
TUGboat, Volume 13 (1992), No. 4

Searching in a DVI File

Nigel Chapman

I. Introduction

Most, if not all, DVI previewers and printer drivers

provide a facility for selecting a subset of the pages

of a document; this subset is specified using the

contents of the \count0 to \count9 registers that

w outputs to identify each page of the file. This

makes it easy to preview just pages 7, 8 and 9, but

what if you know you want to look at the page with

the paragraph about Katzenellenbogen by the Sea?

If you're not sure how the page makeup worked out,

you won't know where that is. Trial and error will

find the right page sooner or later, but it would be

more convenient if there was a facility for selecting

a page by its content, that is, the occurrence on it

of a particular string.

Many efficient string searching algorithms al-

ready exist; they are used routinely in text editors
and other programs. These algorithms take as their

input a string of characters - the target - and a
pattern. The pattern specifies a set of strings.

The task of the searching algorithm is to find the
location, if any, within the target of a substring

that belongs to the set specified by the pattern.

The pattern may simply be a single string, speci-

fying itself, or it may use metacharacters and some

formalism such as regular expressions to specify a

larger set of strings. In general, the more elaborate

the language permitted for specifying patterns, the

more elaborate the search algorithm will be. There

are well known efficient algorithms for searching for

single strings [4] and for sets specified by regular

expressions [I].
A DVI file is a sequence of typesetting com-

mands, some of which may have parameters. (DVI

commands are fully described in [3,$§583-5901.) A
user specifying a pattern to search for will want to

type that pattern at a terminal using the subset
of ASCII that corresponds to printable characters.

Thus, before one of the standard string searching al-

gorithms can be employed, either the pattern must

be converted to a sequence of DVI commands, the

DVI file must be mapped into a string of printable

ASCII characters, or both DVI file and pattern must

be mapped into some other common representation.

Leaving aside the possibility of using anything

more elaborate than simple strings as patterns. a

possible approach based on the first of these options

is to use TEX to convert the pattern into DVI. Using

this approach, it would be possible for patterns

to be specified in the w language, and thus to

make use of macros and to carry out searches on

all features of a document, including math mode

material and even rules and spaces. Search patterns

could be extracted directly from the TJ$ source of

a document. (In fact. for non-trivial search strings

they would probably have to be, because of the

difficulty of deciding exactly what TJ$ commands
produced some particular output.) However, the

problems of interfacing TF$ are considerable, and

the overheads of running it to process every search
string are unlikely to be acceptable. Furthermore,

the actual DVI produced by for a particular

string will depend on the context in which that

string appears. Such elements as interword spacing,

line breaking and hyphenation may be very different

when the string appears in the middle of a paragraph

and when it is typeset in isolation. Thus, even after

a pattern was converted to DVI, it would not be

possible to apply simple string matching: some sort

of fuzzy matching would be necessary.
If converting the pattern to DVI is problemat-

ical, what about converting the DVI file to ASCII?

This is essentially the same task as that performed

by DVI previewers for dumb terminals, and it suffers
from the same limitations: only text material can

be dealt with properly, and spacing must be approx-

imated. It has the great virtue of being simple, and,

once the transformation has been done, any string

matching algorithm can be used, including those
that support regular expressions. This approach

will be looked at further in the next section.
Finally, there is the possibility of converting

both the DVI file and the pattern to some common
representation. The obvious choice here is the

extended character code set used by w to specify

characters in its math symbol and extension fonts.

This requires some means of specifying characters in

the pattern other than printable ASCII characters:
the obvious way of doing this is by permitting a

suitable subset of TEX commands to be used in

patterns. Matching can then be done on text and

math mode material. This approach is further

described in section 3.

2. Text Searching

The text parts of a TJ$ document will be typeset
using m ' s text fonts. Computer Modern text

fonts each contain 128 characters and these are

laid out in such a way that the printable ASCII

characters occur in the positions corresponding to

their ASCII codes. The positions corresponding

to the ASCII non-printable (control) characters are

used for ligatures, accents and Greek letters (see the

TUGboat, Volume 13 (1992), No. 4

font layout tables in Appendix F of [2]). A search
pattern typed by a user will only use printable

ASCII characters, but it is necessary to ensure that,

for example, the pattern f f i matches the ligature
ffi.

A DVI file can be thought of as a program in
the machine code of a virtual typesetting machine.

The instructions of this machine perform primitive

typesetting operations, such as set a character or

select a n e w font. These instructions are held

in the DVI file as bit patterns. For reading by

people, they can be represented by mnemonics,
just as conventional machine code instructions are

given mnemonic form in assembly language. DVI
instructions may have parameters, specifying, for

example, the length of a rule to be set, or the
code for a character. There are two sets of DVI
commands that cause a character to be typeset:

the set commands, with mnemonics set-char-0

through set-char-127, s e t i , set2, s e t 3 and set4,

and the put commands, put l , put2, put3 and put4.
The first 128 of these are unparameterized and

directly specify a character code, the others take

an argument of between one and four bytes. Q X
always uses set-char-n for a character with code n,
if 0 < n 5 127, so any ASCII character will be set

with either a set-char-n or p u t i (see [3,§585]).

Because of kerning, commands for spacing may

appear between character setting commands, even

within a word. For example, the DVI commands
corresponding to the word 'Katzenellenbogen', as it

appears near the beginning of the file containing this

paper, have the following mnemonic representation.

s e t char75

s e t char97
setchar116

se tchar i22

setchar101

setchar110

setchar101
setchar108

s e t char108

s e t c h a r l o i

setchar110
r i g h t 2 -18205

s e t char98

x0 18205

setchar111

setchar103

s e t c h a r i 0 i

s e t c h a r i l 0

(The r i g h t 2 and xO commands perform horizontal
spacing.)

A possible strategy for converting a DVI file

into a stream of characters is to scan the file,

ignoring everything except set and put commands,
and return the corresponding ASCII code. But this

doesn't do quite what is required. In the first

place, all characters not in text fonts should also be

skipped. To do this, it is necessary to keep track

of the current font by interpreting the additional

DVI commands fnt-def, f n t and fnt-num. The

external name of each font used can be found among

the parameters of its fnt-def; it is necessary to

have a priori knowledge of which of these names

correspond to text fonts-for Computer Modern
fonts this knowledge is obtainable in Appendix F of

The w b o o k [2].

Secondly, ligatures should be expanded into

their component letters, so, for example, when

a set-char-14 command is found, it should be

converted to the three letters f f i . Dashes should

also be expanded, en-dash to -- and em-dash to
--- . Dotless i and j should be replaced by ordinary

i and j. All other non-printable characters will have

to be skipped, as should the Spanish punctuation

marks i and i and hyphens, the last since a
pattern should match irrespective of whether the

corresponding occurrence in the DVI file is split

across lines. Strictly speaking, to skip hyphens it is
necessary to know the \hyphenchar of the current

font, and this can only be determined by examining

the format used in w i n g the document. It will

usually be safe, though, to assume it is ' \-.
If the scheme described is used, a stream

of characters can be produced from the DVI file,

corresponding to the textual parts of the document,

and these can be matched against a search string

made up of printable ASCII characters. However,
spacing in the DVI file will be entirely skipped, so

ASCII space characters in the search string will not

match anything. One response to this is to insert

space characters in places that correspond to word

breaks in the DVI file. Because of what TpjX does

with glue, however, these cannot be identified with
certainty (as the spacing produced by ASCII DVI

previewers such as dv i t t y testifies). The easier

alternative is to remove all spaces from the search

pattern. This will produce spurious matches, e.g..

pullover will match p u l l over, and vice versa,

but this is preferable to failing to match because of

incorrectly inserted spaces.

By allowing an escape character in the search

pattern, this scheme can be extended to cope with

the full range of accents in the Computer Modern

text fonts. The obvious scheme is to use plain

TUGboat, Volume 13 (1992), No. 4 449

w ' s control sequences for accents and accented

characters and expand them in the pattern.

Use of negative glue, \ l l ap , characters with

negative width, and so on can lead to the commands

for setting characters occurring in the DVI file in

a very different order &om that in which the

characters appear in the typeset document. Thus,

the matching obtained can only ever be approximate

unless DVI commands are first sorted by x and

y coordinates. For most applications, this probably
wouldn't matter, since most searches will be for

obviously identifiable words.

3. Searching in Mathematics

A DVI searching program based on the previous
section will suffice to find the page with the text

'Katzenellenbogen by the Sea', but what about the

page with
n k (z .pl + P?) ?

This is much more of a challenge. To begin with:

how should the search pattern be specified? The

obvious way is to use the rn language, but this is
not, in fact, an answer, because of W ' s powerful

macro facilities and its almost unbounded possibil-

ities for redefining the meaning of any character.
One must assume at least part of a format in

interpreting a search pattern. The obvious choice

is the plain format, so that a search string for the

above could be $(\sun-<i=l)^n \alpha-i-<m-13

+ \beta_i^{m_2))-k$. This illustrates several of

the problems that must be overcome when searching

in math mode material.

Firstly, \alpha and \beta represent characters

&om m ' s math italic font; these occur in the same

place as the ff and ffi ligatures in a text font and

the two have to be distinguished. does this by

using mathcodes, which specify a font family and

the position in the font (they also specify a type,

but that is irrelevant here) and defining control

sequences such as \alpha using \mathchardef.

The mathcode values for such symbols can be used
by the searching algorithm, provided the DVI file

can be turned into a stream of mathcodes. rather

than a stream of ASCII characters as described in

the previous section. This is not much more difficult

than determining when a character occurs in a text

font. By keeping track of the external name of the
current font it is possible to deduce the current font

family; to do this properly, it is necessary to look
at the format used to typeset the document and

interpret any assignments to \ t ex t f ontk. The lazy

alternative is to assume the assignments of plain

m. As all text fonts are assigned to family 0, the

text matching using ASCII codes will still work.
Not all the special symbols available in math

mode are defined by \mathchardef. Some are

built up as a combination of other symbols, for

example -. Such composite symbols must be
expanded into their components.t Some of these

combinations are defined in quite an elaborate way,

but it is relatively easy to deduce the sequence of

character setting DVI instructions they will produce.

Multiple sub- and superscripts present a dif-

ferent sort of problem. A term such as x: can be
produced in ?]EX by either $x-i^2$ or x^2-i.

Either pattern should match the DVI for x:, irre-

spective of how that was specified in the original

source. Study of Appendix G of The w b o o k

reveals that when an atom has both a subscript

and a superscript, TEX always sets the superscript
first, followed by the subscript. Thus, a pattern

with both can be normalized to a form with the

superscript first. The - and - can be ignored

and the sequence of component characters, in the
appropriate families, can be searched for. Again.

this may produce spurious matches ($x-i^2$ will
match x2i, for example) but will not fail to match

when it should.

The last major complication of searching in

math mode is caused by those characters that can
change their size. (How big are the parentheses

in the example at the beginning of this section?)
These include the things defined by \del imiter .

\mathaccent and \ rad ica l , which may give two

different mathcode values for the same control

sequence. Matters are made more complicated by

the fact that any character may be the first in a

linked sequence of characters or may be constructed

out of several pieces. These series and extensible

characters are considered part of the font, and

information about them has to be taken from its
TFM file.

A control sequence defined by \del imiter ,

or a mathcode that specifies a character that is

part of a sequence can be thought of as a pattern
that describes a set of alternatives. An extensible

character also specifies a set, but, in theory at

least, it is an infinite set of strings of the form

TR~MR" or T R ~ B where T , R, M and B
are the top, repeating, middle and bottom pieces
of the extensible character, and k 2 0. All these

possibilities can be described by regular expressions.

t A seemingly intractable problem here is the

underline symbol, represented by \- in plain m,
which is actually a rule.

TUGboat, Volume 13 (19921, No. 4

pattern +

p t e r m -+

pfactor +

ppr imary +

pelement +

mathpa t tern +

mathe lement -+

script ion +

scripte lement +

mathpa t i

p t e r m { I p t e r m)
pfactor (pfac tor)

pprimary lr l E l
{ [p a t t e r n] -) I $ mathpa t tern $
pelement

char la
mathe lement { m a t h e l e m e n t)

pelement [script ion]

{ mathpat [script ion]) -
t scripte lement [, s c r i ~ t e l e m e n t] -
, scripte lement [t scr ip te lement]

pelement I { [mathpa t])
mathe lement { m a t h e l e m e n t)

Figure 1. Grammar for search patterns.

A delimiter specifies dl I d2 where dl and d2 are the

small and large versions of the symbol; a series of

characters is just c l I cg I . . . I c,, and an extensible

recipe is (TR*MR*B) I (TR*B), which may be

simplified to TR*(M I e)RSB (6 is the empty

string). Thus if patterns are specified as regular

expressions, and searching is done using finite

state machines, control sequences and characters

corresponding to symbols that can change size one

way or another can be treated as shorthands for

these regular expressions. Note that the fact that
the regular expression for an extensible character

does not enforce the restriction that the number of

repeatable segments above and below the middle
must be the same doesn't matter, because no other

combination can occur.

In summary, to deal with math mode, the

DVI file must be converted to mathcodes specifying

font family and character position and the pattern
must be modified so that characters and control

sequences in it are mapped into regular expressions

matching such codes, taking into account the font

family characters will be typeset in, delimiter codes,
character series and extensible characters.

4. An Implementation

A prototype DVI searching facility based on the

ideas in the previous sections has been implemented
as part of a m - b a s e d hypertext system I am

developing. Search patterns may be written in a

language defined by the extended BNF grammar

in Figure 1. (The symbols [, 1 , {,) and I are

grammar metacharacters: items enclosed in [and]
are optional, those in { and) may occur zero or

more times, I separates alternatives. The terminal
symbols-the symbols of the pattern language-

are underlined. Note the difference between the

metacharacters {,) and I and the terminals {,

) and I.) In patterns, the I operator separates -
alternat&es, the postfix ;r meak that the preceding

pattern element may occur zero or more times,

and the 2 that it is optional. Curly brackets are

used to group items: the syntax of the pattern

language means that they work as expected to
delimit complex sub- and superscripts, but they

are also used as brackets to override the default

associativity of regular expression operators, in the

usual way. The terminals char and g represent

lexical classes consisting of single characters other

than pattern metacharacters and m - s t y l e control

sequences, respectively. The metacharacters are
represented in patterns by \\, *, \?, etc.

A pattern input by the user is parsed by a sim-

ple recursive descent parser, and a data structure for

a nondeterministic finite state machine with 6 tran-

sitions is constructed in a syntax-directed manner

using the conventional construction (see [I]) . When

the lowest level parsing function recognizes a con-

trol sequence or an extensible character, it returns
a primitive finite state machine to recognize the

strings described by it. For most control sequences

defined by mathchardefs this is just a two state, one

transition machine that recognizes the correspond-

ing mathcode. For delimiters and other characters

that change their size in different ways, and for

composite characters, a more elaborate machine,

corresponding to the appropriate regular expres-

sions, as described in section 3, are produced. For

any single, non-extensible character, a machine to

recognize the character in the appropriate family

is constructed. A special control sequence \any is

recognized; it matches any single symbol.

The code to construct the finite state machines

for control sequences and so on is derived from

the definitions in plain.tex and PL files for the

Computer Modern fonts. If a more general facility

were desired, tables would have to be constructed

automatically from any user-specified m format
and TFM or PL files, a task requiring non-trivial

analysis of these files.

Once the nondeterministic finite state machine

with 6-transitions has been constructed, the 6-

transitions are removed, but the machine is not

made deterministic. The nondeterministic machine

is used directly in the searching process, by keeping

track of a set of active states. State transitions

are performed by calling a function that returns
the next symbol from the DVI file. This function

performs the mapping to a sequence of mathcode

values as described previously. It is assumed that

only Computer Modern fonts are used, and the font

TUGboat, Volume 13 (1992), No. 4 451

family assignments of plain are wired into the
code.

A problem not previously mentioned is that of
displaying the location of the matching string if one
is found. This facility was felt to be useful. In
order to do it, it is necessary to interpret enough
of the DVI commands to keep track of the x and
y coordinates at which each character would be
displayed. When the finite state machine accepts
a string, the coordinates of its end are known and
an arrow can be displayed pointing back at the
matched string. A more elegant method, such
as highlighting the entire match in reverse video,
requires finding the coordinates of the start of the
string too, which is more difficult.

The majority of the code implementing DVI
searching is concerned with parsing patterns, con-
structing nondeterministic finite state machines and
removing €-transitions - that is, the code that any
searching program based on finite state machines
would require. Most of the overhead specifically
resulting from the application to DVI searching
is in the code to produce primitive machines for
control sequences and extensible characters. The
code required to transform the DVI into a stream of
mathcodes is relatively simple.

5. Conclusion

The implementation described demonstrates that it
is possible to search in a DVI file, using the ideas
presented here. Consideration of this implementa-
tion suggests that text searching is a feature well
worth implementing, but that searching in math
mode is less clearly worthwhile.

As should be evident, searching in mathemat-
ics adds a good deal of complexity and requires
large amounts of code for dealing with mathemat-
ical control sequences. This in turn requires the
manual or automatic processing of formats
and PL or TFM files. Extensible characters pretty
much dictate the use of finite state machines for
searching, rather than some simpler algorithm such
as Knuth-Morris-Pratt. Searching in maths also
introduces an undesirable feature into the searching
interface: some mathematical control sequences are
recognized, but others are not. It might seem capri-
cious to a user that it is all right to use \a lpha in
a search pattern, but not, for example, \pmatrix.

Furthermore, if you actually did want to search for
the page containing

x - X 1 (0 x - A !)
0 0 x - X

it would be no trivial task to construct a suitable
pattern out of the facilities available.

However, searching in text is quite another
matter. Implementing the transformation of the
textual parts of the DVI file to ASCII is very
simple. This can easily be combined with any
string searching algorithm that scans from left to
right to produce an efficient text searching facility.
In practice, this is likely to be adequate to select
any page of a document by content. As well as
the experimental system described in section 4, the
dv i sc r previewer distributed with emtex already
supports basic text searching, correctly handling
accents and ligatures. It is to be hoped that,
in future, text searching will become a common
enhancement to DVI previewers and printer drivers.

References

1. Alfred V. Aho, John E. Hopcroft and Jeffrey D.
Ullman, The Design and Analysis of Computer

Algorithms. Reading, Mass.: Addison-Wesley,
1974.

2. Donald E. Knuth, Computers and Typeset-

ting, Volume A, The W b o o k . Reading, Mass.:
Addison-Wesley, 1986.

3. Donald E. Knuth, Computers and Typesetting,

Volume B, l&Y: The Program. Reading, Mass.:
Addison-Wesley, 1986.

4. Klaus Pirklbauer, 'A study of pattern-matching
algorithms', Structured Programming 13(2),
89-98, 1992.

o Nigel Chapman
Department of Computer Science,
University College London,
Gower Street,
London, WClE 6BT
U.K.
Janet: N . Chapman@&. ac .ucl. cs

