
518 TUGboat, Volume 13 (1992), No. 4 

copy of the U r n  command that actually ships a 

page to the dvi file. 

The command \@outputpage is then redefined in 

terms of its old meaning. First, only "real" pages 

are printed, that is, only when \ i f  realpage returns 

true. Then, if we are only printing correction sheets, 

we immediately switch off printing of pages after 

this one. Only the \s tar tpage and \anotherpage 

commands will switch printing on again. 

Note that we need to ensure that any special 

page style set by \ thispagestyle  on a page that has 

not been printed does not carry over to the following 

page. For instance, a \chapter command will gen- 

erally introduce a p la in  page style command into 

the document. 

The command \@outputpage should otherwise 

do everything that its old version did, apart from 

shipping the page out to the dvi file. 

o Mike Piff 
Department of Pure Mathematics 
University of Sheffield 
Sheffield S10 2TN 

England 
Janet: M.Piff Bshef . ac .uk 

Text merges in T@ and W w  

Mike Piff 

Abstract 

In this article the author explains how to do some 

standard and not so standard word processor text 

merges in documents, using no other tools than 

itself. A common application is to the mail 

merge or form letter, where names and addresses are 

stored in a file, together with other bits of informa- 

tion, and a standard letter with variable fields em- 

bedded in it is customized for every name from this 

file. Another application is to the pretty-printing of 

the contents of a database. 

The macros described in textmerg. s t y  work 

equally in both plain rn and U r n .  

1 Introduction 

It is often said that although I4m is good at type- 

setting mathematics, it is wholly unsuitable for com- 

mon word processor functions such as mail merges. 

The latter are easy to achieve in most ordinary word 

processors, but in its raw state I 4 w  is incapable 

of doing a mail merge, or, indeed, of generating the 

same block of text over and over again but with 

different parameters in each block, those parame- 

ters having been read from a subsidiary merge file. 

The latter file might possibly be the output from a 

database or any other program. 

This article aims to show the reader that such 

a repetitive task need not be as difficult as it at 

first appears. In w, it is possible to hide many 

details of a facility inside a subsidiary style file, so 

that the user is unaware of what fearful processes 

are going on in the background. It is then possible 

to present the end-user with an extremely simple 

interface, perhaps simpler and more powerful than 

is available in other systems. 

In earlier TUGboat articles [Be187, Gar87, 

Lee86, McK871 it was shown how a standard letter 

could be customized by adding names and addresses 

from a separate file. I aim to show that it is possible 

to achieve far more than this with a fairly compact 

but general set of macros. 

2 A simple example 

Suppose that we have a list of student names and 

examination grades, one per student, and that we 

wish to send a letter to each student giving his/her 

exam grade. We must decide first what bits of infor- 

mation must be prepared in our subsidiary file, by 

looking at an example letter and finding out which 

items change from letter to letter. 

Suppose that one instance of our letter is the 

following, a U r n  example. 

\begin(letter)(Mr Abraham L Spriggs\\ 

34 Winchester Road\\ 

Sheff ield S99 5BX\\ 

England) 

\opening(Dear M r  Spriggs, 

This l e t t e r  i s  t o  inform you 

t h a t  you obtained grade C i n  

your recent  examinations. 

\closing(Yours f a i t h f u l l y ,  ) 

\endCletter) 

We can see that we need to know the student's title, 

forename(s), surname, address and grade to com- 

pose such a letter. 

One of the simplest ways of achieving this effect 

is to prepare a file with lines of the form 



TUGboat, Volume 13 (1992), No. 4 519 

for each student and then simply \input it into 

a IPT@ file in which \MyLetter has been defined 

as having five parameters. A problem with this 

approach is that we may not be able to coax the 

student database into producing such a file. An- 

other problem is that we need something more sub- 

tle if there are fifty parameters. For example, we 

might want to print out the contents of the student 

database with one page per student, but it could be 

that there are fifty information fields per student. 

Even worse, the number of pieces of information per 

student might not be a constant number, because, 

say, we are printing out fields from a related file in 

which marks on individual examination papers are 

held. 

We shall tackle our simple example in a way 

that lends itself to more generality later on, and in 

a form that most database programs should be ca- 

pable of handling. 

We thus prepare a subsidiary file results .dat 

with records of five fields in it. Each student is rep- 

resented by five lines of this file, 

Mr 

Abraham L 
Spriggs 

34 Winchester Road\\ ... \\England 
C 

and the student records appear one after another in 

this file. Thus both the field and record separators 

are carriage returns. 

7$J itself needs to know three bits of informa- 

tion: 

1. the name of the subsidiary file, 

2. the fields to read, and 

3. the template of the letter. 

We pass i t  this information in the following form 

\Fields{\Title\Forenames\Surname 

\Address\Grade) 

\Mergeiresults.dat)C% 

\begin(letter)i\Title\ \Forenames\ 

\Surname\\\Address) 

\opening(Dear \Title\ \Surname, 

This letter is to inform you - 

that you obtained grade \Grade\ in 

your recent examinations. 

\closing{Yours faithfully,) 

\endCletter)) 

IP7$J should open the subsidiary file and, for each 

set of five parameters. generate a letter in the dvi 

file. When it reaches the end of the merge file, IPl&X 

should terminate execution of the \Merge command 

and presumably finish the document. 

3 A few complications 

Looking at the above example in a bit more gener- 

ality, we see that we are reading records of n fields 

&om the merge file and placing them into a TEX doc- 

ument in such a way that they replace n preassigned 

control sequences. However, it may happen that the 

merge file is prepared by humans, who might pos- 

sibly have inserted some extra blank lines into the 

file. Again, it could be that certain sorts of fields 

might be blank, whereas others can never be blank. 

Perhaps it would be better to build in some degree 

of error recovery. 

We shall make the assumption that the first 

field in any record is definitely a non-blank one and 

that we know beforehand whether each of the others 

might conceivably be blank. We make a modifica- 

tion to our \Fields statement. It can contain not 

only the field name control sequences but also the 

tokens + and -, with the following interpretation. A 

+ indicates that all following fields should be re-read 

until a non-blank result is obtained. A - indicates 

that any following fields could conceivably be blank, 

subject to the restriction that the very first field is 

always non-blank. 

Thus the command 

\FieldsC\a+\b\c-\d) 

would indicate that only \d is allowed to be blank. 

because the + token has no effect. In 

\Fields{-\a\b+-\c+\d) 

the initial - token enables blank reading of data to- 

kens, but the very first data token is not permitted 

to be blank anyway. Thus \a is read as a non-blank 

token and \b as a possibly blank token. The se- 

quence +- now switches non-blank reading on and 

off again, so \c is read as possibly blank. Finally \d 

is non-blank. 

Another complication we allow is that the 

\Fields command can appear several times in our 

file. The interpretation is that the last occurrence of 

\Fields before we encounter the \Merge command 

will indicate the fields to be read for every record. 

Any occurrences of \Fields within the merged text 

indicate a new list of fields to be read when that 

command is encountered. This lets us do some con- 

ditional processing, such as1 

\ifx\Title\Mrs 

\Fields{\MaidenName) 

\f i 

and also gives us some flexibility about the field or- 

der later on. 

It is assumed that \Mrs expands to Mrs. 



TUGboat, Volume 13 (1992), No. 4 

* . 
It should also be stressed that the undefined 

control sequences appearing in the template need 

not correspond exactly to the fields in the subsidiary 

file. An example might be that the subsidiary file 

contains the text 

Spriggs, Mr Abraham L 

and one field read is \FullNme. TFJ would then 

have to pre-process this name to generate its several 

components as used in the template. The command 

\Preprocess could be included at the start of the 

template. 

\def\parse#l, #2 #3\endparse{% 

\def \Surname{#l)\def \TitleC#2)% 

\def\ForenamesC#3)) 

\def \PreProcessC\expandaf ter 

\parse\FullName\endparse) 

An alternative and simpler looking approach to 

reading fields from a file \fil might be to define 

each such field as follows. 

\def \Field#lC\def #l{\read\f il to#l#l)) 

\Field\Name \Field\Address \Field\Mark 

The first time \Name is encountered, it reads its 

own expansion from \fil and then expands itself. 

Henceforth, it has acquired its new expansion. The 

disadvantage is that \Name must appear in the text 

before any subsidiary field such as \Surname can be 

used. 

Finally we should consider the possibility that 

the second parameter of \Merge might be too large 

to fit into memory. We can clearly handle this prob- 

lem by allowing the second parameter merely to con- 

sist of the text \input template, so that the root 

file handles two subsidiary files, one containing the 

template and the other containing the fields. 

4 Implementation of the simple case 

For convenience we define a frequently used combi- 

nation here. 

\def \glet{\global\let) 

The subsidiary merge file is defined next. A 
macro is then defined that attempts to open it for 

reading. If that  is unsuccessful, the file is closed and 

an error message is issued. 

\newread\MergeFile 

\def \InputFile#l{% 

\openin\MergeFile=#l 

\ifeof\MergeFile 

\errmessageCFmpty merge file)% 

\closein\MergeFile 

\long\def\MakeTemplate##l{% 

\def \Template{))% 

\else\Get Input\f i) 

The command \MakeTemplate will be used later to 

generate the body of the form into which fields are 

inserted. We redefine it if the file is empty so that 

it produces no text. 

Because the conditional \if eof does not return 

true until after an unsuccessful read operation, a 

mechanism of looking ahead is used which is similar 

to that found in Pascal. 

\def\GetInput{{\endlinechar=-1 

\global\read\MergeFile to\InputBuffer)) 

We set up a mechanism for deciding whether 

or not we have exhausted the merge file. It forces 

\if eof to return true by skipping over blank lines. 

\def\SeeIfEof{% 

\let\NextLook\relax 

\ifeof\MergeFile 

\else 

\if x\InputBuf f er\empty 

\LookAgain 

\f i 

\f i 

\NextLook) 

\def\LookAgain{\GetInput 

\let\NextLook\SeeIfEof) 

We can now prepare to read actual fields from 

the merge file. A conditional is used to indicate 

whether or not the field we are about to read is 

allowed to be blank. We also set up a mechanism 

for changing its value. 

\newif\ifNonBlank \NonBlankfalse 

\def\AllowBlank{\global\NonBlankfalse) 

\def\DontAllowBlank{\global\NonBlanktrue) 

Fields are actually read by means of the follow- 

ing command. Its only parameter is the name of the 

control sequence into which the field is read. 

\def\ReadIn#lC% 

\ifNonBlank\SeeIfEof\fi 

\ifeof\MergeFile 

\gdef#lC??)\MissingField 

\else 

\glet#l\InputBuf f er 

\Get Input 

\f i) 

\def \MissingField{% 

\messageCMissing field in file)) 

The \Fields command places its parameter 

into a token register called \GlobalFields. This 

command will be redefined by the \Merge command. 

\newtoks\GlobalFields 

\def\Fields#l{\Globa1Fields{#lH 

When a field token list is read, each individ- 

ual token within it must be either read as a field or 



TUGboat, Volume 13 (1992), No. 4 

interpreted as a blank/nonblank switch. The next 

token is then read by tail recursion. It is assumed 

that the final token in the list is \EndParseFields. 

This must be defined to expand to something un- 

likely to be read as a value of one of the fields. and 

so we \let it to \ParseFields. 

\def\ParseFields#l{% 

\ifx#l\EndParseFields 

\let\NextParse\relax 

\else 

\let\NextParse\ParseFields 

\if x#l+\DontAllowBlank 

\else 

\ifx#l-\AllowBlank 

\else\ReadIn#l 

\f i 

\fi 

\fi\NextParse3 

\let\EndParseFields\ParseFields 

We apply this command to our token register after 

expanding it. 

\def\ReadFields#li\expandafter\ParseFields 

\the#l\EndParseFields 

\AllowBlank) 

At long last we are ready to define the \Merge 

command itself. The first parameter is the filename 

of the subsidiary file and the second is the tem- 

plate or form into which fields are inserted. Since a 

\Fields command within the \Merge text is meant 

to act immediately on the token list that follows it, 

we redefine it to operate in a different way. 

\long\def\Merge#l#2C\begingroup% 

\InputFile<#l)% 

\def\Fields##l<% 

\ParseFields##l\EndParseFields)% 

\MakeTemplat ei#2)\It erat e3 

\long\def\MakeTemplate#l<\def\Template<#l)) 

The grouping keeps any changes to the definition of 

\MakeTemplate local to this merge. Thus several 

consecutive merges can be handled within one doc- 

ument. The \endgroup is supplied by the macro 

\Iterate when the merge file has been exhausted. 

\Iterate must read the fields which were de- 

clared before it was entered, substitute them into its 

template and repeat itself using tail recursion if the 

end of the merge file has not been encountered. 

\countdef \Iteratecounter=9 

\Iteratecounter=O 

\def \Iterate<% 

\global\advance\Iteratecounter by1 

\ReadFields\GlobalFields 

\Template 

\SeeIf Eof 

\if eof \MergeFile 

\def\NextIterationi% 

\endgroup\closein\MergeFile)% 

\else 

\let\NextIteration\Iterate 

\f i 

\Next Iterat ion) 

The point of the use of counter 9 in the above is that 

it is accessible to the print driver for page selection. 

Anyone who has started printing 150 letters, all with 

page number 1, only to run out of paper half way, 

will appreciate the use of this artifice! 

5 A complicated example 

We will next look at an example in which the tem- 

plate contains a table of indeterminate length, albeit 

fked width. So far our macros work in either plain 

' & X  or in I P W ,  but the way in which these two 

packages handle tables is slightly different. How- 

ever, the only difference that need concern us is that 

I4W uses \\ where plain W uses \cr. 

The example given here is in I P W ,  but our 

style will work equally well in plain m. In our 

student letter we wish to insert a table of course 

codes and marks. Since each student did a different 

number of courses, we need some way of recognizing 
the end of the course list in the merge file. The 

default will be to insert a blank line at the end of 

such a sub-list. Thus, the following text appears 

before the close of the letter template. 

Here are your marks on individual papers. 

\begin<center) 

\begin<tabular){llrJ)\hline 

Code&Mark\\\hline 

\MultiRead<2)\\\hline 

\end<tabular) 

\end<centerl 

The merge file now has the following structure. 

Title 

. . .  
Grade 

Code 

Mark 

. . . 
Code 

Mark 

(blank) 

Title 

. . .  
In other applications some of the fields in the 

table might possibly be blank. We then let the user 



TUGboat, Volume 13 (1992), No. 4 

change the (blank) line marking the end of a list to 

some other string of his own choosing. 

\MarkEnd{***) 

There might be multiple tables in the same tem- 

plate, with their data intermingled in the merge file 

with main fields. The generalized \Fields com- 

mand allows us to order the merge file however we 

want. Thus we could have main fields, then a table, 

followed by more main fields, and so on. 

A final complication is that the fields appear- 

ing in a table are essentially anonymous. By this I 

mean that they are transferred into the table as they 

are, without any pre-processing possible through ap- 

pearing in the template as control sequences. If we 

wish what appears in the table to be different from 

what appears in the file, a mechanism is needed to 

tell QjX that a certain column has to be treated in 

a certain way. The command 

\ProcessCnH\foo) 

will replace every field (f) read into column n by 

\foo{(f)). It  is even possible to do some numerical 

calculations by this method. 

6 Implementation of merged tables 

We set up two counters, one for the column we 

are reading and the other for the total number of 

columns in the table. We also need a conditional 

to mark the start of the table, so that we terminate 

each row correctly with \ \  or \cr, or nothing at all 

at the beginning of the first row. 

\newcount\MultiCount \newcount\MaxCount 

\newif \if StartOfList 

The parameter to \MultiRead is the number of 

columns to read at a time. This command passes 

control to \NextRead after initializing certain pa- 

rameters. 

\def\MultiRead#l(% 

\ifnum#l>O 

\SelectCR 

\MakeEmptyC#l3% 

\global\StartOf Listtrue 

\glet\NextRead\MRead 

\AllowBlank 

\global\MaxCount=#l 

\NextRead 

\f i) 

The command \MakeEmpty is required by the pre- 

processing of each field. The idea is that the 

command \csname prnn\endcsname, which we will 

loosely call \prnn, is executed on each field in col- 

umn nn. However, most of these commands will be 

undefined, and so we equate each of those that has 

not been defined to \empty. 

Note that, because of the way we are accessing it 

via \csname, the first time \prnn is encountered it 

equates to \relax. 

The command \Process#l#2 defines \pr#l to 

mean #2. 

We need to know how the last row is to be rec- 

ognized. The default is an empty line in the merge 

file. 

\def\MarkEnd#l{\gdef\EndMarkerC#I)l 

\MarkEnd{) 

We collect each row in a token register. The full 

row is assembled in \NextLine before being passed 

back to m. Each field is read in \TempField and 

then placed temporarily into \NextField. 

It is not necessary to do things this way; \edef can 

be used instead, but that approach might expand 

tokens prematurely. 

After the next field has been read, it is ap- 

pended to \NextLine. 

\def\AppendNextField{% 

\global\advance\MultiCountl 

\NextField=\expandafter{\TempField)% 

\edef\Append{\NextLine= 

{\the\NextLine&\csname 

pr\the\MultiCount\endcsname 

{\the\NextField)))% 

\Append3 

We need to insert the correct end marker af- 

ter each row of the table. The token \cr must be 

disguised a little before it is acceptable in a LPw 
document. 

\def\SelectCR{% 

\ifx\array\undefined 

\gdef\EndLine{\cr)% 



TUGboat, Volume 13 (1992), No. 4 

\else 

\glet\EndLine\\% 

\f i3 
\def\FinishLineC% 

\if StartOfList 

\global\StartOfListfalse 

\else\EndLine\fi) 

This makes the assumption that if \array is defined 

then we must be in IPW. 
We need a command to finish off a table. This 

should reset \NextRead to \AllowBlank to termi- 

nate the tail recursion, and also do some error re- 

covery in case the file ends prematurely in the middle 

of a row. 

\def\StopProcessing(% 

\global\MultiCount\MaxCount 

\glet\NextRead\AllowBlank) 

The command \MRead prepares to read a row 

of a table. It reads a field from the merge file and 

checks to see whether the table has been exhausted. 

\def\MReadC% 

\global\MultiCount=l 

\ReadIn\TempField 

\ifx\TempField\EndMarker 

\StopProcessing 

\else 

\FinishLine 

\NextField=\expandafter{\TempField}% 

\edef\StartLineC\NextLine=C\csname 

prl\endcsnameC\the\NextField)))% 

\StartLine 

\ConstructNextRow 

\f i 

\NextRead) 

Command \ConstructNextRow does most of the 

work of assembling a row of the table. It assembles 

\MaxCount fields at a time into \NextLine unless an 

error is encountered. 

\def\ConstructNextRowC% 

\loop 

\ReadIn\TempField 

\ifx\TempField\EndMarker 

\glet\TempField\empty 

\StopProcessing 

\MissingField 

\else 

\ifeof\MergeFile 

\glet\TempField\empty 

\StopProcessing 

\MissingField 

\f i 

\fi 

\AppendNextField 

\ifnum\MultiCount<\MaxCount 

\repeat 

\the\NextLine} 

7 A final example 

Here is a IPT@ example to illustra~e the table pro- 

cessing features of textmerg. sty. 

\documentstyle[l2pt,textmerg]~rticle~ 

\MarkEnd{***) 

\ProcessC2)(\Advance} 

\def\Advance#lC#l\addtocounterCpage~C#1}} 

\Fields(+\Name\Verb) 

\begin(document} 

\MergeCsilly.datH% 

Dear \Name, \par 

Here is a table to \Verb\ at: 

\Fields{\Width)% 

\beginCtabular)(*{\Width)c) 

\MultiRead\Width 

\end{tabular).\par 

\FieldsC\Adj)% 

That was \Adj ! \clearpage) 

\end(document} 

The effect of this file is not apparent until we see 

silly. dat. It is listed here in four columns. 

Mike 

look 

3 

1 

2 

References 

Edwin V. Bell, 11. AutoLetter: A 

T@ form letter procedure. TUGBoat, 

8(1):54, April 1987. 

John S. Garavelli. Form letter macros. 

TUGBoat, 8(1):53, April 1987. 

John Lee. Form letters. TUGBoat, 

7(3):187, October 1986. 

Graeme McKinstry. Form letters. 

TUGBoat, 8(1):60, April 1987. 

good 

Shelagh 

gaze 

2 

21 

o Mike Piff 

Department of Pure Mathematics 

University of Sheffield 

Sheffield S10 2TN 

England 

Janet: M .  P i f  f Qshef . ac .uk 

22 

23 

24 
*** 
horrid 


