{\includegraphics{flowers}}
2 \begin{pspicture}(8,4)
3 \psellipse[fillstyle=boxfill,
4 fillsize={(8,4)}](4,2)(4,2)
5 \end{pspicture}

108 TUGboat, Volume 19 (1998), No. 2

3.3 Tiling of characters

We can also use the psboxfill macro to fill the
interior of characters for special effects like the fol-
lowing:

1 \DeclareFixedFont{\Sf}{T1}{phv}{b}{n}{3.5cm}
2 \DeclareFixedFont{\Rm}{T1}{ptm}{m}{n}{3mm}
3 \psboxfill{\Rm In 452 days...}

4 \begin{pspicture*}(8,3)
5 \rput(4,0.2){%
6 \pscharpath[fillstyle=gradient,
7 gradangle=-45,gradmidpoint=0.5,
8 addfillstyle=boxfill,
9 fillangle=45,fillsep=0.7mm]

10 {\rput[b](0,0){\Sf 2000}}}
11 \end{pspicture*}

20002000
2

d

45
2

da
y

In
45

2
da

ys
..

...
In

45
2

da
ys

...
In

ay
s.
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
...

In
45

2
d

da
ys

...
In

45
2

da
ys

...
In

45
2

da
y

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In

n
45

2
da

ys
...

In
45

2
da

ys
...

In
45

45
2

da
ys

...
In

45
2

da
ys

...
In

45
2

d

da
ys

...
In

45
2

da
ys

...
In

45
2

da
y

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In

n
45

2
da

ys
...

In
45

2
da

ys
...

In
45

45
2

da
ys

...
In

45
2

da
ys

...
In

45
2

d

da
ys

...
In

45
2

da
ys

...
In

45
2

da

ys
...

In
45

2
da

ys
...

In
45

2

In
45

2
da

ys
...

In
4

n
45

2
da

ys
...

I

45
2

da
ys

da

1 \DeclareFixedFont{\Rmm}{T1}{ptm}{m}{n}{2cm}
2 \psboxfill{%
3 \psset{unit=0.1,linewidth=0.2pt}
4 \Kangaroo{PeachPuff}\Kangaroo{PaleGreen}%
5 \Kangaroo{LightBlue}\Kangaroo{LemonChiffon}%
6 \scalebox{-1 1}{%
7 \rput(1.235,4.8){%
8 \Kangaroo{LemonChiffon}%
9 \Kangaroo{LightBlue}%

10 \Kangaroo{PaleGreen}%
11 \Kangaroo{PeachPuff}}}}
12 % A kangaroo of kangaroos...
13 \begin{pspicture}(7.8,2)
14 \pscharpath[linestyle=none,fillloopadd=1,
15 fillstyle=boxfill]
16 {\rput[b](4,0){\Rmm Kangaroo}}

17 \end{pspicture}

3.4 Other uses

Other uses can be imagined. For instance, we can
use tilings in a sort of degenerate way to draw
special lines made by a single or multiple repeating
patterns. It might be just a special dashed line, as
here with three different dashes:

1 \newcommand{\Dashes}{%
2 \psset{dimen=middle}
3 \begin{pspicture}(0,-0.5\pslinewidth)

4 (1,0.5\pslinewidth)
5 \rput(0,0){\psline(0.4,0)}%
6 \rput(0.5,0){\psline(0.2,0)}%
7 \rput(0.8,0){\psline(0.1,0)}
8 \end{pspicture}}
9

10 \newcommand{\SpecialDashedLine}[3]{%
11 \psboxfill{#3}
12 \Tiling[linestyle=none]
13 {(#1,-0.5\pslinewidth)
14 (#2,0.5\pslinewidth)}}
15 \SpecialDashedLine{0}{7}{\Dashes}
16

17 \psset{unit=0.5,linewidth=1mm,linecolor=red}
18 \SpecialDashedLine{0}{10}{\Dashes}

We can also use special patterns in business
graphics, as in the following example generated by
PstChart (Girou, 1993-1998) (see Figure 3).

4 “Dynamic” tiling

In some cases, tilings use non-static tiles, that is to
say the prototile(s), even if unique, can have several
forms, for instance specified by different colors or
rotations, not fixed before generation, or varying
each time.

4.1 Lewthwaite-Pickover-Truchet tiling

We present here as an example the so-called Truchet
tiling, which is in fact better called Lewthwaite-Pick-
over-Truchet (LPT) tiling, as explained in (Girou,
To appear)6.

The single prototile is just a square with two
opposing circle arcs. This tile obviously has two
positions, if we rotate it through 90 degrees (see
the two tiles on the next figure). A LPT tiling is
a tiling with randomly oriented LPT tiles. We can
see that even if it is very simple in it principle, it
draws sophisticated curves with strange properties.

Unfortunately, pst-fill does not work in a
straightforward manner, because the \psboxfill

macro stores the content of the tile in a TEX box,
which is static. So the call of the random function
is done only once, which explains why only one
rotation of the tile is used for all the tiling. Only
the one of the two rotations can differ from one
drawing to the next . . .

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}{%

6 For description of the context, history and references
about Sébastien Truchet and this tiling, see (André and
Girou, To appear) and specially (André, To appear), (Esperet
and Girou, To appear) and (Girou, To appear).

TUGboat, Volume 19 (1998), No. 2 109

Fantasist repartition of kangaroos
in the world (in thousands)

0

500

1000

1500

2000

Oceania Africa Asia America Europe

Figure 3: Bar chart generated by PstChart, with bars filled by patterns

3 \psset{dimen=middle}
4 \begin{pspicture}(1,1)
5 \psframe(1,1)
6 \psarc(0,0){0.5}{0}{90}
7 \psarc(1,1){0.5}{-180}{-90}
8 \end{pspicture}}
9

10 % LPT tile
11 \newcount\Boolean
12 \newcommand{\BasicTileLPT}{%
13 % From random.tex by Donald Arseneau
14 \setrannum{\Boolean}{0}{1}%
15 \ifnum\Boolean=0
16 \ProtoTileLPT%
17 \else
18 \rotateleft{\ProtoTileLPT}%
19 \fi}
20

21 \ProtoTileLPT\hfill
22 \rotateleft{\ProtoTileLPT}\hfill
23 \psset{unit=0.5}

24 \psboxfill{ \BasicTileLPT}
25 \Tiling{(5,5)}

For simple cases, there is a solution to
this problem using a mixture of PSTricks and
PostScript programming. Here the PSTricks
construction \pscustom{\code{...}} allows us to
insert PostScript code inside the LATEX+PSTricks
one. The programming is less straightforward
than solving this problem using the basic PSTricks
\multido macro, but it has the advantage of being
noticeably faster, since all tilings operations are
done in PostScript, and we are not limited by TEX
memory (the solution without the pst-fill package I
wrote in 1995 for the colored problem was limited
to small sizes for this reason). Note also that
\pslbrace and \psrbrace are PSTricks macros
which insert the { and } characters.

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}{%
3 \psset{dimen=middle}
4 \psframe(1,1)
5 \psarc(0,0){0.5}{0}{90}
6 \psarc(1,1){0.5}{-180}{-90}}
7

8 % Counter to change the random seed
9 \newcount\InitCounter

10

11 % LPT tile
12 \newcommand{\BasicTileLPT}{%
13 \InitCounter=\the\time

110 TUGboat, Volume 19 (1998), No. 2

14 \pscustom{\code{%
15 rand \the\InitCounter\space
16 sub 2 mod 0 eq \pslbrace}}
17 \begin{pspicture}(1,1)
18 \ProtoTileLPT
19 \end{pspicture}%
20 \pscustom{\code{\psrbrace \pslbrace}}
21 \rotateleft{\ProtoTileLPT}%
22 \pscustom{\code{\psrbrace ifelse}}}
23

24 \psset{unit=0.4,linewidth=0.4pt}

25 \psboxfill{ \BasicTileLPT}
26 \Tiling{(15,15)}

Using the very surprising fact (see (Esperet and
Girou, To appear)) that the coloring of these tiles
does not depend on their neighbors (even if it is
difficult to believe as the opposite seems obvious!)
but only on the parity of the value of row and column
positions, we can directly program in the same way
a colored version of the LPT tiling.

We have also introduced in the pst-fill code for
tiling mode two new accessible PostScript variables,
row and column3, which can be useful in some
circumstances, like this one.

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}[2]{%
3 \psset{dimen=middle,linestyle=none,
4 fillstyle=solid}
5 \psframe[fillcolor=#1](1,1)
6 \psset{fillcolor=#2}
7 \pswedge(0,0){0.5}{0}{90}
8 \pswedge(1,1){0.5}{-180}{-90}}
9

10 % Counter to change the random seed
11 \newcount\InitCounter
12

13 % LPT tile
14 \newcommand{\BasicTileLPT}[2]{%
15 \InitCounter=\the\time
16 \pscustom{\code{%
17 rand \the\InitCounter\space sub 2

18 mod 0 eq \pslbrace
19 row column add 2 mod 0 eq \pslbrace}}
20 \begin{pspicture}(1,1)
21 \ProtoTileLPT{#1}{#2}
22 \end{pspicture}%
23 \pscustom{\code{\psrbrace \pslbrace}}
24 \ProtoTileLPT{#2}{#1}%
25 \pscustom{\code{%
26 \psrbrace ifelse \psrbrace \pslbrace
27 row column add 2 mod 0 eq \pslbrace}}
28 \rotateleft{\ProtoTileLPT{#2}{#1}}%
29 \pscustom{\code{\psrbrace \pslbrace}}
30 \rotateleft{\ProtoTileLPT{#1}{#2}}%
31 \pscustom{\code{\psrbrace ifelse
32 \psrbrace ifelse}}}
33

34 \psboxfill{ \BasicTileLPT{red}{yellow}}

35 \Tiling{(4,4)}
36

37 \vspace{2mm}
38 \psset{unit=0.4}

39 \psboxfill{ \BasicTileLPT{blue}{cyan}}

40 \Tiling{(15,15)}

Another classic example is generation of coor-
dinates and labelling for a grid. Of course, it is
possible to do it directly in PSTricks using nested
\multido commands, and it would clearly be easy
to program. Nevertheless, for users who have a little
knowledge of PostScript programming, this method
offers an alternative which is useful for large cases,

TUGboat, Volume 19 (1998), No. 2 111

because it will be noticeably faster and use less
computer resources.

Remember here that the tiling is drawn from
left to right, and top to bottom, and note that the
PostScript variable x2 contains the total number of
columns.

1 % \Escape will be the \ character
2 {\catcode‘\!=0\catcode‘\\=11!gdef!Escape{\}}
3

4 \newcommand{\ProtoTile}{%

5 \Square%

6 \pscustom{%
7 \moveto(-0.9,0.75) % In PSTricks units
8 \code{%
9 /Times-Italic findfont 8 scalefont setfont

10 (\Escape() show row 3
11 string cvs show (,) show column 3 string
12 cvs show (\Escape)) show}
13 \moveto(-0.5,0.25) % In PSTricks units
14 \code{%
15 /Times-Bold findfont 18 scalefont setfont
16 1 0 0 setrgbcolor % Red color
17 /center {dup stringwidth pop 2
18 div neg 0 rmoveto} def
19 row 1 sub x2 mul
20 column add 3 string cvs center show}}}

21 \psboxfill{ \ProtoTile}
22 \Tiling{(6,4)}

(1,1)

1
(1,2)

2
(1,3)

3
(1,4)

4
(1,5)

5
(1,6)

6
(2,1)

7
(2,2)

8
(2,3)

9
(2,4)

10
(2,5)

11
(2,6)

12
(3,1)

13
(3,2)

14
(3,3)

15
(3,4)

16
(3,5)

17
(3,6)

18
(4,1)

19
(4,2)

20
(4,3)

21
(4,4)

22
(4,5)

23
(4,6)

24

1 \newcommand{\Pattern}[1]{%
2 \begin{pspicture}(-0.25,-0.25)(0.25,0.25)
3 \rput{*0}{\psdot[dotstyle=#1]}
4 \end{pspicture}}
5 \newcommand{\West}{\Pattern{o}}
6 \newcommand{\South}{\Pattern{x}}
7 \newcommand{\Central}{\Pattern{+}}
8 \newcommand{\North}{\Pattern{square}}
9 \newcommand{\East}{\Pattern{triangle}}

10

11 \newcommand{\Cross}{%
12 \pspolygon[unit=0.5,linewidth=0.2,
13 linecolor=red]
14 (0,0)(0,1)(1,1)(1,2)(2,2)(2,1)(3,1)(3,0)
15 (2,0)(2,-1)(1,-1)(1,0)}
16

17 \newcommand{\StylePosition}[1]{%
18 \LARGE\textcolor{red}{\textbf{#1}}}
19

20 \newcommand{\SubDomain}[4]{%

21 \psboxfill{#4}
22 \begin{psclip}{\psframe[linestyle=none]#1}
23 \psframe[linestyle=#3](5,5)
24 \psframe[fillstyle=boxfill]#2
25 \end{psclip}}
26

27 \newcommand{\SendArea}[1]{%
28 \psframe[fillstyle=solid,fillcolor=cyan]#1}
29

30 \newcommand{\ReceiveData}[2]{%
31 \psboxfill{#2}
32 \psframe[fillstyle=solid,fillcolor=yellow,
33 addfillstyle=boxfill]#1}
34

35 \newcommand{\Neighbor}[2]{%
36 \begin{pspicture}(5,5)
37 \rput{*0}(2.5,2.5){\StylePosition{#1}}
38 \ReceiveData{(0.5,0)(4.5,0.5)}{\Central}
39 \SendArea{(0.5,0.5)(4.5,1)}
40 \SubDomain{(5,2)}{(0.5,0.5)(4.5,3)}
41 {dashed}{#2}%
42 % Receive and send arrows
43 \pcarc[arcangle=45,arrows=->]
44 (0.5,-1.25)(0.5,0.25)
45 \pcarc[arcangle=45,arrows=->,
46 linestyle=dotted,dotsep=2pt]
47 (4.5,0.75)(4.5,-0.75)
48 \end{pspicture}}
49

50 \psset{dimen=middle,dotscale=2,fillloopadd=2}
51 \begin{pspicture}(-5.7,-5.7)(5.7,5.7)
52 % Central domain
53 \rput(0,0){%
54 \begin{pspicture}(5,5)
55 % Receive from West, East, North and S.
56 \ReceiveData{(0,0.5)(0.5,4.5)}{\West}
57 \ReceiveData{(4.5,0.5)(5,4.5)}{\East}
58 \ReceiveData{(0.5,4.5)(4.5,5)}{\North}
59 \ReceiveData{(0.5,0)(4.5,0.5)}{\South}
60 % Send area for West, East, North and S.
61 \SendArea{(0.5,0.5)(1,4.5)}
62 \SendArea{(4,0.5)(4.5,4.5)}
63 \SendArea{(0.5,0.5)(4.5,1)}
64 \SendArea{(0.5,4)(4.5,4.5)}
65 % Central domain
66 \SubDomain{(5,5)}{(0.5,0.5)(4.5,4.5)}
67 {solid}{\Central}
68 % Redraw overlapped lines
69 \psline(1,0.5)(1,4.5)
70 \psline(4,0.5)(4,4.5)
71 % Two crosses
72 \rput(1.5,4){\Cross}
73 \rput(2,2){\Cross}
74 \end{pspicture}}
75 % The four neighbors
76 \rput(0,5.5){\Neighbor{N}{\North}}
77 \rput{-90}(5.5,0){\Neighbor{E}{\East}}
78 \rput{90}(-5.5,0){\Neighbor{W}{\West}}
79 \rput{180}(0,-5.5){\Neighbor{S}{\South}}
80 \end{pspicture}

112 TUGboat, Volume 19 (1998), No. 2

bc

bc

bc

bc

bc

bc

bc

bc

ut

ut

ut

ut

ut

ut

ut

ut

rs rs rs rs rs rs rs rs

× × × × × × × ×

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

N

+ + + + + + + +

rs rs rs rs rs rs rs rs

rs rs rs rs rs rs rs rs

rs rs rs rs rs rs rs rs

E

+
+
+
+
+
+
+
+

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

W

+
+
+
+
+
+
+
+

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

S

++++++++

××××××××

××××××××

××××××××

Figure 4: Communication scheme to solve the Poisson equation on a distributed memory computer

4.2 A complete example: the Poisson

equation

To finish, we show in Figure 4 a complete real
example, a drawing to explain the method used
to solve the Poisson equation by a domain decom-
position method, adapted to distributed memory
computers. The objective is to show the communi-
cations required between processes and the position
of the data to exchange. The code (listed below)
also shows some useful and powerful techniques for
PSTricks programming (look especially at the way
some higher level macros are defined, and how the
same object is used to draw the four neighbors).

References

Adobe, Systems Incorporated. PostScript Language
Reference Manual. Addison-Wesley, 2 edition,
1995.

Chailloux, Emmanuel, G. Cousineau, and A. Suárez.
“Programmation fonctionnelle de graphismes
pour la production d’illustrations techniques”.

Technique et science informatique 15(7), 977–
1007, 1996.

Deledicq, André. Le monde des pavages. ACL
Éditions, 1997.

Girou, Denis. “PstChart. Business charts in (LA)TEX
+ PostScript with PSTricks”. http://www.tug.
org/applications/PSTricks/PstChart, 1993-
1998.

Girou, Denis. “Présentation de PSTricks”. Cahiers
GUTenberg 16, 21–70, 1994.

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
LATEX Graphics Companion. Addison-Wesley,
1997.

Grünbaum, Branko and G. Shephard. Tilings and
Patterns. Freeman and Company, 1987.

Hoenig, Alan. TEX Unbound: LATEX & TEX Strate-
gies, Fonts, Graphics, and More. Oxford Univer-
sity Press, 1998.

Rose, Kristoffer H. and R. Moore. “XY-pic. Pat-
tern and Tile extension”. Available from CTAN,
macros/generic/diagrams/xypic, 1991-1998.

TUGboat, Volume 19 (1998), No. 2 113

van der Laan, Kees. “Paradigms: Just a little bit of
PostScript”. MAPS 17, 137–150, 1996.

van Zandt, Timothy. “PSTricks. PostScript macros
for Generic TEX”. Available from CTAN,
graphics/pstricks, 1993.

van Zandt, Timothy and D. Girou. “Inside
PSTricks”. TUGboat 15(3), 239–246, 1994.

Wang, Hao. “Games, Logic and Computers”. Scien-
tific American pages 98–106, 1965.

⋄ Denis Girou
CNRS/IDRIS — Centre National

de la Recherche Scientifique /
Institut du Développement et
des Ressources en Informatique
Scientifique

B.P. 167
91403 Orsay cedex
France
Denis.Girou@idris.fr

