
TUGboat, Volume 14 (1993), No. 4 433

Documentation - bibliographic references -
content, form and structure. IS0 690, Interna-
tional Organization for Standardization, 1987.

Frank G. Bennett, Jr. Lexi': a L A ' macro

package for lawyers. Document deposited in
electronic archives, 1993.

Judith Butcher. Copy-edzting. Cambridge Uni-
versity Press, 3rd edition, 1992.

Publicatzon Manual of the Amerzcan Psycholog-
zcal Associatzon. American Psychological As-

sociation, 3rd edition, 1983. Obtainable from:

American Psychological Association, P. 0 . Box
2710, Hyattsville, MD 20784.

The Chzcago Manual of Style. University of
Chicago Press, 13th edition, 1982.

Janet S. Dodd. The ACS Style Guzde. Ameri-
can Chemical Society, 1986.

MHRA Style Book. Modern Humanities Re-
search Association, 4th edition, 1991.

Joseph Gibaldi and Walter S. Achtert, editors.
M L A Handbook for Wrzters of Research Papers.
Modern Language Association of America, 3rd
edition, 1988.

International Committee of Medical Jour-

nal Editors. Uniform requirements for man-
uscripts submitted to biomedical journals.
Brztzsh Medzcal Journal, 302:340-341, Febru-
ary 1991. Note: This article was also published
in the New England Journal of Medzczne (7th
Feb. 1991). It specifies the "Vancouver style"

for manuscript-preparation, which is accepted
by over 400 journals.

[12] Citing publications by bibliographic references.

BS 5605, British Standards Institution, 1978.

[13] References to published materials. BS 1629,
British Standards Institution, 1989.

[14] Citation of unpublished documents. BS 6371,
British Standards Institution, 1983.

[15] Oren Patashnik. BibTeXing. Document de-
posited in electronic archives, January 1988.

[16] James C. Alexander. Tib: A bibliographic
preprocessor. Document deposited in electronic
archives, 1989.

[17] Sue Stigleman. Bibliography formatting soft-

ware: a n update. Database, February 1993.

o David Rhead
Cripps Computing Centre
University of Nottingham
University Park
Nottingham NG7 2RD England;

U.K.

Relative moves in M m pictures

Richard Bland

1 Introduction

In this note I hope to do three things:

1. Make a number of observations about why
picture-drawing in L A ' , as described by Lam-
port, is so difficult and unpleasant.

2. Put forward a suggestion for a very simple
mechanism to overcome at least some of these
difficulties.

3. Show one way of implementing this suggestion.

using the Unix utility m4. This particular im-
plementation is presented only to demonstrate
the simplicity of the underlying mechanism: no

claim is made that it is an optimal implemen-
tation.

2 A n example

Consider the simple picture in Figure 1. As is ob-
vious, this picture has no meaning: it is just a col-
lection of graphic elements such as labelled shapes,
text strings, lines and arrows: but it does exemplify
the kind of output which many users have in mind
when they set out to draw a picture in LA'. Such
users want some form of diagrammatic representa-
tion in which different shapes are used to represent

types of entity, lines and arrows are used to con-
nect the entities, and labelling is used to give some

domain-specific meaning. Often these pictures are
conceptually quite simple.

Wilhelm Marta Rudolf

r - - - - - 1

Oval shape

I

William Freddy Henry

Figure 1: A LA' picture

434 TUGboat, Volume 14 (1993). No. 4

How does one produce pictures like this? Many

people would suggest using an interactive drawing
tool (on some suitable hardware) to produce an in-

termediate file which can be incorporated into the
LAW source of a document (or added at some ap-

propriate point downstream). I've never found this
an agreeable approach, for two main reasons: first,

as an occasional user I find it hard to come to grips
with the supposedly intuitively-obvious interfaces

which these tools present. After a certain point in

one's career the fun of learning another system be-
gins to diminish: the busy user who has learned one
set of syntactic and semantic ideas (like those of
LAW) would like to get results from those ideas
rather than adding a new set. Second, in using

an interactive drawing tool one often abandons or
jeopardises some of the main reasons for using a
markup system like LAW in the first place. These
are, of course, portability, device-independence, and
the ability to manipulate the source indefinitely with
any number of the myriad tools which handle ASCII

text. This last point is particularly important: be-
cause I&= source is just a character file it can be
edited, cut, pasted, searched, burgled, extended, all
without limit. This is certainly not the case with the
behind-the-scenes formats of many drawing pack-

ages.
These considerations suggest that there are

good reasons for trying to produce pictures with the
LAW tools described by Lamport.

Now consider the commands which produced
Figure 1. Slightly edited, they are as follows:

\begin{f igure) [htb]

\setlength{\unitlength)Clpt)

\centering

\begin(picture) (216,216)

\put (48,781 {\dashboxC5) (60,601 {

\begin{tabular){ 1 c 1)
\hline Here \\ we go \ \ again \\
\hline

\end{tabular]))

\put (78,731 {\vector (1, -1) (32))

\put (110,361 {\makebox(O ,O) [tll {Henry))

\put (78,73){\vector(-1 ,-I) (32))

\put (46,36){\makebox(O ,O) Ctrl {William))

\put (78,73>C\vector(O ,-l)C323)

\put (78,361 €\makebox(O ,O) [tl CFreddyH

\put (78,143) {\vector (I, IlC323)

\put (1 10,180) {\makebox (0,O) [bl] {Rudolf 33
\put (78,1431 {\vector (-l,l){32)3

\put (46,1801 C\makebox(O ,O) [brl Oilhelm))

\put (78,143) {\vector (0,l)

\put (78,18O){\makebox(O ,O) [bl {Marta))

\put (ll3,lO8) {\line (4,l) {64)3

\put(177,132>{\oval(70,16))\put (177,132)

{\makebox(O, 0) {Oval shape))

\put (177,124) {\line (0 ,-1){32))

\put(l77,74){\circle{36))\put(177,74)

{\makebox(O,O){A circle))

\end{picture)

\caption{A \LaTeX\ picture

\label{exampfig))

\end{figure)

What can we say about this? Well, readers

of TUGboat presumably have strong stomachs, but
even those who read The W b o o k for fun will surely
realise that these instructions are awful. Users who
set out to produce pictures using this sort of appara-
tus will very soon become discouraged. In the next
section we try to analyse the problem with these
instructions.

3 The difficulties

Looking at the code above, we can draw three main
conclusions. First, the syntax of the instructions is
very complicated and very hard to remember, mak-

ing the instructions extremely hard to write unless
one has a model immediately to hand. Also, there

seem to be inconsistencies. For example, the pa-

rameters for \oval are in round brackets while the
parameter for \circle is in curly brackets, although

they are semantically equivalent - in each case the
parameter(s) give the size of the shape to be drawn.

Second, the code is stuffed full of literal nu-
meric constants. This immediately makes users with
a programming background uneasy. After all, one

of the things we are always told (or are telling oth-
ers) is not to use constants. Because they convey

no semantic information they make code hard to

read: because we have to change every semantically-

equivalent instance of a constant in order to edit
code, the code is hard to change without making

mistakes. In this case there is the additional diffi-

culty that we suspect that the author of the code
must have sweated blood in order to work out what
all these constants ought to be in the first place: in

our mind's eye is an image of Lamport crouched over
his quadrille paper, cursing.

Third, the picture is composed in terms of ab-

solute positions rather than relative positions. We

realise that if we were to try to move the components
of the picture in relation to one another, it would be
very hard to do so by editing the absolute positions
(the pairs of values in all the \put instructions).

4 Existing remedies

Some of these problems can, of course, be dealt
with by sensible use of existing I4m facilities. We
can make the literal constants into symbolic con-
stants (using \newcommand), we can tinker a bit

TUGboat, Volume 14 (1993), No. 4

with the syntax of repeated constructions (also using

\newcommand) and we can modularise the picture
(using nested \p ic ture environments) and move the
modules in relation to one another using offsets.

These solutions only go so far, however. Defin-

ing symbolic constants is fine: but one soon needs
a facility for arithmetic in these definitions, which
LATEX lacks. For example, if one has a symbolic
constant for the width of a box, you may need one

for half the width as well. There's no easy way (that
I know of) of defining one constant as a function of

a previously-defined constant, so you must define
them both literally: once again this makes changes
difficult. Also, the scope for simplifying the syntax
is quite limited because each command is still quite

complicated semantically: 'at the point (177,132)
draw an oval of size (70,16) and within it centre the
string "Oval shape"' could certainly be more simply
expressed, but not very much more simply. Finally,

the method of modularising the picture by nesting
\p ic ture environments is useful, but has to be set
out very carefully if the human reader is not to be-

come hopelessly lost about the scope of the environ-
ments and hence about the offset to be applied to
any particular position.

5 New remedies

There are two remedies which I wish to propose: one

minor and one major. The minor one is to make it

easier to define symbolic constants as functions of

other constants. The major one is to remove the

'position' information from the drawing commands.

The minor remedy really needs no further discussion
at this stage: the only question to be settled is the
method of implementation. The idea of taking the
'position' information out of the drawing commands
is more complex.

The basic notion is to introduce the idea of a
current position at which the next drawing action
is to be done. Using macros, we re-package all the

drawing operations which we wish to use, so as to

Make them all draw at the current position.

The re-packaged commands can now be sim-
pler, because they no longer need position pa-
rameters.

Give each of them a defined effect on the current

position. For entity-representing shapes (boxes,
ovals, circles, strings) the command will leave

the current position where it is: for connectors
(lines, arrows) the command will start drawing

the line or arrow at the current position and end
by moving the current position to the other end
of the line or arrow.

Obviously we also need to add new commands

to manipulate the current position: these will in-
clude

An absolute jump, to move the current position
to some new point.

A relative move, to move the current position
by an offset (it turns out to be convenient to

have a family of these: four single-parameter

moves, up, down, l e f t and r igh t , as well as a
full two-parameter move).

A method of 'remembering' the current posi-
tion, and of resetting the current position to
some remembered point.

One way of thinking about these commands, and
of implementing the 'remembering' mechanism, is
that we have introduced position variables. There's
a behind-the-scenes position variable, the current

position, which is global to all commands, and as
many explicitly-named position variables as the user
wishes. The only defined operations (so far, anyway)
are those of assigning from a user-declared position

variable to the current position and vice-versa.
The payoff turns out to be quite considerable.

Our repackaged commands can be much simpler (for
example, the command for an oval has three param-
eters instead of five). More importantly, the whole

business of absolute positions (which gives the user
so much difficulty) has now disappeared and been
replaced by a much more natural idea of drawing

one thing, moving relative to that thing and drawing
another thing. This is what we do when we sketch
naturally, on the backs of envelopes: we certainly
don't work as Lamport recommends, "first pick[ing]

the slopes of all lines, then . . . calculat[ing] the po-
sition of each object before drawing it on the graph
paper" ([3], page 110). The naturalness of this new
approach is particularly obvious when the graph of

the entities and connectives is a tree: in this case

the new approach makes the picture simple to draw
and very easy to change.

An example is needed here, but before we can

present one. an implementation is needed. This is

discussed in the next section.

6 Implementation

No doubt in an ideal world I would now present

an implementation in TEX macros. In fact I shall
not do this. For many years I have used the Unix
macroprocessor m4 ([I, 2]), which comes free with

Unix and is in the public domain for MS-DOS. It has
the facilities which we need (including arithmetic)
and I know how to use it. Unfortunately I don't

know how to write TpX macros.

436 TUGboat, Volume 14 (1993), No. 4

Is this a problem? I believe not. My inten-

tion in this note is not to advertise a product but to
discuss an approach. Although I shall of course be

happy to share my few lines of code with anyone who
wants them, my purpose here is to demonstrate that

a particular approach can be made to work very eas-
ily and can greatly simplify a particular task. I hope
that readers will be stimulated to suggest better or
fuller implementations of the idea.

Using m4 means that the source file (a mixture

of m4 statements and LAW statements) must be
run through m4 before processing by LAW, but this
step is easily arranged and has a negligible penalty
in processing time.

In the following account I shall not show the

full details of the implementation in m4 (although
this is only a few dozen lines): I shall concentrate
instead on explaining the commands which a user
would need to know in order to draw the picture of

Figure 1. In this account. I shall show macro names
defined by me in capital letters, for clarity, and will
follow the m4 convention of describing macro param-
eters as $1, $2, etc,, rather than the convention

of #I , #2, etc. I shall not attempt to give a rigorous
account of m4, which is completely defined in [2]. As
a working label, I'll refer to the set of macros writ-
ten by me as the Macro Library for UQX Pictures
MLLP, although this perhaps conveys an undue air
of importance for a very few lines of code.

We begin by noting that in m4 we define
a macro using the define macro, which takes
two arguments, as in define (HEIGHT, 216) which
sets up the symbolic constant HEIGHT to be 216.

This is the intended height of the picture-216
points (which is about three inches). We also de-

fine other useful dimensions for the picture, whose
meanings should be obvious: WIDTH, BOXHEIGHT,

BOXWIDTH, CIRCLEDIAM, OVALHEIGHT, OVALWIDTH
and XARROWLEN. This is done in the same way as for

HEIGHT (but with different values, of course, the ex-
act values of which aren't important for the exposi-
tion). We also define a useful quantity SEPARATION,
which is defined as 5 (points) and is used as a general

spacing parameter in the picture.
We can now write

\begin(picture) (WIDTH, HEIGHT)

as the start of the environment. The first thing we
should like to do is draw the most significant element

of the picture, the dashed box, slightly to the left
of the midpoint of the picture. We can calculate

this using the m4 built-in macro eval, which takes
a conventionally-formed arithmetic expression as its
argument and replaces it by an integer, the result
of evaluating the expression. Before we do the sum,

we first the constant LEFTABIT to be (say) 20 points,
to move the box off-centre, and note that boxes are

usually drawn with their bottom-left corner as the
reference point: this means that we must jump to a
point half a box-width to the left of, and half a box-
height below, the chosen centre point of the box.'

All of this is rather a mouthful. However, we can

now set the current point to its starting position:

JUMP(eval((W1DTI-I-BOXHEIGHT)/2-LEFTABIT),
eval ((HEIGHT-BOXWIDTH) /2))

Now the dashed box. MLLP includes a three-
parameter macro which draws a dashed box of size

$1 by $2, with the (optional) $3 centered within it.
This operation does not affect the current position.

We can now write

DASHBOX(BOXHEIGHT,BOXWIDTH,
'\begin{tabular){lc() \hl ine Here \ \
we go \\ again \ \ \hl ine
\end{tabular) ')

demonstrating in rather a flashy way that the third
parameter of DASHBOX, the object to be centered
within it, can be a complicated LAW object. This is
not exclusive to DASHBOX: the other macros in the set

can also have complicated picture objects as param-
eters. Notice that to be on the safe side the parame-
ter is wrapped in paired left and right single-quotes:
this protects it from any unwanted processing by m4.

We now wish (say) to draw the cluster of ar-

rows, and the associated strings, under the box.
First we move the current point from the bottom-
left corner of the box: in doing so we use another
macro from MLLP, HALF, whose effect is obvious.

Once we've arrived, we want to remember this po-
sition because it will be the base for three arrows,
so we shall use the MLLP macro SET to hold the
position.

RIGHT(HALF(BOXWIDTH))
DOWN(SEPARATION)

SET(' arrowbasel')

The string arrowbasel is the name of an MLLP po-

sition variable, as described above. It can be any
identifier which won't interfere with or m4.

When acting as the parameter to SET, it needs to
be in paired left and right single-quotes: this is for

reasons internal to m4.
Now we draw an arrow and the string at the

end of it. MLLP includes a three-parameter macro

ARROW, which is just a packaging of Lamport's
vector. The first two parameters give the slope and
the third the length, just as described by Lamport

' Alternatively, one could make the centre of the

box the reference point: but if you work it through
this doesn't simplify things.

TUGboat, Volume 14 (1993), No. 4 437

([3], page 106). The arrow is drawn from the cur-
rent point and the current point zs moved to the head

of the arrow. There are two variants, A R R O W and
ARROWDOWN, which move the current point slightly

away from the end of the arrow, either up or down:
the length of the move is given by SEPARATION. The

string at the end of the arrow is written using PUT,
which is just a packaging of Lamport's put. The first
argument is the string to be written. The (optional)

second argument gives the relative position of the

string with respect to the current point. The de-

fault is to centre the string round the current point,
horizontally and vertically, but this can be changed
by using the second parameter. Just as in Lamport,

$2 can be 0, 1 or 2 of the letters t, b, 1 or r. These
determine where the current point is with reference
to the text. For example, tl means that the current

point is at the top left of the text. PUT does not
move the current point. So:

ARROWDOWN(1,-1,XARROWLEN)
PUT (Henry, t l)

The remaining two arrows in the cluster can

be drawn easily once we note that JUMP will accept
a position variable as its (single) argument. This of
course resets the current point to the position stored
in the position variable. Off we go:

JUMP (arrowbasel)

ARROWDOWN(-1,-1,XARROWLEN)
PUT(William, t r)

JUMP (arrowbasel)
ARROWDOWN(0,-1,XARROWLEN)

PUT(Freddy,t)

Drawing the top set of arrows doesn't require any
new techniques: we move to the top of the box,
establish a new arrow-base and draw the cluster.

JUMP (arrowbasel)

UP(eval(BOXWIDTH+2*SEPARATION))
SET('arrowbase2')

A R R O W (I , 1 , XARROWLEN)
PUT(Rudo1f , b l)

JUMP (arrowbase2)

ARROW(-1,1,XARROWLEN)
PUT(Wilhelm, br)

JUMP (arrowbase2)

ARROW(O,l,XARROWLEN)
PUT (Marta, b)

Given that our aim here is not to produce a ref-
erence manual for MLLP, or anything like it, it will
perhaps be enough to leave the reader to infer from

the code the properties of the remaining macros to
be used, LINE, VLINE, OVAL and CIRCLE, given the
information that OVAL and CIRCLE are drawn cen-
tred on the current point. We first move round to

the right-hand side of the box, then draw the rest of
the picture:

JUMP (arrowbase21
RIGHT(~v~~(BOXHEIGHT/~+SEPARATION))
DOWN(eval(BOXWIDTH/2+SEPARATION))

LINE(4,l,eval(XARROWLEN*2))

%
UP (HALF (OVALWIDTH))
OVAL(OVALHEIGHT,OVALWIDTH,Oval shape)

DOWN (HALF (OVALWIDTH) 1
%
VLINE(-XARROWLEN)

DOWN(HALF(CIRCLED1AM))
CIRCLE(CIRCLEDIAM,A c i r c l e)

\end(picture)

7 Conclusion

This note has attempted to identify a number of fac-
tors which make LAW picture-drawing a frustrating
and error-prone business, and to suggest a simple
approach which ameliorates those difficulties, and

which can be implemented without much difficulty.

An example has been presented: the code of this

example is, I believe, strikingly easier to understand
and to change than the original LAW code. Prac-
tical experience with a number of drawings has re-
inforced the belief that the approach presented here
is simple and effective.

No claim is made that the implementation of
these ideas in m 4 is particularly elegant, or that the

MLLP set of macros (which is larger than that shown
above) is optimal or complete. I have, however,
found it to be effective for my purposes. I should be

very grateful for suggestions or comments on these
points.

References

111 Brian W Kernighan and P J Plauger. Software

Tools. Addison-Wesley, Reading, Mass, 1976.

[2] Brian W Kernighan and Dennis M Ritchie. The
m4 macro processor. Technical report, Bell Lab-
oratories, Murray Hill, New Jersey, 1977.

[3] Leslie Lamport. B W : a document preparation

system. Addison-Wesley, Reading, Mass, 1986.

o Richard Bland
Computing Science and

Mathematics
University of Stirling
Stirling FK9 4LA
Scotland

