
1991 Annual Meeting Proceedings, Part 1

TE,X Users Group

Twelfth Annual Meeting

Dedham, Massachusetts, July 15-18, 1991

COMMUNICATIONS OF THE 'I$$ USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR HOPE HAMILTON

VOLUME 12, NUMBER 3 DECEMBER 1991

PROVIDENCE . RHODE ISLAND U.S.A.

Nelson H. F. Beebe

Inc., Northlake Software, Northeastern Univer-

sity/Dedham Campus, Micro Programs. Inc., Kinch

Computer Company, K-Talk Communications. the

Hilton at Dedham Place, ETP Services Co.. Blue

Sky Research, ArborText, Inc., the American Math-

ematical Society, and Addison-Wesley Publishing

Co. for their sponsorship of various activities.

The Program Coordinator, Christina Thiele.

and the Program Committee, consisting of Ron
Whitney, Mimi Lafrenz, Don Hosek, and Michael

Doob, deserve a big vote of thanks for their out-

standing job in bringing it all together. And of
course, we thank the panelists, speakers, and au-

thors of papers in these Proceedings for their wel-
come contributions.

New publicat ions

A few weeks before the meeting, the first prototype
issue of TE;Y and TUG News arrived in our mail-

boxes. TUGboat volume 12 number 2 was available

at the meeting, together with a new publication,

the TUG Resource Directory. Response to both has

been very favorable. Details for the preparation of
future issues of Q$i and TUG News are still being

worked out; volunteers are hereby solicited.

Springer-Verlag had a few copies of the new
book A Beginner's Book of w by Raymond Seroul

and Silvio Levy [7]. This is an English translation,

and enhancement, of the former's excellent Le Pe-
tit Livre de w published in 1989. I'm pleased to

see an English version of this book. and I certainly

enjoyed reading it from cover to cover.

A new book on by Jane Hahn [4] has
just been published by Personal TEX. Michael Ur-

ban's m n i q u e s publication [8] is now available
from GUTenberg in a French translation, Premzers

Pas en D m . Michael Doob's A Gentle Introduc-

tion to QjX has been republished in Czech.

TUG Board matters

The TUG Board spent two and a half long days in

meetings just before the conference, working on the

many changes that have been instituted in the last

year, the most important of which is probably the

new election procedures. An elected Board will take

office on January 1, 1992.

The Board felt that because of the significant
change in election procedures, it was imperative that

a new President be in place when my term of of-

fice as current President expires a t the end of 1991.

With a new Board being elected, and possibly not
meeting until spring or summer of 1992. this would

be difficult to ensure with a Presidential election by

mail ballot this year. The Board therefore appointed

Malcolm Clark to serve as TUG President for the
year 1992. When ballots are sent out in the surn-

mer of 1992. the office of President will again be up

for election. and a two-year President will be chosen

by the membership. Board members will also serve

two-year terms, with half being elected every other

year.

The Board also chose to fill the vacancies in

the positions of Vice-president, Secretary, and Trea-
surer created by the resignations of those officers

(see Q$i and TUG News). Christina Thiele now

occupies the chairs of Vice-president and Secretary.
and Allen Dyer fills the important position of Trea-

surer. These officers will serve until the new Board
convenes in 1992 and appoints three of its members

to these positions.

It is disappointing to report that the TUG fi-
nancial situation for 1991 again appears to be head-
ing for a significant deficit. The Board is considering

further cost-reduction measures at this time and we

expect to place TUG on a sound financial footing

for 1992.

References

[I] Nelson H. F. Beebe. President's introduction.

TUGboat, 11(3):335-336, September 1990.

[2] Kenneth P. Brooks. Lilac: A two-view document

editor. Computer, 24(6):7-19. June 1991.

[3] Martin Bryan. SGML-An Author's Guide t o
the Standard Generalized Markup Language. Ad-

dison-Wesley, Reading, MA, USA, 1988. ISBN
0-201-17535-5.

[4] Jane Hahn. for Everyone. Personal m,
Inc., 12 Madrona Avenue, Mill Valley, CA 94941,
USA, 1991.

[5] Yannis Haralambous. Typesetting Old Ger-
man: Fraktur, Schwabacher. Gotisch and Ini-

tials. TUGboat, 12(1):129-138, March 1991.

[6] Raymond Seroul. Le petit Livre de m. In-

terEditions, 1989. ISBN 2-7296-0233-X.

[7] Raymond Seroul and Silvio Levy. A Beginner's
Book of w. Springer-Verlag, 1991. ISBN O-

387-97562-4, 3-540-7562-4. This is a translation

and adaption by Silvio Levy of [6].

[8] Michael Urban. An introduction to I4W. m-
niques, Publications for the T&Y communzty,
(9):iii, 1-56. 1990.

[9] Eric van Herwijnen. Practzcal SGML. Kluwer

Academic Publishers Group, Norwell, MA. USA,

1990. ISBN 0-7923-0635-X.

352 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

KEYKOTE ADDRESS:

Two Sides of the Fence

Nico Poppelier
Elsevier Science Publishers
Academic Publishing Division. R&D Department
Sara Burgerhartstraat 25

1055 KV Amsterdam
the Netherlands
Internet: n . poppelierQelsevier . nl

Abstract

The purpose of this talk is to give an overview of the four days

of the twelfth annual TUG meeting; it is an attempt to show

that the different streams in the programme of the meeting are

connected, that they are part of a whole.

Also, I make some comments and observations regarding the

current status and the future of m, and the future of publishing
in general.

Introduction

In his book Zen Buddhism 151, Christmas Humph-
reys writes:

How then, does it work, this faculty of the

mind [the intellect] which men so highly prize
and far too lightly claim to be infallible? The

answer is, by the interaction of the opposites.

The purpose of this talk is to give an overview of

the four days of this conference, and I will use pairs

of opposites to guide me through it.

If you talk about pairs of opposites, you also

talk, implicitly, about a fence, a boundary between

the two opposites. And if you consider any of these
fences you can ask yourself: do we make an open-

ing in the fence, i.e. make a pragmatic decision in

order to bridge the gap, to integrate seemingly irrec-

oncilable views? Or will we remain passive, will we

stay 'sitting on the fence', i.e. not decide anything?

There is of course a third possibility, namely that
the fence is there for a real purpose.

I hope that this conference will result in gates

through the various fences I will discuss.

Dichotomies

The first pair of opposites came into my mind

very quickly: the m - u s i n g author vs. the m-
accepting publisher. From the m files we've re-
ceived so far at Elsevier Science Publishers I've got-

ten the impression that the average m - u s i n g au-

thor wants as much freedom as possible to type-

set the text, the tables, the math and the figures.

He/she wants to use in any possible imaginable

way and, according to TJ$ experts at a few physics

institutes, spends sometimes up to 50% of the total
time for the article or book on its presentation.

Suppose he has to deal with publisher X, who

has a Tj$ macro package plus instructions to au-
thors. Then maybe the author isn't very happy with

it, since it limits him in his creativity and further-
more, since he has to deal with many publishers, he

has to figure out a way of dealing with these differ-

ent macro packages and instructions. A very likely

solution is that he just ignores them all!

The publisher who accepts m has a slightly

different point of view. Of course, on the one hand,

a publisher wants to be as friendly as possible to
an author and accept his compuscript. But, on the

other hand, a publisher wants to convert the TFJ
compuscript into a printed book or journal paper in

the shortest time possible with a minimal amount of

effort.

There are several constraints to be met in this
publication process: the house-style for the particu-

lar journal or book series, the quality of the publica-

tion (language, layout), the time it takes to publish

the article or book, and the cost of all this. Most

publishers are commercial firms, not philanthropic

institutions, so cost efficiency is an important crite-
rion. In most cases, the publisher would really like

to see authors following the instructions.

How do you solve this dilemma? A compromise

might be to agree upon a certain standard or set of

TUGboat, Volume 1 2 (1991)) No. 3-Proceedings of the 1991 Annual Meeting

Nico Poppelier

standards between various publishers. In our com-

pany, we think that we will not be able to handle

m compuscripts efficiently if we accept all vari-
eties of T@, especially because the material ranges

from very simple to very complex with lots of math

and tables. Efficiency is particularly important for

journals, where you have a steady flow of material,

a fixed house-style and a routine way of working.

Our choice is: one variety of m, namely

I P W . For book and proceedings projects this pref-
erence is somewhat less strong, although making a

book ready for publication, in a house-style or in

the style of a particular book series, complete with
a table of contents and an index, is easier if the

book was prepared with I 4 m - a n d the author has

used L?-rn well! -than if it was prepared with plain

m .
Besides the problems just mentioned, there are

several other matters you have to solve anyway, re-

gardless of whether you use plain TEX, I4m or,
say, @'YETEX:

complex tables

page layout

font selection (other fonts than Computer Mod-

ern)

illustrations in Postscript or other format

So now I've come to my second pair of oppo-

sites, one that will be addressed by several speakers
this week: 'QjX versus LAW.

The key concept of I47&X is, as you of course

know, the concept of logical design: an author writes
his text in terms of abstract building blocks, in terms

of the logical structure of the text. Content and

layout are decoupled as much as possible. The visual

structure is derived from the logical structure, and
is specified in the document style.

As I said earlier, some authors appear to spend

large amounts of time on the presentation of a pa-
per that is submitted for publication in a journal:

they write sets of macros ranging in size from one

screen to many hundreds of lines, use any font they

can find in all sorts of combinations, etcetera. This

strikes me as odd for two reasons: (i) an author's
main concern should be the contents of the article

or book, and (ii) the presentation the author chooses
will almost always be changed by the publisher any-

way, whether he submits the material on paper. on
a diskette or via electronic mail.

We have found that the I4m-way-of-working
is fine for both journals and books: document styles

have been written for about ten journals and several

books. The difference between conventionally type-

set material and material produced from author-

prepared I 4 W files can only be seen by a well-
trained eye.

Now of course. there is much more to this type

of electronic publishing than just changing the docu-

ment style: a technical editor has to look at spelling,

punctuation. language in general, notation, the ap-

pearance of mathematical formulas in text and in
displays, the layout of tables, the page layout, spac-

ing, hyphenation, . . . a lot of work, often difficult

work. The combination of usual copy-editing with

T&X requires skilled technical editors and a certain
routine way of handling !l&X

But TJ$ is not the only document preparation

publishers have to deal with. And so now I come to

my next pair of opposites: m VS. n o n - w , or w
versus the rest of the desktop-publishing world.

If we asked scientists who publish in one of our

more than 600 journals whether they use a com-

puter to write their articles and if so, what word

processor they use, we would find enormous variety
in their answers. In physics and mathematics,

is used by the majority of authors, but even there

you find a significant number of authors who use

t r o f f /eqn, Chiwriter, Word or various Macintosh

word processing programs.
In other scientific disciplines, TEX is used by

only a few people-if at all! What I personally

find most interesting is the many ways TJ$ is used,
not by mathematicians and physicists, but by people

working in, say, linguistics, humanities. My next
pair of opposites.

Often there is no alternative but lJ&X for pro-
ducing texts in languages that use non-Latin alpha-

bets or the Latin alphabet with diacritical marks.

With you can produce remarkable, often beau-

tiful results, after you have solved dozens of prob-
lems that others, who use W for texts written in

English, with a lot of math and tables, have never
thought of. I am fascinated by the work on

hyphenation of other languages than English

right-to-left text with m : Hebrew and Arabic

diacritical marks and other embellishments:

Hebrew, Vietnamese

wonderful fonts: Greek, Hebrew, Arabic, Old

German, Ethiopic, Korean hangul, Japanese

kana, Chinese kanji or hanji, and the many lan-

guages of the Indian sub-continent

vertical typesetting: Japanese and Chinese

and I hope to see a lot of these types of TEX ap-

plications during this conference. I think that, in
principle, TEX has great potential as a text compo-

sition system for authors in all scientific disciplines

354 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

KEYNOTE ADDRESS:Two Sides of the Fence

and in all languages. But, I said 'in principle' -I

will come back to that later.

Coming back to the observation that TEX is not

the only software: when a publisher sees that he also
receives papers prepared in Word and ChiWriter,

what does he do with them? Does he handle them

in the old-fashioned way, that is re-type the whole

thing and introduce lots of typos, so that the au-

thor has t o read the stuff for the umpteenth time?

Or should the publisher convert it to one of the pro-

fessional typesetting systems he uses? Or convert it

to w, since there are several of these conversions
available: Wordperfect to 'TEX, ChiWriter to w,
. . .

I think conversion will become important or is

already becoming more and more important. Con-

version of information from one format into another,

from an author's word processor X to a publisher's

typesetting system Y. Now suppose authors use M
different word processors and that publishers uses

N different typesetting systems: does this mean we
have to wait for the development of M . N different

conversions? This does not appear to be a feasible

solution. Conversion. or translation, via an inter-

mediate language. a standard exchange language for

text, would require only M+N different conversions,

much less!
As most of you know, such an intermediate lan-

guage already exists: SGML [6, 2, 41. Aha, you

might think: the fourth pair of opposites. Well, yes

and no. Yes, in the sense that many people think
that TEX and SGML are two alternatives for one

and the same purpose. No, in the sense that I do

not agree with this: I do not believe that SGML

and form a pair of opposites and I would like
to explain why I think this is the case.

SGML is not a typesetting language, but an ab-

stract language, or more precise: a meta-language.

Just as you can define the computer programming

languages Pascal and Modula-2 in BNF (Backus-

Naur form), another example of a meta-language,

you can define typesetting languages in SGML.

In SGML, there exists something that is called

the document type definition. A document type def-

inition (DTD) is a description of a class of docu-

ments. You describe a document instance, a docu-

ment that is representative for a certain class of doc-

uments, say book, as a hierarchy of building blocks.
To give an example:

book = f r o n t - m a t t e r body back-matter

body = chapte r+

chapte r = chapter-heading, paragraph?, sec t ion*

. . .

all the way down to the basic building blocks: para-

graphs of text, mathematical formulas, . . . This de-

fines the contents of the book in terms of logical

entities: you might call it 'object-oriented writing

of a document'.
An alternative is to describe the visual struc-

ture of a document, which can also be regarded as
a hierarchy of building blocks.

book = pages+

Page = header-block text-block footer-block
text-block = . . .
. . .

These are sketches of two DTDs. A DTD de-

fines a set of tags, you could say typesetting instruc-
tions, and their hierarchy. The set of typesetting

instructions is in fact a typesetting language. So in

fact I've just given two typesetting languages. You
could also define the syntax of a language like in

SGML. Mostly however, document type definitions

are written with the logical structure of a class of
documents in mind.

By the way: two parallel views of one piece

of text -view 1: logical structure, view 2: visual

structure-can be important or even essential in

pre-existing text, something that is pointed out in

the draft report of the Text Encoding Initiative [lo],

on which Michael Sperberg-McQueen will speak [9].

For example: inscriptions found on historical sites or
texts in real manuscripts- you know: hand-written

books.

At present however, publishers do not receive a
great quantity of SGML-coded material-not yet!

There are not many SGML editors available and the

ones that are available are not or hardly ever used by

the authors one finds in normal textbook or journal
publishing. Furthermore, the word processors these

authors use do not have an SGML export facility.

So if a publisher wants to have material available

in some form of SGML, it means converting it from

whatever form the material is in when he receives

it - at least for many years to come.
Encoding a piece of text with SGML means

separating form from content, presentation
from function

adding structure to a text, enriching the text

In particular, the last activity is a time-

consuming one, both for the author and the pub-
lisher, but it significantly increases the potential use-

fulness of the information. If a text is fully tagged,

as it is called in SGML, if pieces of text are iden-

tified by their function, all sorts of information can

be extracted, stored and re-used. For example: the
article opening and the lists of literature references.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 355

Nico Poppelier

If you use the text as part of a hypertext, links to

figures, tables, references, footnotes and other parts

of the text can be derived automatically.

But I would like to stress that SGML has noth-

ing to do with getting a piece of text on paper or

on screen. For that, you always need a separate

program. So, 'SGML or 7$$' is not a question at

all, since you can't compare SGML and w. Valid

questions to be asked are:

do you combine SGML and m, SGML and
Ventura, or SGML and you-name-it?

0 how do you combine, let's say, SGML and W ?

Suppose you use m as a back-end to a

document-preparation system based upon SGML.
What sort of problems do you encounter then? If

you make a list of these problems and add ideas
from various other TEX experts, you get a very long

wish list indeed. What extensions do we need to

add to m? Are we going to change m or are we

going to build a completely new program?

Future of

I'd like t o spend a few minutes of my talk on this

subject, since I'm not really happy with the current

status of 7$$. If you think the following is a bit

provocative, well . . . , maybe it's intended that way.
To put it simply:. I think the program should

never have been frozen. Its author should either

have continued developing or handed over this

w.ork to a new implementor, or preferably a group of

implementors. If this happens with professional-

or, if you like, commercial-software, if you do not
listen to the users of your program, or if you freeze

a program, the software will be as good as obsolete

after a few years.
I will not try to improve upon Frank Mittel-

bach's excellent paper ' E - w : Guidelines for Fu-

ture TQX Extensions' [8], which he presented at last
year's meeting in Texas. Rather, I will add a few of

my own comments, or observations.

A big deficiency in TEX is the page-breaking

algorithm and the tools TEX offers to program com-

plicated page layouts, for example two-column or
three-column with footnotes and floating bodies of

1 or more columns. If you use l&X as it now is as

the back-end to an SGML-based system, page lay-

out cannot be achieved fully automatically: manual
work is still required. And even though T&X is in-

tended to be used by a typist, not as a fully auto-
matic back-end system, the more work the computer
does without human intervention, the better. This

makes the SGML-7$$ combination far from ideal.

1

The same problem occurs if you use IPW,
which has a pretty complex output routine for sci-

entific journals with a two-column layout, with lots

of figures, tables and footnotes.

T&X users who have tried it know how diffi-

cult it is to let T'EX typeset text -let's assume or-

dinary left-to-right text - in a language with lots of

accented letters, ligatures and complicated hyphen-

ation. Why are there no under-accents, multiple

accents? Why is hyphenation of accented words or
compound words with hypehns such a problem? I
will use a few technical phrases from my own back-
ground, nuclear physics, as examples to show that

the problem of hyphenating compound words, for

example, is not just a problem of, say, the German

or Dutch language.
Compound words are quite frequent in Dutch.

for example:

schillenmodel-berekening

(shell-model calculation). Most TJ$ users would

like to see TEX hyphenate this as 'schil-len-model-
bere-ke-ning', which TEX of course doesn't do.

But compound words of this type also occur in

English:

formation of a compound nucleus

is hyphenated by TFJ as 'for-ma-tion of a com-

pound nu-cleus', whereas

compound-nucleus formation

is hyphenated by TI$ as 'compound-nucleus for-ma-
tion', instead of 'com-pound-nu-cleus for-ma-tion'.

There should have been a switch for this in
m, but there isn't! Why wasn't the functional-

ity of TJ$-XJ$C and everything else I've mentioned

added to TEX 3?
It is my opinion that T&X would have been a

better program if its creator had agreed to re-think

certain choices he had made years ago, especially

when users argued their case by showing what sorts

of problems TEX poses, as was done by several of
them in articles in TUGboat. Barbara Beeton ex-

plained to me some time ago that the decisions re-

garding m ' s accent mechanism-\accent or lig-
ature, single or multiple accents, only above or also

below and to the side?-were Don Knuth's deci-

sions and his only; they were not based on discus-

sions with other experts, which I think is unfortu-

nate. I sometimes think-and this is not intended

as a bad joke! - that certain parts of T&X would
have looked different if Knuth had been German or

Greek, because English is such an easy language to

typeset, relative speaking!
And while TEX is superior in mathematical

typesetting, there is still a lot to criticize in that

356 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

KEYNOTE ADDRESS:Two Sides of the Fence

area as well. An example is the spacing between the

eight basic types of math atoms, which is hardwired

into the program as a sort of matrix, instead of be-

ing accesible via parameters. This results in a lot of

handwork if a particular house style deviates from

w ' s rules. Again, I would like to refer to Rank

Mittelbach's article and the work on AMS-TEX by

Michael Spivak.

Another example: where's the missing lower-

case Greek?

upright slanted

form form

lowercase letter ? T

uppercase letter II Il

In other words: why was it arbitrarily decided

that there was no need for upright Greek lowercase
letters in the Computer Modern fonts?

A lot of work still needs to be done. Whoever is

going to do it, I think that the successor to TEX 3 -

the matter of the name, TEX 4 or E-l$$ 1 or God-

knows-what, is unimportant, the important thing is

that there should be one successor, not several in-
compatible systems based on or derived from l$$-
should not be developed and maintained by

one single person

one or more persons all working in one field of

work, for example mathematics or physics

- otherwise the successor to the font set that

is now more or less standard, Computer
Modern plus AMS-Fonts, will contain ex-

otic symbols such as 2 and +-, but not

basic ones like the male and female sym-

bols

one or more persons all speaking the English

language

During this conference there will be a panel

'The future of T@'. An important subject, some-

thing the T U G board, TUG members and w users

in general should think about a lot. As I said earlier:

in principle, has great potential for authors in

all scientific disciplines and all languages, but only
if the program is developed further.

Future of Publishing

The last topic I would like to talk about is the future

of publishing. I don't think I am the right person to

make prophecies concerning the future of publishing.

Instead, I would like to present some ideas I have

found in recent science fiction stories and novels.
o n e of the most striking ideas I've come across

in the past couple of years is the idea of direct brain-

computer coupling, as used by the Canadian author

William Gibson, who is called the founder of the

sub-genre 'cyberpunk', in his Neuromancer novels.

With the direct brain-computer coupling, you can

access any collection of data and it is as if you navi-

gate with a virtual body through the space of data.

which Gibson called 'cyberspace'. It is not such a

weird idea at all, although an idea of the far future,

and it is related to what people call 'virtual reality',

a very popular phrase in some circles nowadays.

An idea that might become reality in the near

future can be found in a book by the American sci-

ence fiction writer, David Brin, in his latest novel

.Earth1 [I]:

If only it were a modern document, with a

smart index and hyper links stretching all the
way to the world data net. It was terribly

frustrating having to flip back and forth be-

tween the pages and crude flat illustrations

that never even moved. Nor were there an-

imated arrows or zoom-ins. It completely

lacked a tap for sound . . . in a normal text

you'd only have to touch an unfamiliar word

and the definition would pop up just below.

Not here though. The paper simply lay there,

inert and uncooperative.

To leave fiction and come back to the here-and-

now: according to the Faxon Planning Report 1992

[3], Faxon Press" poll of 52 periodical publishers,

half of them commercial publishers, the other half

non-profit organizations. a small majority of these

publishers were quite worried about the future of
publishing as we know it. Almost all of them still

believe in the primacy of printed books and jour-

nals for decades to come. Is the vision David Brin

presents something of the very far or of the very near

future?
Just a few points to think about:

1. There are still librarians and scientists who see

nothing whatsoever in electronic journals and

books.

2. But the amount of information printed on paper

increases exponentially.

3. And finding the right information becomes in-

creasingly difficult.

4. Furthermore, increase of paper usage is also a

serious environmental problem.

Well, you can't halt progress: electronic books
are here already and their number will grow. In the

transition period there is still another problem. An

A large, completely automated subscription

agent in the United States, involved in many

activities.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Nico Poppelier

electronic book has to be available in paper form as
well, since most readers still prefer a paper book.

Suppose you use TEX for the paper version,

what do you use for the electronic version? How

do you handle the two presentation styles? This is

something I hope John Lavagnino will address in his

talk on simultaneous electronic and paper publica-

tion of Thomas Middleton's complete works.

Is DSSSL2 the answer to these problems, or

FOS13? What will the role of TJ$ be in non-paper

publishing? I really don't know, but we should all

think about it.
is superior compared to desktop-publish-

ing programs. It can handle mathematical formulas

and complex tables, and this is a capability that is
often lacking or poorly developed in desktop-pub-

lishing programs. Existing programs for the cre-
ation of electronic books also lack these capabili-

ties: they can handle only text and graphics. If you

want to include mathematical formulas or tables. the
most sophisticated you can do is prepare bitmaps of

these components- by means of scanning, or per-

haps m ? - a n d put these in the electronic docu-

ment in the form of graphical objects.

Conclusion

This conference offers a great opportunity for dis-

cussions between users and commercial profes-
sionals, since the programme contains a lot of talks

about many different current applications. There

are interesting panel discussions and hopefully there

will be plenty of time for discussions during the
breaks and in the evenings.

One of the goals of this conference is to try

and bridge the gap - apparent or real- between
the two poles of my first dichotomy: the author
who is a TEX user, and publishers or other commer-

cial professionals who want to accept TI$ material.

Looking at and thinking about present applications

of 7&X, as well as an historical perspective, can help
to bridge this gap.

This conference is also a good opportunity to

discuss the future of Tm, the future of publishing

and the future of TI$-in-publishing. And I hope

that it will be a success in all respects: that we will

be able to find solutions to the problems I mentioned

An I S 0 standard under development for the
specification of document processing, such as for-

matting and data management [7]. The acronym

stands for 'Document Style Semantics and Specifi-
cation Language'.

See t he paper by Andrew Dobrowolski in these
proceedings.

and those that will be described in the next four

days-that we will be able to make gates in the

fences and not just sit on the fences.
I'd like to thank the organization for inviting

me to give this introductory talk. It was a pleasure

to prepare and give this talk, and I feel honoured

having been invited here.

References

[I] Brin, David. Earth. New York: Bantam Spectra,
1991. [Quoted with permission from the au-

t hor .]

[2] Bryan, Martin. SGML: An Author's Guide to
the Standard Generalized Markup Language.

Workingham, UK: Addison Wesley, 1988.

[3] The Faxon Planning Report 1992. Boston: The

Faxon Press, Boston, 1991.

[4] Herwijnen, Eric van. Practical SGML. Dordrecht:

Kluwer Academic, 1990.

[5] Humphreys, Christmas. Zen Buddhism. London:

Unwin, 1984.

[6] International Standard IS0 8879: Standard Gen-

eralized Markup Language (SGML). Geneva.

1986.

[7] International Standard IS0 10179: Document
Style Semantics and Specification Language

(DSSSL). Geneva, 1991.

[8] Mittelbach, Frank. " E - m : Guidelines for Future

TJ$ Extensions." TUGboatll(2), pages 337 -
345, 1990.

[9] Sperberg-McQueen, C.M. "Specifying Document
Structure: Differences in UTEX and TEI

Markup." See elsewhere in these proceedings.

[lo] Sperberg-McQueen, C.M., and Lou Burnard, eds.
Guidelines for the Encoding and Interchange
of Machine-Readable Texts. Chicago and Ox-

ford: Text Encoding Initiative, November 1990.

[Available upon request from the authors.]

TUGboat, Volume 12 (1991), No. 3 P r o c e e d i n g s of the 1991 Annual Meeting

Comparing TEX and

Traditional Typesetting

for the Composition of a Textbook

Laurie J. Petrycki
Addison-Wesley Publishing Company, 1 Jacob Way, Reading, MA 01867

617-944-3700
crwQwjhl2.harvard.edu

Abst rac t

Producing a textbook with m. as opposed to a traditional

typesetting system, requires different procedures to achieve a

similar final result. The publisher's production staff takes on a
much different role and enters the publishing process at an earlier

stage when a book is produced with 7&X. The most significant

issue Addison-Wesley faces when a book is typeset with 7JjX is
the availability of typesetting houses who can produce the book

at the level of typographic and page make-up quality we require.

When we use a traditional typesetter we may pay a higher price,

but we can count on meeting our publishing standards. The
most significant advantage in producing a book with 7JjX is the

accuracy of mathematical material, which then does not have

to be rekeyboarded, and with which we can easily produce a

subsequent edition or spinoffs.

Background

Addison-Wesley Publishing Company is primarily

an educational and technical publisher. The Higher

Education Division publishes approximately 100
titles per year in the following disciplines: computer

science, engineering, business, economics, physics,

and mathematics. The complexity of these 100 titles
varies greatly - from one-color, sparsely illustrated

books to four-color, heavily illustrated, and designed

books. Approximately twenty percent of these

books are produced with T)-@ or VTEX.
The publishing process begins when an acqui-

sitions editor signs a contract with an author. After

the manuscript is written and reviewed by the au-

thor's peers, the project is officially turned over to

the production department. A production supervi-

sor is assigned to shepherd the manuscript through

the production process, with the end result being
final film tha t can be sent to a printer for printing

and binding. The production process consists of de-

signing, copyediting, preparing the manuscript for

typesetting, rendering the art, typesetting, proof-

reading, checking galleys and page proofs, and final
film.

Like most other production departments within

large publishing houses, much of the hands-on por-

tion of the production process-the copyediting,

design, art rendering, and typesetting - is done by
outside vendors. The in-house staff consists of

generalists (production supervisors) who coordinate

the project from start to finish, and specialists who

arrange for purchasing technical art, typesetting,

and cover designs. Addison-Wesley has added a

special group to its in-house staff called electronic

production. This group (of which I am a member)

is responsible for all projects that are produced
in a nontraditional manner, which includes m.
Addison-Wesley is committed to staying on the cut-

ting edge of production technology and recognizes

the necessity of such a group to consult with authors

and the rest of the division.

To understand how TE,X typesetting affects

the traditional publishing process I want to first

describe traditional procedures and then compare it

with the ?]EX publishing process.

The Traditional Production Cycle

T h e author 's role. The author creates the manu-

script, generally using a word processor, and is

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 359

Laurie J. Petryckj

responsible for providing a doubled-spaced manu-

script to facilitate copyediting. The author is

given guidelines for preparing the manuscript - this

includes preparing art sketches; following Addison-

Wesley editorial styles; placing of figure captions,
footnotes. and references; numbering of heads.

equations, figures, and tables; and. later in the

process, creating an index.

If the manuscript includes mathematical ex-

pressions, the author must either leave space on

the hard copy and insert the expressions by hand,

or use a technical word processing package that

can represent the expressions. Technical word pro-

cessing packages. however, are usually limited in
their choice of special characters and their ability

to represent complex built-up equations. Thus, an

author frequently has to insert some material by
hand each time the manuscript is printed out.

If the manuscript has been created with a

word processor, we make every effort to use the

word processed file rather than rekeyboard the
entire manuscript. Traditional typesetting systems

can interface with a variety of word processing

packages, and some of them can preserve formatting,
such as boldface. italics, and tabs. Mathematical

expressions in a word processing file, however,

cannot be converted to a traditional typesetting

system. Math in a word processing program

or in is coded differently from math in a

traditional typesetting system. Invariably, the

math expressions, as well as any computer program
listings and tabular material. must be rekeyboarded.

After the author has submitted the manuscript

to the publisher, his or her role consists of verifying
and checking proofs throughout the production

process. The author sees: the manuscript after

it has been copyedited; the art after it has been

rendered; and the galleys and/or page proofs after
the manuscript has been typeset. If the book

has mathematical expressions or computer program
listings, the author must pay particular attention to

proofreading this material since it is rekeyboarded

by the typesetter.

The publisher's role. When a book is pro-
duced traditionally, the production department is

minimally involved until the manuscript is nearly

written. At that point, the acquisitions editor

holds a meeting with the production supervisor.

conveying the market needs for the book, the de-

sired budget and schedule, and any special quality

considerations. The production supervisor commis-

sions a design and lines up outside vendors such as

a copyeditor and a proofreader.

After the manuscript has been copyedited and

typemarked. it is sent to a professional typeset-
ting house for keyboarding and formatting. The

typesetter has already received the design specifi-

cations and has written a program to interpret the

designer's specifications into their coding system. If

the book is relatively simple, the typesetter may

output the text directly to a final paged format.

If the book is complex (for example, if it has
a high frequency of illustrations or special design

elements), the typesetter will output galleys first.

Galleys are lengths of unpaged. but formatted

type. The galleys are proofread and then dummied

into pages. By this point the art has been rendered.

so the dummier can lay out the galleys on a page
grid and indicate where the illustrations should

fall. Dummying is an exacting and critical skill

that cannot be replicated by automatic pagination

programs. In determining where the illustrations

fall, the dummier evaluates each double-page spread

of the book, looking forward or backward through

as much as an entire chapter. to ensure that the
illustrations flow evenly and do not fall more than

one page past their reference.

The dummier must adhere to certain paging

standards. The most important of these standards

is that each double-page spread must align across

the bottom of the pages. To do this, the dummier

has the flexibility of manipulating the space above

or below design elements, such as heads, boxed

material, illustrations, and equations. However,

the dummier must ensure that the space around

these elements is consistent across the double-page

spread. The dummier must also make sure that

there are no widows, orphans, or pages ending with

hyphenated words, and that figures and tables are

not stacked.
Pages are made up from the dummy, either by

hand from corrected galleys or on the typesetter's

paging system. The typesetter outputs page proofs
which are checked again by the publisher and

author. Once the pages are corrected, final film is

made, with the art film stripped into place.

The TEX Production Cycle

When TEX or WI&X is used, most of the above steps

of the traditional publishing process are altered.

(The issues discussed below refer to manuscripts
prepared with both TjjX and I4W unless is

mentioned specifically.) disturbs the linearity

of the traditional publishing process by forcing the

author and publisher to change their roles and by

changing the sequence of key events. These changes

360 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Comparing 7J$ and Traditional Typesetting

are not necessarily detrimental; rather, they make

it all the more important for the publisher to define

the author's responsibilities and to determine a

production plan for each project early on.

The author's role. The first change for the

author is being put in contact with the production

department during the contract signing process

instead of after the manuscript is written. The

choice of as the typesetting system for a project

is usually driven by the author's desire to use TEX
and his or her expertise. As consultants to authors

and acquisitions editors, the electronic production
group helps determine the level of involvement the

author will have in the production of his or her

book. An author is rarely encouraged to use

unless the author has used rn previously and is

comfortable with the coding process.

Secondly, an author plays a more significant
role in ensuring the accuracy of the material and

in controlling the schedule. Since the manuscript

is not going to be rekeyboarded by a traditional

typesetter, it is even more important that the
author's initial keyboarding be free of errors. Once

the file has been paged, the cost of correcting errors

is greater.
Finally, the author gets involved in the type for-

matting process, which used to be the responsibility

solely of the traditional typesetter. This involve-

ment varies according to the production plan. In

some cases, the author may be responsible for pro-

viding final camera-ready copy to the publisher.

More often the author does the initial formatting

using TF$ macros, then turns the files over to the

publisher for final formatting and paging.

The publisher's role. With the author taking

over more responsibility for the publishing process,

it becomes even more critical that the author's

and publisher's roles be defined during the contract

stage. In general, the publisher retains control over
the interior and cover design, the copyediting, the

quality of the page makeup, the artwork, and the

final filming. However, this is not always the case.

as an author may have been given the responsibility
for turning over completely camera-ready copy.

Assuming these responsibilities are still within the

control of t he publisher, the T&X production process

departs from the traditional process in the following
ways.

First, the roles of the publisher's production

staff are changed. To produce a TFJ typeset
book the publisher needs typesetting specialists

who are familiar with both TFJ and the book

publishing process. The traditional production

route is well established and straightforward for
the typical production coordinator. However, the

influx of word processing files, from a variety of

programs, has led to a need for specialists within

the publishing house to help with the conversion

and smooth translation from electronic file to the

compositor or freelancer.

Secondly. TEX reverses the traditional order

of the publishing process. Most notably, the

production department must start working on the

book design before the manuscript has been written.

whereas in the traditional model a design is usually
not done until a manuscript is nearly final. When

the design is done after some of the manuscript is

written. the designer has the advantage of looking
at the manuscript's elements, making sure that

the design is appropriate for all situations. For

example, the designer will look at the shortest and

longest instances of a chapter title and design the

title accordingly.
When m is used, the designer does not have

this advantage and instead must approximate the

final manuscript. Invariably this means that some

follow-up design must be done, as new elements
are added to the manuscript or if the manuscript

structure does not fit the design.

The traditional order is also affected during

the copyediting and art rendering stages. On a

traditional manuscript the copyeditor not only edits

but marks up the manuscript for the typesetter by

indicating the various type elements. With TEX
this step of typemarking is incorporated into the

initial formatting the author does. As the author

chooses a particular macro for a text element, he

or she is essentially doing the copyeditor's job of

typemarking. However, the copyeditor must check

to make sure the author has used the correct macros.
Art rendering is traditionally done while a

manuscript is being copyedited and set into galleys.

Since there isn't a comparable galley stage in the

TEX production process, the art rendering stage is

on a tighter schedule.
Finally. TEX introduces new types of outside

resources to the publisher. After the TEX manu-

script has been copyedited. it is paged, with space

allowed for the art to be added or the art merged

electronically. This task is contracted out to a type-

setter who specializes in TEX or IPW composition.

There are not many of these typesetters to choose

from, especially ones who are experienced in our

exa,cting textbook standards and who can manip-

ulate m. Theoretically the final product should

look the same. no matter which production process

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Laurie J. Petrycki

is used, so it is important that the appropriate
typesetter be chosen.

Publisher-assisted formatt ing, To expedite the

production process we find it advantageous
to supply our authors with comprehensive macro

packages as early in the manuscript writing stage

as possible. These macros follow one of several
book designs and have been thoroughly tested and

documented. The author is responsible for the

initial formatting of the manuscript with these

macros, but at some point we take over the follow-

up stages. We call this process publisher-assisted

formatting, and our goal in working this way is

to retain as much of the author's formatting as
possible, while allowing the author to concentrate

on writing the manuscript.

Many authors, especially those who are using

T ' X for the first time, tend to rely on plain T@
commands instead of macros when they set up the

design parameters. For example, an author might

type out the command string

each time an item in a numbered list is called

for. instead of incorporating the same string into

a macro. Whereas plain T)jX commands get the
job done, design changes are difficult to implement

throughout the file. Using macros allows us to make
these design changes globally and. in general. allows

for smoother formatting when the files are sent

to a typesetter. Therefore, we ask all authors to
avoid using plain m, except within mathematical

expressions. Although there is always the danger
that any customization of the math spacing, using

plain commands, will interfere if the final book
is reformatted in a different typeface or size.

When we give an author a macro package, we

include a set of instructions for using the macros.

as well as guidelines for paging the book. We

tell the author how to set up files in order to
avoid redundant effort -for example, an author

should not put in manual page breaks, because

the composition of the pages will change several

times before the book is complete. We also show
authors how to add any custom macros to the

macro file, and we stress that authors code their

files consistently.

Providing authors with professionally designed
macro packages and then contracting with a type-

setter to finish the formatting allows us to control

the quality of the finished product. However, there

are instances when an author has contractually

agreed t o provide camera-ready copy. In these

cases, we provide guidelines for paging the book to

our publishing standards and we follow the process
rigorously, acting as quality checks for the author

along the way. Most authors who are proficient

with have used it to write class notes, papers.

or perhaps journal articles. They do not realize how

much more difficult and time-consuming it is to

make m conform to textbook standards. I4m
is even more difficult to use because its sizing and

figure placement features must be overridden.
The macro package we give an author may

not necessarily reflect the final design, which can
change for a number of reasons. We may have

predetermined that the typeface will be changed

from Computer Modern and the author may not

have the new typeface available. Or the design may

not be determined, but we don't want to delay the

author's writing. In any event, the beauty of TkX
is that once the file is properly coded with macros.

another set of macros can be substituted.
Supplying macros to authors is an ongoing and

challenging task. Our authors work on a variety of
computer and printer platforms and the availability

of typefaces other than Computer Modern further

complicates matters. Macros that work well on

a test chapter may not work in an unforeseen
combination of text elements that an author sets

up. An author may want to add a new text

element or his manuscript might not fit the design.
All of these challenges mean that we must keep

a library of macro packages available and must
continually update and debug the packages as new

fonts or platforms are introduced. In spite of

these challenges, we feel that gives us certain

advantages.

Advantages of Using

Technical material. T@ is an easy and efficient
tool for representing mathematical equations. The

author writes and typesets concurrently, as opposed

to having to handwrite equations that cannot be
represented in many word processing programs.

Equations, computer program listings, and tabular

material do not have to be rekeyboarded by the

typesetter, whereas with other programs they do
have to be rekeyboarded. This type of material is

the most difficult to proofread, and authors want

to be assured that once they have verified the
accuracy of such material, it will not change. Of

course, there is the proviso that any time electronic

material is converted between different systems or
editing changes are added to a file, there is the

possibility of errors being introduced. Thus the

362 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Comparing and Traditional Typesetting

importance of thorough proofreading by both the

author and publisher is not diminished.

When providing files, however, it is even
more critical that the author be accurate in the

first place. Correcting mistakes that the author

made in the initial keyboarding may be charged to

the author or publisher if they were not the final

typesetter's responsibility.

Cost and schedule advantages. In general. the

composition portion of books produced with T@l
are less expensive and take less time to produce

than traditionally typeset ones, but there are several

caveats here. If a TEX file is inconsistently coded

to begin with, it can cost us more to clean it

up than if the book were traditionally typeset.

Also, the author's initial writing time may increase

substantially, even adding a year or more to the
Split and revised editions. When we decide

schedule, if the author gets bogged down in the
to produce a book using w, we're also looking

formatting. These factors have to weighed in the
down the road at future editions, spinoffs, or splits

initial evaluation of each project.
(certain chapters of the book rearranged and/or

Even so, when TEX works out, it allows us to
removed for different versions of the book). Using

publish in limited markets we normally would not be TEX gives us a strategic advantage for this kind of
able to publish in. These markets, such as graduate

expanded publishing platform.
level courses' can only support small print runs of

Producing split editions from a traditionally
a book, thereby decreasing the book's profitability.

typeset book often involves a painstaking update of
Using TEX, we can keep our production costs down.

the references, the table of contents and the index.
There is a certain amount of page make-up that

has to be redone. With rn, however, counters

and macros can be used to automate these changes.

TEX macros can regenerate the table of contents

and index files, and update the cross-referencing

of figures, equations, and tables. The file is just
reprocessed, then output again. No additional page

makeup is required.

Producing future editions from a traditionally

typeset book is often problematic. In general, a
traditional typesetter can download files from their

system back to an author's word processing system.

However, if there is any math or tabular material.

this process will not work. The typesetter's cod-

ing structure around this material cannot usually

be converted to the author's system. Also, the
traditional typesetter must ensure that the final

version of the files have been updated, including

last minute or reprint corrections. Often this does
not happen-a traditional typesetter will set these

corrections as one-line patches, rather than update

and run out the entire chapter file.

This is where TEX shines. For future editions,

it is easy and economical to return TEX files to

an author, with the codes intact. The files are
accessible t o the author for the revision and can be

uploaded back to the typesetter. Even if we

do not know the final design of the book, we can

provide a n author with a generic macro package

to produce a coded file. Later the design can be

completely modified, and the typesetter merely
rewrites the definitions of the macros. If the original

macros were planned and used well. the final design

can be implemented with a minimum of additional
coding.

Satisfied authors. An author who uses

feels more assured knowing his or her keystrokes

will be used in typesetting the final book. rn is
almost necessary when the author needs to represent

complex and frequent mathematical expressions.

Authors who want a lot of control over the layout

of the pages want to work with w to provide
final dvi files or camera-ready copy. The author

must trade off that satisfaction by spending a

considerable amount of time formatting his or her

manuscript.

Disadvantages of Using

Steep learning curve. rn is not easy to learn,
especially if an author has not had previous expe-

rience with the program or is not familiar with a

code-intensive computer language. Most authors

who have not used TFJ before are familiar with

WYSIWIG (What You See Is What You Get) types

of word processing programs, which are generally

easier to use. Thus, trying to learn T)$ while on

a fixed schedule to produce a manuscript can be

overwhelming. In general, PT)$ is easier to learn

for the new user.
In spite of this challenge, some authors will

learn TFJ for the first time because they want to

retain more control over their technical material

or because an acquisitions editor may require a
camera-ready manuscript. The danger here is that

the author can easily spend more time learning

how to format with ' l&X than actually writing the

manuscript.

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Laurie J. Petrycki

TEX paging problems. There are a number of

instances where m ' s automatic paging can present

more difficulties than it solves.

1. When pages, it does not recognize double-

page spreads - instead it processes one page

at a time. Aligning the bottoms of pages

across spreads is critical to textbook design. In

traditional typesetting the operator or dummier

can review several pages at a time, going

backwards and forwards through a group of
pages to allow for the best possible layout of

each page. TEX only considers the current

page, so we must manipulate to give us

the required results.

2 . does not always pull out the most current

first-level head as the running head. The

number one head is usually pulled out by the

second occurrence.

3. Figures can occasionally appear out of order,
especially if the file has a lot of figures. BTEX
has a tendency to lump several of the figures

at the end of a chapter file or place them too

far away from their page reference. IPW also

tends to add a lot of additional space below

figures, although this is adjustable manually.
4. Minor edits or revisions which should be con-

fined to the current page or paragraph some-

times affect subsequent pages or the spacing
around elements. Not only does the typesetter

have to reprocess the entire chapter, but the

production supervisor must thoroughly recheck

subsequent pages, rather than just the one line
where the change occurred. This creates a

great deal of additional and unnecessary work

for each proof stage of a book. Often we will

have t o manipulate the coding so that

the pages match the previous output. In a

traditionally typeset book, such changes are

always limited to the page on which the change

occurs.

This problem was compounded on a recently
reprinted two-color book. Many of the reprint

changes were simple typographical errors that

should have affected only one line in a paragraph. In

fact, the page breaks did not change on those pages

and the black text pages looked fine. However, the

spacing between all elements on the page changed
a small amount, which was not noticeable until the

film for the black text was no longer in register with

the film for the second color. We had to reshoot

and restrip all the second color film to make it align

with the revised black text page.

TJ@ math spacing. For the most part, the inter-

nal spacing around math characters in T)$ poses

no problems. We have, however, uncovered two

instances where we feel the spacing is unacceptable.

These are: the spacing around extensible parenthe-

ses and the lack of kerning in sub- and superscripts.

Examples of these instances follow.
Notice in the following first equation where the

proper size parentheses are used, the space after
the open parenthesis is too large. In the second

equation where the normal size parentheses are

used, although incorrectly sized for the equation,

the spacing is correct.

Letter pairs are not automatically kerned when

used for sub- and superscripts. Notice the spaces

between the letters in the examples below.

$$v-CCE3$$

vTo

As mentioned earlier, any spacing adjustments

to equations must be done in the correct type and

point sizes. Translation problems have occurred

when special math coding is done by an author

and then the macros are converted to a different

typesize and style.

TEX is not always device-independent. When
using fonts other than Computer Modern, is

not strictly device independent. Typefaces are de-

signed by different companies to run on different

output devices. The character widths in Compu-

graphic's version of Times Roman differ from each

of Autologic's and PostScript's versions. Therefore,

a source file processed through one output device

will have different line breaks when run through

another output device.
This makes it difficult when authors format files

using their own computer system and laser printer,

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Comparing and Traditional Typesetting

then give us the files to output through a high-

resolution typesetter. One solution is to provide

authors with t f m files that match the character

widths on the final output device. The author

can still use Computer Modern on his/her laser

printer, but each character will be the width of the

corresponding font on the high-resolution output

device. The disadvantage here is that proofreading

can be a challenge. The space between letters

on the laser proof will not be accurate-some
characters will appear kerned too tightly and others

too loosely, when they may in fact be correct - so

the proofreader must bear this in mind.
The implementation of PostScript on different

devices affects how m ' s \ spec ia l commands are

interpreted. Special PostScript effects, such as ro-

tated type, rules, and shadings. can change position
depending on the printer driver implementa-

tion. Other problems can occur because 7JjX and

PostScript use a different measurement for points

to the inch. PostScript rounds to 72 points to the

inch, while T&X correctly uses 72.27 points to the
inch.

We were most disappointed when we ran out an

author's dvi files, which were entirely in Computer

Modern, and found differences between his laser

proofs and the high-resolution output. The more

recent PostScript Computer Modern fonts have

been being calculated differently. We were told

that the Computer Modern font itself is not static
but is being revised constantly. This can create

major problems for publishers supporting authors

on different systems.

Issues to Consider When Choosing

TFT
In spite of the disadvantages just listed, more often

than not we choose to use w because the pros

still outweigh the cons. When we determine the

production plan for each m project, however,

there are certain issues we need to determine.

What is the author's level of production
involvement? We must first define the author's

role in the production process, because from that

definition comes clarification of the publisher's and

typesetter's responsibilities. Some authors will

contract t o provide camera-ready copy, including
rendering the art , while others will do the initial

formatting only. No matter which route the author

takes, the publisher is ultimately responsible for

the overall quality of the book, so it is up to

the publisher to ensure that the production plan

includes the necessary checks and balances.

Defining roles is also important when it comes

to the cost of making the book. For example, if the

author is responsible for inserting the copyedits into

the source files, then there are repercussions later on

when changes are made during the page formatting

stage. Who is responsible for the changes and, more
importantly, who pays the typesetter to xake the

cha,nges?

Who controls the schedule. Ensuring a book's

schedule is one of our major responsibilities as
publishers and when T&X is involved there is a

great danger of schedule slippage. When the author
takes a more active role in the production process.

the publisher loses control over that part of the

schedule. This is particularly detrimental when

authors become overwhelmed by the extent of their

responsibilities. Many of our authors have full-

time teaching positions and do not initially realize

how time-consuming book production is, whereas

publishers are used to working with book production

professionals who can commit to a 40+ hour week.

For this reason, we have occassionally found it
necessary to change the production plan midstream.

We have either taken over some of the tasks the
author was initially responsible for or have added

additional proofreading or checking stages. Our

biggest concern here is that an author will become

so involved in formatting that he or she slows

down the writing of the manuscript.

Quality considerations. We must determine if

m can give us the quality level we need to publish

into a particular marketplace. We have exacting

quality standards for books that are produced
traditionally and, as stated earlier, when left on its

own, T&X's formatting does not always meet those

standards.

For example, we usually require an equal

amount of space above and below displayed equa-
tions across a double-page spread. When building

a page, does not automatically do this. It
takes either a considerable amount of manual ma-

nipulation or a complex rewrite of w ' s macros to

achieve the proper spacing.
Another concern is that w ' s glue often

stretches or shrinks erratically unless the macro

package is expertly written to account for this vari-

ability. To balance a double-page spread when a

book is typeset traditionally, we can specify exactly

how much extra space to add at particular points
and the typesetting program will follow our speci-

fications. This is also possible with w, but it is

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Laurie J. Petrycki

an added challenge that only the most experienced

TEX typesetters can handle.

Beyond Computer Modern. For most textbook

publishers, Computer Modern Roman is not an

aesthetically pleasing basal (main text) typeface.

We feel that the x-height of the letters is too small

and the typeface looks old-fashioned. Because we

publish into a variety of college markets, we need

to have the option of different typefaces. For

lower-level textbooks, we use more open, friendly

typefaces like Century Schoolbook; for upper-level
textbooks we use more sophisticated, professional

typefaces such as Times Roman. Some m compos-
itors can offer us Times Roman and other standard

typefaces as replacements for Computer Modern in

the basal text. However, only a select few com-
positors can also typeset math equations in Times

Roman or other typefaces. Converting the m
math character set takes a lot of programming time
and expertise - and few compositors are willing to

make this investment.

Some m sources will offer the compromise

solution of mixing Times Roman or another stan-

dard face for the basal text and displayed material,

such as heads, with Computer Modern math. This

solution is not perfect, however. The weight of

Computer Modern and Times Roman characters is

different - Computer Modern is smaller and lighter

than Times Roman-so the resulting mix looks

odd. To make the two typefaces appear uniform,

Computer Modern must be increased by one half
point.

One last note on typeface substitution - TEX
kerning and ligatures do not always work on type-
faces other than Computer Modern unless the

programmers who have written the output drivers
have done the extra work to provide the conversion.

On some implementations of Postscript fonts in

TEX --- will give you three dashes instead of the
correct emdash.

Working with specialized 'TEX typesetters.
Finding the appropriate typesetter is one of

our major challenges. We need sources skilled not

only in programming TFJ, but also in typesetting

textbooks rather than journals or papers. The

quality level of paging is more exacting for technical

textbooks and traditional typesetters have a solid
typographical and book-making background. These

typesetters are used to dealing with publishers'

demanding schedules, and usually have larger staffs

to call on.
We know what kind of service we will get when

we work with traditional typesetters. Unfortunately,

with some TEX typesetters this is not always the

case. When we receive galley or page proofs
from a traditional typesetter, we can safely assume

that they have been proofread, whereas we often
have to request this service from a typesetter.

The output from traditional typesetting systems is

almost always typographically correct. With TJ$
typesetters. we sometimes have to specify correct
alignment and kerning. Finally, we can rely on the

typesetter for meeting our agreed-upon schedule

and can even request overtime to meet a tight

schedule. Since some m typesetters have small
staffs, we have often run into schedule overloads at

their end.

Conclusion

In my experience, traditionally produced books are

more predictable and easier to work on than those

produced with m. However, TEX does have
its place in the technical publishing house. For

some authors, using TEX is the most viable option

when they want to preserve the accuracy of their

mathematic equations. We will continue to support

these authors by providing macro packages and

working with m typesetters to provide the same
kind of services we expect from more experienced

traditional typesetters. Producing a book with

is a process that can proceed as smoothly as

traditional typesetting as long as we have done the

proper upfront planning and have evaluated the

tradeoffs.

366 TUGboat, Volume 12 (1991); No. 3-Proceedings of the 1991 Annual Meeting

C o n t r a - @ ! , or What Really Works in the Publishing World

Frederick H. Bartlett
The Bartlett Press, Inc., Harrison Towers. 6F, 575 Easton Avenue, Somerset, New Jersey 08873 USA

908-745-9412
Compuserve: 72450,2574

Abstract

An only slightly cynical view of the real interactions among

authors, publishers, and w n i c i a n s .

Introduction books at a much lower cost. Unfortunately, the two

My purpose in this article is to describe, as honestly

as I can, how TEX is and should be used in what

we sometimes like to call the Real World (although

those of you who have actually dealt with publishers
may question the validity of that appellation).

Since few of my readers will know me, I feel that

I should give a brief account of myself. I have been
a technical writer for a small computer company;

a production editor for a series of proceedings;

an acquisitions editor for an international scientific

publisher; and, for the past six years, the head of a

m n i c a l typesetting and production house. Thus,

I have some experience of every part of the process

of publishing, from the time a writer gets an idea

or an assignment to the time the finished product

is sent to the bookstores.
My company is one of the very few commercial

typographers to use T&K for all its typesetting tasks.

from initial keyboarding to final layout. As far as I

can judge from advertisements in TUG boat, there
are fewer than a half dozen similar firms, although

there are many individuals and organizations which

use w in some way, whether writing macros or

providing output services.
Most m users, however, are salaried em-

ployees of commercial or educational organizations:

as their incomes are not directly determined by

the number of pages they are able to produce per

day, and as their employers, not being publishers.

are not concerned with the niceties of typographic

style, our concerns-speed, efficiency, quality-are

not necessarily theirs.

This undoubtedly explains the otherwise mys-

tifying popularity of I4m.

The Promise of

For ten years or more, TEX has promised authors
full control of the typographical appearance of their

books and publishers a way to turn out high-quality

promises too often remain unfulfilled.
First, authors, as a class. are completely igno-

rant of what Thomas Browne calls "the Trade and
Mystery of Typographers.'' Second, publishers are

not interested in producing high-quality books; they

are interested only in producing books that look
good enough to sell. Many of you may have seen

the article by Jacob Weisberg in the June 17 New

Republzc on the lamentable state of trade publish-

ing. More personally, just before I left the editorial

department of an international science publisher, I

was reprimanded by the chairman because, as he

put it. my standards were too high.
This is not to say that authors are idiots and

publishers Scrooges; merely that an author's first
concern is the information he's conveying and a

publisher's first concern is the money he's making

(or, more often, losing). It is clearly senseless to

require authors to be typographers or publishers

philanthropists - it's nice when it happens, though.
The result. however, is that most books pro-

duced with m are easily identifiable by their

shoddy appearance.

Commercial TJ$

In order for to take what I believe to be its

rightful place as the typographic language of choice

for books and journals, more typesetting firms must

adopt it and more production departments accept

it. To illustrate how far we are from such a state,

let me tell a more-or-less fictionalized little story.

Someone from m n i c a l W t b o o k s Limited

(we'll call him Fred) calls the production director

of Acme Worldwide Publishing Co., Inc. Assuming

that he perseveres through phalanxes of secretaries

and assistants, he might say, "Hello. I represent

W n i c a l W t b o o k s Limited, a m - b a s e d type-

setting firm. We can satisfy all your typesetting

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Frederick H. Bartlett

needs, especially if you get books in electronic form

prepared using w . "
Now, the production director (we'll call her

Ms. Constant Tradition) will say one of four things:

(1) "We are perfectly happy with all our current
vendors" (this is the usual response), (2) "We prefer

not to use desktop publishing firms," (3) "We don't

publish technical books," or (4) "We don't use
cottage industry-type vendors."

Assuming that he got one of the latter three

responses. Fred will try (usually in vain) to con-
vince Ms. Tradition that (a) w is not "desktop

publishing," (b) 'IjEX can typeset anything, and

(c) the "technological cottage" approach will save
her money.

Now, why is Fred having such trouble? We

will charitably discount the possibility that he is a

lousy salesman. The primary reason is that most

publishers' experiences with electronic publishing

have been unhappy ones. If you have a trained

eye, you can go into any bookstore and determine

which books were typeset using DTP software-

they're the ones whose appearance ranges from
loathsome to just barely good enough to get by.

Even most ?fEX-set books do not measure up to

any but the most minimal of standards. Therefore,
production directors don't want to use electronic

production techniques unless they absolutely have

to, as when they're constrained by the budget or by

the contract the editorial department signed with

the author (which they will resent like blazes).
If Fred is lucky, he'll be able to send Ms.

Tradition a sample book typeset with W . Perhaps

he can even send her two books, say, a novel and

a mathematical monograph, just to show w ' s
range. But even this may not convince her to hire
him.

For production departments have an unrea-

sonable prejudice against small shops (and most

current T@=- and, it must be confessed, DTP-

shops are small). Publishers routinely use one-man

shops (called freelancers) to do design, copy editing.
and proofreading, but somehow typesetting must

be done by large firms with hundreds of employees,

huge overheads, and high prices. This problem is, of

course, beyond the scope of this paper, but I hope to
warn budding entrepreneurs of the problems they're

headed for.

Even assuming that Ms. Tradition has been

impressed by Fred's presentation thus far, she's
unlikely t o send him a manuscript to set; instead.

he'll get a set of author's disks. Fred will then have

the unenviable task of explaining why typesetting

from disks saves 10 to 50%, instead of 50 to 90%) of
the cost of typesetting from paper.

There are many reasons for this, but they all

boil down to one: the author.

m n i c a l Difficulties

It is an ancient joke among editors that their job
would be a real pleasure if it weren't for authors.

It is this attitude that explains why authors find

themselves completely shut out of the decision-

making process once the contract is signed and the

book is delivered into the publisher's hands.
It may be that widespread use of electronic

document preparation technologies like w may

change this attitude, but it is unlikely, since au-

thors have more important things to do than learn
the language, techniques, and requirements of fine

typography.
For reasons completely opaque to the present

writer, I 4 w is the w tool of choice for half or

more of all writers who use w . Why in the world,
to borrow Dr. Lamport's metaphor, would someone

voluntarily exchange a high-performance racing car

for a beat-up old family sedan?
Thus, in order to undo what might be called

I 4 W ' s sedanification of T@ and create a profes-
sional product, the macro writer must spend much

more time (and therefore money) than a publisher

is likely to consider appropriate. For I4W imposes

several severe penalties upon its users.
First, a I4w file will be 10% or more larger

than an identical plain. tex file. Keyboard macros

are, at best, only a partial solution, and, in any
case, cannot be standardized among keyboarders

who each use their own favorite word processor or
text editor for data entry.

Second, it takes longer to run Urn,, both on

each part of a book and, most importantly, on the

entire book, especially since I4m assumes that
one will process an entire book at a time. Even

when one uses an extremely fast computer (we use
a 25-MHz 486 machine which can process a 27 x 42

pica page of plain.tex in under a quarter of a

second), this is a tremendous handicap at the final

stages of a job when one is trying to find and set the

best page breaks in accordance with the publisher's
style. The only solution I have found is to run

I4'IjEX on the entire book twice, save the .aux file,

divide the job into several parts, and \input the

. aux file at the beginning of every part of the job.

Once all the page breaks are set, we then run I4m
twice more on the entire book, hoping that any

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

changes in cross-referencing will not affect the page
breaks.

Third, inputting corrections. both from the

copy editor and from the author and editor, becomes

much more difficult. When we set a manuscript
using p l a in . t ex . we enter the equation numbers

as numbers, so that. when we have to add a

minus sign to equation 9.34.2, we can search for

that equation number. find it quickly, and make

the change. If we have a I P ' file to contend

with, we must either know the author's \ l a b e l

(an unlikely possibility) or search for some unique

combination of words or mathematical symbols,

such as \ root n \of<-\lambda), a penalty of 15

keystrokes and a bit of thought. Thought is very
time-consuming, and therefore, as all production
editors know, typesetters have always sought to do

as little of it as possible.

Fourth, implementing the publisher's style is

much more difficult to do on top of UT&X than

p l a i n . t e x . Recently, for example, I received a
call from one of a client's authors asking me how

to change the length of a page in U W . He had
been trying various machinations with no success

for about a week. Once I received his files. I solved
his problem in something under a minute. However,

I have never received such a basic query from any

author using p l a i n . tex.

I have wasted so much (unbillable!) time trying

to make I4m behave that I finally decided to

convert whatever IP-7J$ projects I get to p l a in . t ex,

a process that takes less than an hour, and then

write a p l a i n . t e x macro package. This has the
additional advantage of enabling us to use our own
output routine instead of I P W ' s , so that we can

be sure of placing the vast majority of the floating
insertions properly the first time through.

I usually keep the few I P W macros I have
found to be both an improvement over p l a i n . t e x

and impossible to convert: the a r ray and t abu l a r
environments.

This is not to say that one cannot produce
good-looking books with U r n , only that it will

take longer and cost more. Truth to tell, however,
the only UT$jX book I've seen that looked decent is

Introductzon to Algorithms, which was published by
the MIT Press and McGraw-Hill. Amy Hendrickson

provided the I P W macros. It should be said,
however, that the MIT Press's style makes life

much easier for the m n i c i a n and layout person,

as it uses ragged bottoms.

If I P W is such a mess, you may ask, why would

anyone, even an author, use it? The usual reasons
given are ease of use and standardization. But both

are illusory. I 4 m is no easier, and in some ways

more difficult, to use than a special-purpose set of
even moderately well-designed p l a i n . t ex macros.

And standardization is not helpful unless every

format in which a given file is to appear is the same

width. (If the widths are different, or if there's

a change of point size, all wide alignments and

displays will have to be altered manually anyway;
this is a far more time-consuming task than \ le t t ing

a few macros to some other definitions.)

What Is to Be Done?

The easiest way to keep costs down and ensure

that production will move as quickly as possible is
simply to use p l a i n . t e x instead of I 4 m .

However, authors who use p l a in . t ex are-

returning to the famous Lamport analogy for a mo-

ment -often discovered to be truck drivers merely

masquerading as sports car enthusiasts. One of my
favorite masqueraders was the author who used his

own definition of \ sec t ion for every level of head

from chapter openings to subsubsubheads. Others
will begin paragraphs in display math mode or end

display math mode with two carriage returns and a

\noindent. However, even a novice TEX user can

produce perfectly acceptable files if he keeps a few

simple rules in mind.

Of course, it could be said that I am arguing

against my own best interests. So long as authors

use I P W and misuse p l a in . t ex , there will be

a need for TJ$ wizards to create silk purses out

of sow's ears, and I can always charge more for

working from than from p l a in . tex. But I
have a Puritan objection to redoing what should

have been done right the first time, even if I am
being paid for it.

The first rule is to avoid using primi-
tives, especially those which control spacing (\kern,

\vskip, \hskip), but always call them from macros

(like p l a i n . t ex's \bigskip etc.). \vf ill, \ e j ec t ,
\break. etc., should also be avoided, as should

explicit font calls in headings.

It is really not too much to say that the only

pIace an author should use plain or primitive control

sequences is in math mode, for the real power of

=7(consists in this: that all things are susceptible
of change.

The second rule is to use a macro for every

typographical or logical entity in your work. Ex-
amples are \ sec t ion , \subsect , \ l i s t , \example,

and \theorem. You need not define them, except

as, say,

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Frederick H. Bartlett

or even

\let\section\relax

What about cross-referencing, you may ask.

M W ' s cross-referencing system is, perhaps, the
feature of that authors like best, even if

it does pose problems for those who have to deal

with the file after the author is finished. But
cross-referencing is not difficult; the only advanced

5Ynique one needs to know is the \csname . . .
\endcsname primitive.

Those who are not yet convinced that IPmY

is so awful may wish to emulate a set of macros I
once wrote to allow for automatic numbering and

cross-referencing. I added one small, but important,
function: the characters used as the label appeared

in the margin on the proof copies. This could be

added to I4w easily enough. but no one seems
to have thought of it, as it is universally assumed

that only the author is going to have anything to

do with the creation of the document.
In the best of all possible worlds, the publisher

would arrange for a T$$ consultant to write macros

for the author as he writes his book. Given the way

the publishing business works -especially given the

traditional hostility between publishers' editorial

and production departments - this is unlikely in

the extreme, although it would provide publishers
with the savings they have always expected from

electronic production.

Speaking of money, authors should know that

traditional typesetting costs anywhere from $8 to
$50 per page, depending on the size of the page,

the complexity of the material, and the complexity

of the design. If an author does all or most of the

work himself, he should ensure that the publisher
either pays him a fair price or lowers the asking

price of the finished product.

Not that he is likely to have much luck. The

rule is, "whatever the market will bear," and

so long as most purchasers of professional books

pay for them with someone else's money, there

will not b e much pressure on publishers to lower

prices. But there's always some - one of my former

employers has become notorious recently for both

the enormous amounts he charges for his books and

journals and his penchant for suing anyone who
criticizes his pricing policies.

Post conference Postscript

Introduction. In my preprint, I discussed several

books from the standpoint of a critical typogra-

pher; as such a discussion has no merit if the
readers have no access to the books, I shall here

make some general observations about current ty-

pographic practices and a few responses to concerns

raised by other speakers at the conference.

Typography Today. Of the fourteen books I

took to the conference for discussion, four were

traditionally set, two were set with DTP programs,

six were set with TEX at The Bartlett Press, and
two were set with TEX by others.

When one looks at traditionally composed

books, one notices that the line breaks are often

not as good as TEX would produce and that several
refinements which used to be taken for granted

are now lost. There is one exceptional publisher

which still produces extremely high-quality books:
The Folio Society. The Society is a subscription

publisher devoted to the art of fine bookmaking;

anyone confused by prattle about "quality" is urged
to examine some of their books.

The refinements I alluded to above include such

things as avoidance of widows and orphans, avoid-
ance of recto-to-verso hyphenation, alignment of

pages (partly the printer's problem), and alignment

of accents over letters.

Books produced by desktop publishing pro-

grams typically have lousy layouts (extremely vari-

able space around figures and tables, ragged bot-
toms, insufficient number of lines below a head),

ugly fonts, and an unnecessary, distracting, and

ugly proliferation of design elements.
The Bartlett Press's books are, in general,

pretty good. The major difficulty we have had is in

using non-Computer Modern fonts in mathematics;

often the kerning is not ideal. It is, however, quite
good enough for most purposes and compares well

with the kerning of other math setting systems.

Books we have set with little or no math are, for all
practical purposes, perfect.

I should confess that. overcome by a spirit

of honesty, I brought the first book we ever did,

which was produced while we were first learning

w - i t had many of the problems I attribute above
to traditionally composition methods. Of course,

we did learn better. It also provr, &at someone

knowledgeable in typography can get decent results
with m, even though someone trained in TEX
may produce something typographically awful.

370 TUGboat. Volume 12 (1991), No. 3 P r o c e e d i n g s of the 1991 Annual Meeting

The Bartlett Press often has the advantage of

keying its books from MS; books that other compa-

nies have set are produced from the author's disks

and, usually, on low budgets. It is in these cases

that ?jEX becomes a second-rate (or worse) typeset-

ting system. This is especially obvious if the author

is his own designer and if he uses only Computer

Modern fonts. However, even high-budget books
suffer if the m n i c i a n is insufficiently thorough

or insufficiently acquainted with the conventions of

typography. For instance, consider the way verti-
cal space is handled when two elements that each

contribute space abut one another. Publishers have

rigorous standards for such cases. but no standard
implementation of w will perform properly. Of

course, can handle this problem, but only if

the w n i c i a n is enough of a typographer to do it.
Reading over these comments, I see that they

seem a bit churlish and self-aggrandizing. I should

say, therefore. that many of our competitors do fine

work. Yet it is important that publishers know

that there is at least as much variation among

typesetting firms as there is among traditional firms
and, more importantly. that the use of does

not, in and of itself. guarantee that a project will

be either good or shoddy.

S o m e Solut ions t o Some Problems. Various

speakers complained about W ' s steep learning

curve. But this is a problem only if one wants

everyone who uses TEX to be a wizard. We train

our keyboarders to use 7&X in a day; after a week

they're thoroughly used to it. But how do you

handle something really difficult, you may ask. We

tell the keyboarders to make up a macro, which they
will not even try to define, with as many arguments

as they think necessary. When the file arrives in

house, we supply the necessary definition. Thus,

one only needs one wizard for twenty or thirty users.

Another complaint often voiced had to do with

costs and scheduling. A sore point. We cannot

guarantee either until we have seen everything
pertaining t o a job: the complete manuscript, the

complete set of files. and the finished design. An

estimate based on the first few chapters cannot

possibly include the cost of repairing the horrific

mess the author made of the eighth chapter. Even

so, I am baffled by the assertion that it is often

cheaper to have a manuscript reset in the Far East

than to have a domestic firm work with the author's

files. Our experience tells us that it is a rare author

indeed who can make that great a mess of a 7&X
file.

The problem of fonts is still a serious one, but

now that virtual fonts are a standard feature of

device drivers. the problem will begin to disappear.

Meanwhile, users should not be afraid of meddling

with ?jEX . p l files to tweak the kerning to their

satisfaction. Be very sure, however, to send the

resulting . tfm to your output service; otherwise,

you will not get very good results.

The problem most often mentioned was that of

page makeup. It is undeniably difficult to get w
to set page breaks that uniformly adhere to the pub-
lisher's standards. However, creative macro writing

can solve all the problems. The simplest case-

that of one-column text - is relatively simple, even
though no standard set of macros (p la in . tex .

IP?jEX. AMS-w) can handle it. The general case
of multicolumn text is hard; one must do a lot of

work to overcome some deficiencies in the design of

w itself.

Given our experience with setting multicolumn

material, I suspect that m will never be widely

adopted for newspaper and magazine work unless it
is substantially rewritten. This journal (TUGboat)

is proof enough of that - the design and typesetting

are serviceable, but hardly triumphs of the art.

TUGboat, Volume 12 (1991). No. 3-Proceedings of the 1991 Annual Meeting

in a Book Production Department

Howard Ratner
Springer-Verlag New York Inc., 175 Fifth Avenue, New York, NY 10010, USA
212-460-1655
Internet: ratnerQspint . compuserve . corn

Kenneth Dreyhaupt
Springer-Verlag New York Inc., 175 Fifth Avenue, New York, NY 10010, USA
212-460-1655
Internet: dreyhauptQspint . compuserve . com

Abstract
\

This paper presents the point of view of a publisher's book pro-
duction department when accepting author-supplied m manu-

scripts. Topics covered include tips for authors and publishers,

L4w vs. rn vs. d,uS-w as publishing tools, creation of
house macros, and use of freelance services.

Introduction

History. The use of w at Springer-Verlag New

York began sometime in the early 1980s with the

acceptance of "camera-ready" copy from authors.

Unlike our parent company in Germany, no macros

were developed and no guidelines exclusive to TEX
were written. Authors had only our general camera-

ready guidelines to guide them and those guidelines

were developed for the lowest common denominator,

namely, typewriter copy.
By the middle to late 1980s, author pressure to

create their books using increased to the point

that PTEX macros were developed using a consul-
tant. This enabled us to do two things: accept

author-supplied copy on a standardized basis and

employ freelance l&X typesetters to set copy from

paper manuscript. At this point output was from

300-dpi laser printers and the quality difference was
clearly visible between books done in rn and our

conventional mathematics typesetters.
During this time no 'l&X expertise was being de-

veloped in the Book Production Department. There

were two reasons for this lack of expertise: (1) at
that time people who were employed in book pro-

duction departments had little or no computer skills

or experience; and (2) little or no equipment was

available t o gain that experience.

In the last two to three years the situation has
changed dramatically. The tremendous increase in

author use of w, improved output capabilities,

and growing availability and experience of TEX sup-
pliers has made w not only a viable part of any

mathematical or physical sciences production de-

partment but a star.

Production Outlook

Costs. One of the main functions of a production

department is to spend money. The success of any

department is determined by not spending any more

than is necessary to produce a quality product. w
has the capability of producing a quality product at

a low cost. However, several factors can negate this
cost-saving possibility: (1) author fees for providing

hard copy or electronic files; (2) high output costs;

(3) high freelance costs for typesetting or reformat-
ting; (4) overhead costs when authors do not use

macros or have problems in the final stages of pro-

duction.

Quality. The word quality can evoke different vi-

sions from authors and production editors. Both

agree it means the lack of typographical errors and

errors in fact. At that point, however, the visions

may diverge.
The area of greatest potential conflict is design.

Authors with the power of computer technology and

all the fonts that a few hundred dollars can pro-

vide, want to express some creativity not only in the

words that appear on the page but in the appearance

of the words themselves. Book design, however, is

both an art and a science. Production editors with a

decade or more of experience hesitate to change de-
partment specifications to fit a particular book, but

authors who have read a few dozen books want to

372 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

in a Book Production Department

repeat catchy elements that they have seen in sev-

eral of them. Book design and typograghy should be

left to professionals. That does not mean that some

authors cannot produce quality design work, but

the continued submissions of "ransom note" designs

should lead departments to discourage this practice.

Error prevention is an important quality con-

sideration. Is there anything more distracting than

reading a book with the appearance of a high-quality

product and finding typos and other annoying er-

rors? One service that conventional math typeset-
ters provide is professional proofreading. This can

be lost when an author or a small freelance service is

setting the book. We try to recover this lost service

by copyediting in the page proof stage. The copy

editor performs both copyediting and proofreading
functions and also serves as a design reviewer. This

step has saved authors from embarrassing errors in

books they thought were final and clean.

Hardware

rn coding is the same on all platforms, but user
interfaces can vary widely. The variations of in-

terfaces cause difference~ in flexibility, disk man-

agement, learning curves, and of course speed. A

large part of deciding on which platform to run m
can be derived by available equipment and budget.

There are high-, middle-, and low-end rn hardware

setups.
Springer uses what could be considered a

"middle-end" hardware setup. We currently run

TJ$ in a combined DOS-Macintosh environment.

Our setup grew out of a basic office computing sce-

nario. Production editors used PCs for word pro-

cessing, spreadsheets, and database work. Macin-

toshes were recently brought in to bolster our art

program and increase our desktop publishing poten-

tial. When we decided to bring desktop publishing

(including m) into the department, we chose to
upgrade our current configuration rather than start

from scratch. A few more computers were added.

These were equipped with more memory, faster pro-

cessors, and larger storage devices. Book-length

files are huge. We often find these files (par-

ticularly dvi files and output files) in competition

with other applications for storing files in our hard

drives. We even added a local area network, a pair

of modems, and a scanner. In this way, TEX files

can be edited and coded at one station and mas-

saged at another. Proofs can be generated on any

of our bitmap and Postscript laser printers.

More important, this configuration allows
us considerable flexibility in accepting author-

generated files. We can take files from DOS, Mac-

intosh, and UNIX environments, either via disk for

large files or telecommunications for short ones. Au-
thors working in the UNIX environment are asked

to download their large QjX files onto DOS- or

Macintosh-formatted disks. Authors working on

PCs or Macintoshes send in their files as is.

DOS. TFJ runs well in both the PC and Mac en-

vironments. The DOS version utilizes separate pro-
gmms that can be mixed and matched. A variety

of text editors, TJ$ engines, dvi previewers, and

printer drivers can be used. Each can be obtained

at reasonable prices. This gives great flexibility for

users. An added benefit is that a user's "tried and

true" text editor can be used with maximum ef-
ficiency. A major drawback is the fact that each

program must be run separately in order to create
hard copy. Each program requires a given amount

of startup time. Adding startup times for the four

necessary programs (editor, T$$ engine, previewer,
and print driver) easily creates a significant amount

of time merely waiting for the DOS version to load.

Macintosh. The Macintosh version offers a fully

integrated interface. The text editor, engine, pre-

viewer, and driver are all built-in. Unlike the DOS

version, only one program is needed to create final

copy. Some consider the Macintosh version easier
to learn. However, the higher prices of Macintosh

hardware and software make use of these machines

in large quantities more difficult in a book publish-
ing atmosphere.

Our mixed environment allows us to leave all

machines application non-specific. We have not ded-

icated any of our machines to only running rn.
All of our machines can be used for general word
processing, spreadsheets, database work, and other

desktop publishing applications, as well as for m.
The network allows us to keep work constantly mov-
ing. Text files, macros, and style files can easily be
accessed throughout the network. Production edi-

tors working on a project are not anchored to only

one machine, thereby increasing productivity. Some
might say that does not perform at its abso-

lute best in this environment, but Springer is not in
the business of becoming a composition house. AS

a publisher, we set out to create a working environ-

ment in which we could accept QjX files, edit last

minute changes, and obtain final copy. Raw manu-

script and major editing projects are routed out of

house.

UNIX. An alternate, higher-end setup would uti-

lize UNIX. Workstations and software could be pur-
chased at a premium price. This high price tag

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 3 73

Howard Ratner and Kenneth Dreyhaupt

would allow for increased speed, true multi-tasking,

and TEX working faster. UNIX systems are mainly

used by programmers and as yet have made little

headway into the general business marketplace.

][PT)ijX VS. 'l&X VS. ~4mS-w
The three most common varieties of TEX are I P W ,

plain W, and A M S - W . Each has its strengths

and weaknesses.

IPW. From a publisher's point of view, I 4 w is

the version of choice. It is more structured than the

others. It was created by Leslie Lamport for authors

to create books and other documents. The macros

are very comprehensive. Authors using I P W al-
most always use the well-defined macros available

in I P W , rather than creating new ones. This re-

liance on the I4W coding schemes makes it very
easy for publishers to apply their own macros. The

publisher simply alters the pre-existing set of I4W
macros. The author need not learn any new com-

mands. As far as the author is concerned, he is using

the standard I 4 W codes.
As mentioned above, the I4m coding scheme

creates a very structured design that relies more on

proper layout technique than visual appeal. Good

layout is often the primary ingredient for creating a

good-looking book.

Plain TEX. On the other hand, plain TEX and

A M S - r n are far more flexible. Using plain TEX.
the author has near total control over the look of
the book. TI$ starts from scratch. There are few

readily available layout macros built into the system.

Authors must create their own macros or define the

document line by line. Many authors prefer this
flexibility as it keeps them from feeling trapped in a

generic design. Such an attitude can cause problems

for the publisher when trying to produce the book.

Few authors are trained designers, and many times
what looks nice on single sheets translates poorly to

a bound book.
It is possible for publishers to supply useful

macros for plain 'I)-$. As there are no initial overall

layout commands in plain W, these macros would

introduce a n entirely new set of commands for the

author. Therefore, authors should use these com-

mands as they are creating their chapters. This

is different &om I P w where an author is famil-
iar with the basic I P W commands and therefore is

readily familiar with the macro commands.

A detailed set of instructions must accompany

the macros, as the authors must be taught the macro

set and how to use it. Designing plain Tf$K macros

brings up the problems of creating macros from

scratch. This topic will be detailed in the section
on house macros.

Another problem can also arise from author-

created plain W macros - a seemingly innocu-

ous author-created macro could unknowingly con-
flict with the publisher's macros, making a tremen-

dous mess when run through m.
A@-=. A M S - W ' S greatest asset is its easy
accessability to the AMS fonts. This extra set of

fonts allows mathematicians to utilize a number of

special mathematical characters. These fonts can

be accessed by I P m and plain W, but not as

easily. AMS-TpX has some built-in structure. The
AMSPPT.STY is a layout format designed for type-

setting a mathematical paper. Books have different

demands. Publisher macros can be used to overlay
the AMSPPT . STY, but the coding set available is not

as comprehensive as the one available for I4".
Using the AMS fonts can be a problem if not

handled carefully. Some high-resolution output ser-

vices do not have these fonts. The fonts can be ob-

tained, but often this leads to schedule delays and

font "bugs," such as character crashes and font pri-
ority problems.

In the end, plain TpX and A M S - W can be

used to create a high-quality book, but they will re-
quire more effort on the part of the publisher and the

author to do so. I P W was designed to make books,

and with a little tweaking provided by publisher-
designed macros, high-quality products are ensured.

Developing House Macros

The development and use of house macros is the
most critical area for success for a book production

department using TJ$. House macros are the meet-

ing place for production departments and authors.

Macros should have three qualities: (1) they
should be easy to use and concise; (2) they should

be flexible enough to allow the author to express
himself even when confined to a house style; and (3)

they should be accessible. If these qualities are not

there, authors will not be inclined to use the pub-

lisher's macros, and more work for the production
department will result.

Ease of use depends on the accompanying docu-

mentation in the form of an instruction file as well as

the generous use of comment lines within the macro

itself. FlexibiIity is the result of the house macro

operating on the format aspects of the copy only.
Macros should be available for both single-

author and edited volumes.
The easiest way to get started with house

macros is to hire a TEX specialist as a consultant.

374 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

TEX in a Book Production Department

There are several advantages to this: (1) the startup

speed of your rn program will be that much faster;

(2) you do not use valuable in-house time on some-

thing your department is not suited for; (3) you get

professional expertise and a set of macros tailored to
your house style; and (4) you get follow-up down the

road when the consultant works as a troubleshooter

for you. The disadvantages are: (1) the cost of hir-

ing the consultant; (2) new macros almost always

have bugs that need to be worked out; (3) if you

have little or no T@ knowledge and the consultant

is not working closely with you, you will have a set

of macros that you do not understand and that you
cannot explain to your authors.

Another method for obtaining house macros is

to adapt an already existing macro for your depart-

ment's use. The advantages here are: (1) the cost

is low because you are not paying a consultant and

you are not spending a lot of in-house time; (2) the
macro is generally bug-free; (3) this forces you to

learn more about w and will enable you to adapt

to unique situations when they arise.

At Springer-Verlag New York we undertook a
combination of these two approaches. First, when

we had no TJ$ expertise in-house, a consultant was

hired to develop a I 4 w macro for us. This en-

abled us t o get the ball rolling on TEX and have a
"welcome mat" available for our authors. We then

worked to get our 7QX expertise improved internally.

It did not take more than a few months of accept-

ing J3w books for us to feel comfortable both with

I 4 w and with the macros that were developed for
US.

We also began picking up experience with plain

r n . We borrowed a suitable plain Q-J macro pack-
age from our Heidelberg production department and

adapted it for our own needs. We left 95% of the

macro package untouched, therefore it was free of

bugs.

After two years of this kind of experience, we

are now at the level where we can begin thinking

of developing our own macros. We also feel com-

fortable helping our authors with problems on their
macros.

Suppliers

The use of service suppliers for is a key to
the success of w in the production environment.

There are three types of services that can be pro-

vided out-of-house: keyboarding, reformatting: and
full service.

Keyboarding. The availability of TJ$ keyboard-

ing services has grown in the last few years. Because

a lot of overhead is not needed (all that would be
required would be a microcomputer, software, and

printer), services that provide only keyboarding can

be quite economical for math typesetting. Springer

was already using keyboarding services to provide
camera-ready copy. We are now moving away from

tha,t for two reasons: (1) the keyboarding service

was not providing true full service; and (2) most

authors for math books are already providing TJ$
files for our books. Our keyboarding services are

now moving to the function of inserting author and

copyeditor corrections to an already existing

file.

Reformatting. Another service necessary for out-

of-house work is reformatting of existing rn files

to house specifications. Some of this work might in-

clude dimension and font changes, figure placement
or spacing, running head preparation, and insertion

of house macros.

Whether Production can use these services is

decided by cost. A comparison must be made be-

tween the costs of this being done out-of-house, ver-
sus in-house (overhead), or just using the TJ$ out-

put as a well-prepared manuscript and typesetting

through n o n - w sources.

f i l l Service. By full service we mean accept-

ing a paper manuscript or a w file on diskette

and providing keyboarding, proofreading, format-

ting, macro writing, illustration work, and output.

This is essentially providing the same services as
any conventional typesetter, just using TEX to get

it done. For the Production Department there is no

distinction between these services and conventional

typesetters. They should have to compete on a cost,

quality, and schedule basis.

Fonts, Figures, and Final Output

There are currently two tracks used for outputting

TJ$ documents: bitmap and Postscript.

Bitmap. Following the bitmap track, one primar-

ily uses T@'s standard Computer Modern typefaces
and has them output at high resolution. N o n - r n

coded figures are stripped in by hand onto the final
pages. This is done by the conventional method of

cut-and-paste using wax, a blade, and a light table.

The bitmap track provides a high-quality final prod-

uct at low cost and easy maintenance, but is very

limited in flexibility. Last-minute changes are diffi-

cult to make as they often mean having to restrip

art.

Postscript. The Postscript track offers a much

more flexible environment. A user can choose from

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 375

Howard Ratner and Kenneth Dreyhaupt

a huge library of PostScript fonts at varying reso- Staff Training
lutions. Figures can be placed electronically. Fig-

ures can be scanned into encapsulated PostScript
files or drawn using various computerized art pro-

grams, then stored as an encapsulated PostScript

file. These files can then be imported using ?]EX'S
\ spec ia l command.

PostScript is the mainstream font language of

the desktop publishing community. If a user cre-
ates PostScript output files rather than dvi files, he

can take advantage of the thousands of PostScript

output vendors, both locally and internationally.

This huge output service community keeps the

market volatile. Prices depend on resolution re-

quired, turnaround, and volume. Unfortunately,

most PostScript vendors are not ?]EX-aware. If a
user can only create dvi files, they have greatly

reduced the number of available output services.

?]EX'S dvi file concept is foreign to most service bu-
reaus. Being able to explain the dv i file concept and

judge a bureau's technical expertise requires more

in-house knowledge on the part of the publisher.

Springer-Verlag New York is currently follow-
ing the bitmap track though we are progressively
moving toward the PostScript track. However, our

current plan is to not move completely out of the

bitmap track, but look at output on a case-by-case

basis. Using the standard 'I'EX dvi files to obtain

high resolution output is still the easiest and most

cost-efficient means for obtaining camera copy.

Author Submissions

There are many ways for authors who submit m
files to help a production department handle their

files in a quick and economical way. Authors should

provide source, macro, and dvi files as well as hard

copy to the publisher. They should check with the

publisher t o determine the disk, tape, and other for-

mats required for submission.

Naming of files is important. Authors writing
a book a year can title their files ch i . t ex , etc.,

but this will force the production department to re-

name files so they are not lost among all the other
ch i . t ex's. This applies to macro files as well. Nam-

ing your files with the part of the first author's last

name should be the standard (e.g., Spr i . tex) . Do

not name files book. tex, preface. t ex , macro. tex,
etc.

Authors should use the publisher's macros. If
they want t o modify those macros for their book,

they should speak with the production department.

Perhaps the best route for training staff in m is to
send them to a ?]EX Users Group training course and

then apply that knowledge in-house on numerous

projects. In a few short months, a book production

department often sees a wide variety of T)$ books.

This atmosphere provides a rich training ground.
Students about to learn T)$ should have already ac-

quired strong word processing experience, especially
in search and replace techniques (macro creation is

an added plus). Knowledge of file manipulation is

also strongly recommended. ?]EX creates an enor-

mous number of files. These files must be kept in

very specific locations. Simply knowing the differ-

ence between subdirectories on a PC or folders on a

Mac is without question invaluable.

Springer has also discovered that a varied desk-

top publishing environment also helps build exper-

tise in ?]EX. The ability to conduct staff brainstorm-
ing sessions in ?]EX makes a production department

an arena for quick learning.

Secondary Usage

The day is very near (if not here already) when the

paper product will not be the only form in which

a book is published. Standardization of electronic

files will become a requirement in the coming years.

Authors now have the ability with TJ$K to e-mail files
to colleagues for almost instantaneous interaction

over long distances.

SGML is the ultimate standard and may be the

goal for production departments when considering
the handling of electronic products. This stands

?]EX in good stead for many years to come. First, it

is ASCII-based and easily lends itself to translation

to SGML forms. Second, it already is something of a

standard in math and physical science departments

around the world, giving TEX a great advantage over

the proprietary systems of most mathematics type-
setters.

Conclusion

Any publisher in the science and technical area, par-

ticularly in the mathematical and physical sciences,

is going to have to deal with in order to pro-
duce cost-competitive books in a high-quality way.

Knowledge must be gained in production depart-

ments to deal with files, and author-publisher

interaction in this area must be supported. Produc-
tion departments that treat ?]EX as a black box will

not be gaining everything that they can from 7&X.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

d v i and EPS : The Ideal Aut hor-to-Publisher Interface?

Berthold K.P. Horn
MIT A1 Laboratory, 545 Technology Square, Cambridge, MA 01741 USA
Internet: bkphQai . n i t . edu

Abstract

dvi files specifying text and document format, along with

EPS (Encapsulated Postscript) files for included figures, are
rapidly becoming the de facto standard for interchange of

machine-readable manuscripts in technical publishing. While

dvi file format and EPS file format are standardized, the glue
holding them together, namely the \ spec ia l macro, is not. This

is presently the weak link in the chain. Unfortunately, in the

absence of an officially sanctioned standard, every publishing

organization is developing its own standard, often inelegant and

inextensible. Electronic publishing has arrived. Publishers in

specialized technical areas are using machine-readable material

now. Their needs for standardization have become critical.

Introduction

Device-independent (dvi) files specifying text and

document format, along with Encapsulated Post-

Script (EPS) files for included figures, are rapidly

becoming the de facto standard for interchange of
machine-readable manuscripts in technical publish-

ing.
The advantage of dv i files over raw 'I$$ files

is that there is no need for the publisher or service

bureau to bring up the special version of rn used
by the author, nor does the publisher have to deal

with the author's macro packages. dvi files are

supremely standardized, portable and compact.
The advantage of dvi files over Postscript (PS)

files produced by present-day dvi-to-PS converters

is that dv i files are resolution-independent, while

Postscript files containing bitmapped fonts are not.

As long as dvi-to-PS converters continue to use

bitmapped fonts. they will have to be run over the

dv i file again and again, each time an output device

with different resolution is to be used.
While dv i file format and EPS file format

are standardized, the glue holding them together,

namely the \special macro, is not. This is

presently the weak link in the chain. Unfortunately,
in the absence of an officially sanctioned standard,

every publishing organization is developing its own

standard, often inelegant and inextensible.

The only viable alternative to the combination

of dvi and EPS files is the resolution-independent

PS file. Resolution-independent PS files containing

both text and illustrations are possible now that

high-quality outline font programs are available for

Computer Modern.
One advantage of resolution-independent PS

files over dv i files is that they contain only ASCII

characters and so can be more conveniently stored
and transmitted. Perhaps more significant is the

fact that resolution-independent PS files can be
sent to a service bureau that is not knowledgeable

about Tf$ and dvi and does not have access to

high-resolution bitmapped fonts. This lowers costs
considerably and gives the editor or author complete

control over the final appearance the work.

The Best Medium of Interchange?

We probably would all agree that when writing

on a technical subject, particularly one requiring

the use of mathematical formulae, an author these

days finds few viable alternatives to the use of 'I$$
for preparing papers and books. In the past, the

author's manuscript, after review and revision, was

typeset, with the author required to proofread the
result, which quite often was less pleasing than the

original 'I$$ output submitted!

This whole process is expensive, slow, frus-

trating, and error-prone. It is, of course, being

displaced by the obvious alternative. But so far this
transition has been slow and painful. There are a

number of critical areas that need urgent attention
if the change is to progress more smoothly.

First of all, what is the best medium of

interchange between author and publisher? Should

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Berthold K.P. Horn

it be (a) TEX source, (b) d v i files. or (c) PostScript

code produced from dvi files? I will argue that at

the present state of development the d v i file is the

best of the three alternatives. The reason is that

dvi files are standardized. portable, and compact.

(And unlike some other 'standards' the format of

dvi files really has not changed for many years.)

source and macro files. If the author
supplies TJ$ source, the publisher or typesetting

service bureau needs to be able to run the dialect

of TEX used by the author, and also have access to

the macro packages used. This may involve moving
a complex web of interrelated files. More seriously,

it requires considerable investment in computer

hardware, software, and a level of sophistication

that is not required if only dvi files are being
manipulated.

Another problem is that the publisher may have

stale versions of some of the macro files. One way to

make the use of TEX source slightly more bearable,
and to circumvent the stale macro file problem, is to

create a program, called TeXExpand perhaps. that

creates a single (large) file by (recursively) inserting

files called for in the original 'I&X source file.

PostScript code. PostScript code generated from
dvi files in the past was not resolution-independent,

since dvi-to-PS converters used bitmapped fonts.

This meant that the publisher had to tell the
author in advance what device the text would be

typeset on, and the author had to build the (large)

bitmapped font files required for that device.
Typesetting could not proceed from the same

file used by the author to produce draft output for

review. The publisher did not have the ability to

later alter the choice of output device, since the

resolution was frozen in the files.

dvi files. The above clearly suggest that 'I&X
source and PostScript output are less satisfactory

than d v i files. To many people the idea that the

dvi file is the best medium of interchange is so alien

that, even after being told several times to send dvi

files, they continue to submit PostScript files; and

when reminded not to do this, they will send 'I&X
source files along with a web of macro files!

The only minor drawback of dvi files is that

they are binary, requiring care in transmission.

What about Illustrations?

Next we come to the question of illustrations.
Presently the most satisfactory method here appears

to be the use of encapsulated PostScript files.

Properly constructed - that is, conforming - EPS

files can be resolution-independent and print well

on any PostScript image-setting device. Some of

the alternatives are less satisfactory, although they

have their uses in specialized situations, e.g.:

a. I4m l i n e and c i r c l e fonts permit construc-

tion of certain kinds of simple figures;

b. can generate graphs and figures of

limited complexity; and

c. METAFONT can generate bitmap images. al-

though these are not resolution-independent.
and will look 'pixelated' when printed on a

high-resolution device.

In most cases then, the combination of dvi and EPS

files appears to be the best combination for transfer
of material from the author to the publisher.

Indeed, dvi files specifying text and docu-

ment format, along with EPS files for included

figures, are rapidly becoming the de facto standard

for interchange of machine-readable manuscripts in
technical publishing.

dv i Files are not Device Independent

The only problem with this rosy picture is that

d v i files are not truly device independent! Yes,

unfortunately there are two areas in which the

extensions provided for by w lead to difficulties.
And these extensions are the very ones that we can

no longer imagine living without. They are:

a. Inserting illustrations using \ s p e c i a l ; and
b. Using fonts other than those in the Computer

Modern family.

What's so Special about \ spec ia l?

The problem with use of \ s p e c i a l for figure inser-
tion is the more complex of the two problems, but

also the one more urgently in need of a solution.

In the absence of an officially sanctioned standard.

every publishing organization using w or dvi files

is developing its own de facto standard, sometimes

inelegant or inextensible.

A major stumbling block to completion of the

transition to electronic publishing is that every d v i

processing program supports a different convention

for usage of \ spec ia l . This means that every job

is a custom job. Instead of a smooth operation

involving only the transfer of the author's dvi and

EPS files, a serious programming effort is often

required to deal with yet another way of using

\ spec ia l .

While \ s p e c i a l is the open door to extensions
of usage. we need concern ourselves here

378 TUGboat, Volume 12 (1991). No. 3 -Proceedings of the 1991 Annual Meeting

d v i and EPS: The Ideal Author-to-Publisher Interface?

only with the use of \special for figure insertion.

Arguments over uses of \special for other purposes

should not drown out discussion of the urgent need

for a simple standard for figure insertion.

No one can anticipate all the possible uses

for this powerful extension of the rn language.
nor is it likely that the community can soon agree

on the details of how such extensions are to be
implemented. But this should not stand in the way

of satisfying what has now become an urgent need:
a standard way of using \special to include figures

in text.

When the discussion of standards for dvi

drivers first started, there was little urgency, since
the routine need for these capabilities had not yet

arisen outside a small number of research laborato-

ries. Progress in this field has been rapid. however,
outpacing deliberations of the standard committees,

with journals rapidly switching to machine-readable

material. Similarly, books are now routinely pro-

duced from w output.

This represents one of two major obstacles to
seamless electronic publishing. Therefore,

0 The time for publication of a simple standard

for figure insertion in papers and books is now.

Simple requirements. What is required is in fact

really quite straightforward. All that is usually
needed is a means for inserting a figure, possibly

scaled. at the desired position in m. Sometimes it

is also useful to be able to shift and perhaps rotate

and clip the figure. Informal statistics show that

80% of the time simple figure insertion is enough.
while scaling is also called for in perhaps 20% of the

cases. Shifting, rotating, and clipping are almost

never used, but should perhaps be provided-just
for generality's sake.

More important, no use seems to be made
of the ability to insert verbatim Postscript com-

mands, to call on Postscript functions native to a

particular dvi processing program, or to produce

overlays. While these transformations represent in-

teresting and powerful extensions, they apparently

are not vital to the production of even the most
sophisticated texts.

There may be several reasons for the limited
use authors presently make of the more complex
figure manipulations:

a. Apparently even the most sophisticated text-
books can be produced using little more than

simple figure insertion.

b. It is relatively easy to modify a file that obeys

the EPS structuring convention to achieve the
desired graphical transformation.

c. Authors know that exploiting esoteric features

of particular dvi processors will reduce the

portability of their document and consequently

restrict themselves t o the simplest operations

that will accomplish their objective.

Lack of standardization of usage of \special for

figure insertion is the main obstacle to seamless

electronic publishing using W. A simple standard

is urgently required.

Existing schemes. For inspiration one might

consider some of the existing schemes:

a. The use of \special in UNIX'S DVI2PS is

simple, and provides most of the listed features.
An example:

\specialIpsfile=figure.eps

hscale=0.66 vscale=0.66)

b. The use of \special in Blue Sky Research's

Textures is also satisfactory, although it does

not provide all of the features indicated (but in

turn provides some others). An example:

\special(illustration figure.eps

scaled 667)

c. The proposed use of \special in Nelson

Beebe's next release of DVIALW has many de-

sirable features (although it is perhaps more

complex than needed). For example:

\special(language=PS include=figure.eps}

It should be possible to use \special for figure

insertion without reference to internal procedures

of a particular dvi-to-PS converter or inclusion of
verbatim Postscript code.

It should be clear in any case that a standard

syntax for figure insertion using \special should

be established as soon as possible.

Font-Naming Woes

The other device-dependent aspect of dvi files is
the naming of non-Computer Modern fonts. This is

the easier of the two problems to analyze-and to

fix. l
For Computer Modern there exists a standard-

ized way of relating the font names used in

to the files containing font metric information and

the files containing the actual out lines or bitmaps

of that font.

The reason the discussion of the font naming

problem covers more paper here than discussion
of the more serious problem of standardization of

\special for figure insertion is precisely that it is

the simpler of the two issues.

TUG boat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

Berthold K.P. Horn

We do not usually waste much time worrying

about this, but there needs to be a mapping between

three entities: (a) the name used to refer to a font

in the l&X source document, (b) the name of the

font metric (tfm) file for that font (which T&X
needs to do its job), and (c) the name of a font

program file (or a font program in the printer)
that actually draws the characters (which the dv i

processing program needs to know about).
Unfortunately, there is no general agreement

yet on how to build such a mapping for fonts other

than Computer Modern. The problem would be
slightly simpler if it were not for the fact that the

name used to refer to a font in used to be

constrained to be no more than 6 characters long-
and is in any case constrained to no more than 8

characters by some operating systems such as MS-
DOS. What is done now - as a stop gap measure -

is for dvi processing programs to accept an auxiliary

file that contains the mapping. This file must

be supplied by the author or constructed by the
publisher after obtaining the required information

from the author.

One reason the font-naming problem is becom-

ing more of an issue is that many publishers are

urging authors to be more ecumenical about font

selection. So far, such pressures have encountered

strong resistance because of the sparsity of satis-

factory non-CM fonts for typesetting mathematical

formulae. But there is now at least one alternative:

Bigelow and Holmes' LucidaMath fonts published

by Adobe.

Lack of portability. This lack of standardiza-
tion has proved to be a source of frustration when

dvi files are ported from one computer system to

another, as is common when publishing journal ar-
ticles and books from author-supplied material. As

it stands now, each project requires customization,

compelling the typesetting service bureau to set

up yet another new font-name translation table.
Perhaps more seriously, without a uniform naming

convention, it may happen that the dvi processing

program and have conflicting notions about

what fonts are being referred to-with disastrous

consequences.

The above represents the other major obstacle

to seamless electronic publishing. Therefore,

rn A standard naming convention for fonts other

than those in the Computer Modern family

should be established as soon as possible.

This is particularly important for the existing col-

lection of fonts in Adobe Type 1 format. This

collection is both popular and very large. Thirty

vendors supply over 7000 fonts in this format (at

the time of writing), with 1300 in the Adobe Font

Library alone. Here an unaesthetic standard is

better than no standard at all - or a standard that

is not extensible enough to deal with the continuing

flood of typefaces being converted into this format.
One solution would be to establish some per-

manent organization to invent abbreviations or at

least act as a clearing house for proposed a6brevia-

tions of font names. This does not seem practical,

since it is unlikely that such an organization could
deal in a timely fashion with the rapid growth in

the collection of fonts in this format. Consequently,

rn One should use established font-naming

schemes whenever possible.

This will reduce confusion and avoid the need for

a central registry of abbreviations. Adobe. for
example, has already found it necessary to invent

6-character abbreviations for its fonts-it seems
inefficient not to use these.2 This in fact will

take care of a significant part of the font-naming

problem, since presently the most commonly called

for non-CM fonts are Adobe Type 1 fonts.

Remapping of character code assignments.
Unfortunately, the above isn't the full story. Each

font has its own mapping between the numeric

cha,racter codes (typically 0 - 255) and character

glyphs. There are nine different standard mappings

used by Computer Modern fonts: roman (e.g..

cmrlo), text italic (e.g., cmtilo), typewriter (e.g.,
cmtt lo) , typewriter italic (e.g., cmtt i l O) , small

caps (e.g., cmcsclO), ASCII (e.g., cmtexlo),
math italic: (e.g., cmmiiO), math symbol (e.g..

cmsy lo) , and math extended (e.g., cmexl0).

A non-CM font can be used with the encoding
it came with, or can be remapped to one of the

above standard encodings. It must be possible to

distinguish between tfm files for the original font

and the remapped font. The easiest way to do this
is to use different, but related, file names for the

two versions. One simple scheme is the following:

The file name of the tfm file for a remapped
font has an 'x' appended.

This doesn't completely solve the problem, since

it doesn't specify which remapping was chosen.

Unfortunately, the tfm file format does not provide
for an encoding vect,or mapping numeric character

Some of Adobe's font downloaders happen
to limit the font-name part of the file name to

six characters, which conforms exactly to the old

restriction in m.

380 TUGboat, Volume 12 (1991). No. 3-Proceedings of the 1991 Annual Meeting

codes to character names, only an optional field

that may contain the name of a remapping (and

only the nine names mentioned above are in any
way considered standard).

Fortunately, the need for remapping fonts is
greatly reduced by the advent of w 3.0, which

can deal with 8-bit character codes.

Resolution-Independent Post Script

The only viable alternative to the combination of

dvi and EPS files is the resolution-independent
PS file. Resolution-independent PS files containing

both text and illustrations are possible now that

high-quality outline fonts are available for Computer
Modern.

An aside. Some readers may have low expecta-

tions for the quality of rendering using outline fonts,

perhaps having seen the results of some early exper-
iments. Properly hinted Type 1 fonts, however, are

compact, support across-job font-caching, and most

important, produce beautiful characters. Type 3
outline fonts, used in some early experiments, suf-
fered from the 'dot-growth' phenomenon inherent

in use of the Postscript f i l l operator. Further-

more, unhinted Type 1 fonts do not render well

on low resolution devices such as computer display
 monitor^.^

To return to the topic at hand, note that

resolution-independent PS files derived from d v i

and EPS files:

a. should not make any assumptions about the

output device resolution;

b. should not rescale or round coordinates given
in d v i files; and

c. should not refer to bitmapped fonts.

One advantage of resolution-independent PS files

over dvi files is that they contain only ASCII
characters and so can be more conveniently stored

and transmitted. (Extra work is required to safely

transport binary files across networks or even se-

rial lines connecting disparate computer systems.)

There is no need to redo the conversion from dvi to

Also, a particular character's shape may be

described in many different ways by using lines

and Bkzier curves. Some such description may

contain many more elements than really neccessary,

and may not obey the strict rules specified in the

Type 1 standard. Rendering using such an outline
is likely not to be as fast or as clean as that of a

properly constructed outline.

and EPS: The Ideal Author-to-Publisher Interface?

PS form when a printer or image-setter of different

resolution is used.

Perhaps more significant is the fact that

resolution-independent PS files can be sent to a

service bureau that is not knowledgeable about
w or dvi files, and does not have access to

high-resolution bitmap fonts. This lowers costs con-

siderably and gives the editor or author complete
control over the final appearance of the work.

Summary

d v i and EPS files are the preferred medium of inter-
change of material between author and publisher.

Electronic publishing has arrived- although it

is not quite seamless yet. Publishers in specialized
technical areas are using machine-readable material

now. Their needs for standardization have become

critical.
One of the areas in need of attention is that of

usage of \ s p e c i a l for inclusion of illustrations:

0 A standard syntax for figure insertion using

\ s p e c i a l should be established as soon as
possible.

This should not close the door on future, as yet

unanticipated, uses of \ s p e c i a l . All that is needed

now is a simple syntax for insertion of illustrations.

There is serious danger that in the absence of any

guidance ad hoc standards will come into widespread

use that are neither elegant nor extensible. The

window of opportunity for influencing developments

in this area is open now, but will not remain open

indefinitely.
The other problem area is that of naming

conventions for fonts other than Computer Modern:

0 A standard naming convention for fonts other

than those in the Computer Modern family

should be established as soon as possible.

Finally, note that there is an alternative to the

use of dvi and EPS files, namely the resolution-

independent PS file. As a parting thought, consider

the following table of estimated costs:

$30-40 per page for traditional typesetting;

$9-10 per page for service bureau work from

7Q$ source; and

$2-3 per page to print resolution-independent

Post Script.

There is a clearly an incentive to consider seamless

electronic publishing. And there is clearly an even

greater incentive to consider resolution-independent

Post Script.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Producing a Book using TQX:
How the Process Works

Neil A. Weiss
Department of Mathematics, Arizona State University, Tempe, AZ 85287

602-965-3951; FAX: 602-965-8119

Abstract

The steps required to carry out the production of a book using

will surely vary somewhat depending on the author and

publisher. However, many aspects will be similar. In this paper,

we will trace the production of a two-color introductory statistics
book that was typeset using and some Postscript. Since the

book was produced in earlier editions using traditional methods,

we will also discuss some of the advantages and disadvantages of

producing a book using m.

Introduction

As any author will attest, writing a book is a

difficult, time-consuming, and often frustrating pro-

cess. But the completion of the final manuscript

is only the beginning! After that, the book must
go through a production cycle in which a design

is composed; the art is drawn; the text is copy

edited, typeset, and dummied; and the book is

manufactured.

In the traditional method of typesetting, a
compositor is given a copy-edited manuscript to

typeset. The next thing that the author sees is

the galley proofs, long pages of typeset material
with no art in place and no multiple colurnning.

Depending on the quality of the compositor, the

galleys can vary from being an excellent rendition

of the manuscript to an absolute disaster.

After publishing several books using traditional
methods, my sentiments were very close indeed to
those expressed by Robert Adams [1990]: ". . . I t

was my second book done by the old method, and I

resolved a t the time never to write another book!"

Then in 1986, as fate would have it, I saw
a magnified page out of The w b o o k (page 77,

I think) that was posted on a bulletin board.

Upon investigation, I discovered that there was

this wonderful program called 'I[that could be

used to typeset technical manuscripts with amazing
typographical precision-and it could be done on

a personal computer!
My wife Carol and I decided to give m a

try by first using it to produce some supplements
to a textbook that had just been published. With

the help of Professor Thomas Sherman and Carol's

incredible insight, we published the 'I[-produced

supplements. I was delighted with the look of the

supplements and with the control that I maintained

over their production. It was then I decided that,

if at all possible, my next textbook would be done

using m and that it would be typeset by Carol
and me.

Thanks to the faith that our publisher had in
us, we were given the opportunity to use to

typeset the third edition of the book, Introductory
Statistics [1991], by Matt Hassett and me. This

paper traces the steps that were taken to produce

the book.

The Design Stage

The first step in the production of the book was
the design stage. After preliminary discussions with

us (Carol and me) and the publisher, the designer
constructed the design specifications, called the

"specs," based on the previous edition of the book.

If the book had been a first edition. the designer
would have used the manuscript as the basis.

The purpose of the specs is to provide a com-

plete description of every aspect of the design. This

includes the trim size, margins, color separation,

fonts, and detailed instructions for all elements-
cha,pter openers, first- and second-level heads, def-

initions. tables, figures, etc. The designer also

provides a coding for the elements that is used by

the copy editor and the macro writer. For instance,
the following portion of the specs for the introduc-

tory statistics book gives the details for setting the

examples and their solutions:

382 TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

Producing a Book using QX: How the Process Works

EX word EXAMPLE and i t s Arabic double
number cmssi 12/12 f l r i g h t i n margin

c o l . 15pts bb above t o a I p t r u l e x 7 .
P r i n t head and r u l e c o l o r . Base a l i g n
u i t h ET.

ET example t i t l e
cmssi 12/12 C/lc f l l e f t x 30, rr.
33pts bb above, 18pts bb below t o

example t e x t (b a s a l) . 24pts bb below
t o SOL; o r (i f no s o l u t i o n) , use

square per end of SOL and 9p ts bb
below t o end l p t r u l e x 30 (co lor)

which normally fol lows SOL. Min 30pts
bb below t h i s r u l e t o b a s a l .

SOL s o l u t i o n

cmssi 9/12 caps f l r i g h t x margin c o l .

Base a l i g n with f i r s t l i n e of s o l u t i o n
t e x t (b a s a l) . P r i n t c o l o r . 24pts bb
above. Set a s o l i d 6pt square f l r x 30,

base a l i g n e d u i t h l a s t l i n e of SOL.
Clear lem t o l e f t of square. P r i n t c o l o r .

Sp ts # below t o I p t r u l e x 30 (c o l o r) .
Min 30pts bb below r u l e t o b a s a l .

Let me interpret the first two of the three

design specifications displayed above. EX is the
code used for "example." In this case, the word

EXAMPLE is to be set in all caps followed by its

Arabic double number (e.g., EXAMPLE 8.12). The
font to be used is cmssii2, twelve-point computer

modern sans serif italic. Also, the word EXAMPLE

is to be positioned flush right in the margin column

(which is 7 picas wide) with a 1-point-high and 7-
pica-wide rule over it, and a 15-point baselineskip.

The word EXAMPLE, its double number, and the

rule are to be printed in color, and the word is to

have the same baseline as the example title.

ET is the code for "example title." I t is to be

set with ragged right margins and flush left in the
text area (which is to the right of the gutter and

30 picas wide) using the same font as that used for

the word EXAMPLE, with a 12-point baselineskip

if more than one line is required. There is to be

a 33-point baselineskip from the last line before

the example title to the first line of the example

title, and an 18-point baselineskip from the last

line of the example title to the first line of the

example text (which is set in the basal font, cmrl0).

Furthermore, there is to be a 24-point baselineskip

from the last line of the example text to the first

line of the solution text. However, if there is

no solution, then there is to be a 6-point solid

color square, base aligned with the last line of

the example text and flush right in the text area,

followed by a 1-point-high by 30-pica-wide color

rule set 9 points, baseline to baseline, below. There

is to be a minimum 30-point baselineskip below this

color rule to the basal text.

Note: The designer also provides layouts, which

present a graphical display of the written specs.

Once we and the publisher perused the specs

and layouts, potential modifications were discussed

and referred to the designer. Then the designer

drew up a revised set of specs, taking into account

all agreed-upon changes.

Implementation of the Design

Specifications: Writing the Macros

and Obtaining the Sample Pages

Upon receipt of the revised specs, we began writing

the macros. We aimed to include all the macros that

would be needed for the entire book. In retrospect,

however, a more realistic goal would have been for
the initial set of macros to cover all of the design

elements, and to write additional macros on the fly.

After completion of the (original) macros, we

typeset a document that would show how the

various design factors actually looked on paper.
This document was output on a 300-dpi laser

printer and was called the laser sample pages. The

laser sample pages were sent to the publisher for

inspection. As might be expected, we and the
publisher found several design items that sounded

good in theory but did not work out well in practice.

So, it was back to the designer for a final revision

of the specs.
When we received the final version of the

specs, we first effected the necessary changes to

the macros. Then we r e - w e d the sample-page

document and printed the revised copy on our laser

printer. At this point. we also prepared a floppy

disk containing the latest dvi file for the sample

pages. The floppy disk and revised laser sample

pages were returned to the publisher.

The publisher then arranged for the creation
of the printed sample pages to give a true picture

of what the book would look like. To obtain the

printed sample pages, the same steps were taken on

a small scale that would be taken on a much larger

scale for the final book:

a The dvi file was processed using a phototype-

setter to produce the repro (high-resolution

output on specially coated paper).

a Repro was shot and separated for color breaks.

a Art, supplied in film form; was integrated.

Plates were made.

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Neil A. Weiss

Text was printed on the designated paper (in

this case, 45# New Era Matte).

It was a thrill for us to see the printed sample

pages-we could now imagine the appearance of
the final book, although it was over a year away.

There were some minor changes that occurred to us

and the publisher after reviewing the printed sample

pages. The required modifications were made to the
macros and we were ready to begin the typesetting

of the book.

Typesetting the Manuscript

While typesetting the manuscript, we kept a print-

out of the source code for the sample pages handy
for reference purposes. This made it easier to

remember which control sequences did what. Of

course, we also had a printout of the macros avail-

able to consult whenever necessary.
We found that for the initial typesetting (which

produced the galley proofs) it was convenient to

include exactly one section per file. Thus. we
named the files by chapter number and section

number (e.g., 2-3. tex) . At the end of each file,

we employed a macro called \enddocument which
printed the values of the various registers used to

keep the chapter number, section number, chapter

title, example number, etc. Those values were then
input at the beginning of the next file.

The design called for the exercises to be double

columned in nine-point type. But we followed the

traditional method of not multi-columning at the

galley stage. This saved time and allowed more

space for marking corrections. It is important to

note, however, that we did set the exercises in

nine-point type using the l&pica width specified for

each column of the double-columned text.

As we typeset the manuscript, we often found
it necessary to write new macros, especially macros

for complex formulas and displays that occurred

numerous times in the text. These macros were
added to the file is3macs.tex, the macro file for

the book, as they were written.

Since the majority of the art used for the
book was "pick-up" from the second edition, we

made no attempt to do the art electronically. The

design called for each piece of art to be displayed

between two half-point horizontal rules (either 30

or 38 picas wide, depending on the width of the

art) with nine points of space beneath the top rule

and above the bottom rule. So, in the macro for

the figure legend and these rules, we allowed for a

parameter specifying the height of a figure. Then

the required space was allocated automatically. In

a few instances, some changes were made to the

height of figures. These changes were incorporated
into the source code before dummying.

The Galley Proofs (Laser Output)

The first hard copy of the typeset manuscript was

done on an Apple Laserwriter Plus (300-dpi). Carol

and I both proofread this copy, marked corrections
and changes, modified the source code appropri-

ately, and printed out a revised copy. This was

done on a section-by-section basis to minimize any
fatigue that might ensue from continual typesetting

or proofreading.
We sent final galley proofs to the sponsoring

editor in batches of three or four chapters. He

then made photocopies of the proofs and sent them

to the reviewers. It was a tremendous advantage

to have the reviewers see the text in a form that

showed the design of the book, for it provided them

an opportunity to comment on the design before
the book was printed. In the traditional method of

production, the reviewers usually see only a typed

version of the manuscript. Any problems with the

design not discovered by the author or publisher are

there for the duration of the edition!

Although it is propitious to have the reviewers
examine the text in a form displaying the design.

one might consider it dangerous to do all of this
typesetting prior to the reviewing process; however,
in this case, it wasn't -for several reasons. First,

the book was in its third edition and so consider-

able reviewing had already been done in previous

editions. Second, the publisher had arranged for

extensive pre-revision reviewing with the idea that

most of the major issues would be resolved before

the galley proofs were set. And, third, because

we were using TEX and the original typeset text
was not dummied, it really wasn't that much of a

problem to make even extensive revisions.

Final Text Review, Revision, and

Dummying

When all the reviewers had returned a given batch

of chapters to the sponsoring editor, he forwarded

a copy of their comments and suggestions to me.

The editor and I discussed the reviews in detail

and decided on final revisions. Subsequently, I went
to work making the necessary changes and Carol

altered the source code as required.
After all of the final revisions had been com-

pleted, we commenced dummying. This is the stage

384 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Producing a Book using w: How the Process Works

in which the final pages are formed. There were

many details to attend to during the dummying

stage-so many that we decided to make up check

lists to ensure that we didn't forget anything.

Actually, before we began dummying. we mea-
sured the final art (or art dummy, in some cases)

to make absolutely sure that all was as it should

be. We also took care of some last-minute modifica-

tions and checked that the miscellaneous corrections

marked on the galleys had been executed.
As mentioned earlier, we did not double column

the exercises during the galley stage but, of course,
we needed to do so at this stage. To rnake the

transition easy, we defined the following two pairs

of macros, \beginsc and \endsc, to begin and end

single-column exercises, and \begindc and \enddc.

to begin and end double-column exercises. The

two pairs of macros were identical in every respect,

except that the first pair typeset the exercises

in single-column format (18 picas wide), and the

second pair typeset the exercises in double-column

format (two 18pica columns, with a 2-pica gutter).

When we were ready to dummy, we simply changed
from the first pair of macros to the second pair.

We used a variation of \midinsert to han-

dle the placement of tables, figures, and computer

printouts. Although the placement is done auto-

matically, changes in text must be made to account

for referencing whenever an insertion does not fall

in its natural position.

There were other items that required consider-

ation during dummying. For example, the design
specified that our procedure boxes be color screened.

This called for special treatment when a procedure

split from one page to the next.

The Page Proofs (Phototypesetter

Output)

Once a chapter was dummied, we copied the dvi

files onto a floppy disk. That floppy disk was sent

to the publisher along with hard copy (done on our
laser printer). The publisher, in turn, made copies

of the hard copy and sent the floppy disk and a

copy of the laser output to the company that was

doing the phototypesetting.

After the publisher received the repro, photo-
copies were made which, for convenience, we will

call the page proofs. Page proofs were sent to us

and to two proofreaders. The proofreaders also

received a copy of the laser output just in case they

couldn't read something on the page proofs or there

appeared to be some problem on the page proofs.
I t should be emphasized that the proofreaders' job

was to peruse the page proofs, not the laser output.

This was because we wanted the proofreaders to

check what would eventually constitute the pages

in the book.

Theoretically. the repro should be identical

to the laser output except for the difference in

resolution. However, that doesn't always happen in

practice. so care must be taken. In our case, we

found the first ten chapters of the repro to be an

exact replication of the laser output; but, in the

repro for Chapter 11. we found some strange things

indeed: All of a sudden, vertical rules were missing,

kerning was often incorrect, and footnotes extended

into the margin area. This caused everyone great

concern. Fortunately, however, the problem turned

out to be simply that the dvi files had been

processed using a different computer than previously

and there were some compatibility problems. We

went back to the other computer and everything

worked out fine.
We didn't expect the proofreaders to find too

many errors since the text had already been scruti-

nized. But we had two excellent proofreaders and

they did find items that required correction. Those

corrections were made by Carol, who then sent in

new dvi files as required. She also constructed a

chart showing which pages in each dvi file needed

to be rerun.

The Blues Stage and Beyond

When the final repro for a chapter was ready, it

was sent, along with the corresponding art, to a
pre-press house. That house had responsibility for

shooting the repro and separating for color breaks;

integrating the art, which had been supplied to

them in film form; and stripping the film to the

printer's imposition.

We and the publisher each received a set of page
blues. The page blues are proofs of the negatives
that show what the final pages will look like. In

making the blues, the black portion of the page

is overexposed and thereby shows up in a darker

shade of blue than the color portion. This allows

for verification of the color separation.

On the blues, we checked the color separation,

looked for any stray marks that required cleaning,

and verified the figure placement (traditionally,

this last item is done in page proofs). Once all

corrections marked on the blues had been done, the

imposed film was sent to the printer. Plates were

then made and the book was printed.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Neil A. Weiss

Comparison of TjjX with the

Traditional Method

Since the introductory statistics book had been

produced twice before using the traditional method.
I would like to compare, from this author's point of

view, the traditional method with the rn method.

To begin, I should say that, personally, I truly enjoy

the production phase of a book-from the design
stage through to the blues stage. Furthermore, I
like writing the macros for the design. Thus, my

comments will undoubtedly be somewhat biased.
Probably one of the most compelling reasons

for an author to use rn is that by doing so he

or she maintains almost complete control over the

production of the book until page proofs (photo-
typesetter output). Prior to the page proofs, the

author is essentially free to make whatever changes

that are desired. The publisher really doesn't care

whether the author makes changes here and there

as long as they enhance the text and are not an
expense borne by the publisher.

Another good reason for an author to use

has to do with proofreading. Using the traditional
method, many authors (me included) must proof

the text three times: once each for the manuscript,

galleys, and page proofs. On the other hand, with

Tm, it is probably only necessary to proof the text

at most twice; and once might suffice if the original

version does not require extensive revision, as was

the case with the introductory statistics book.
Whether it takes more time and energy on the

author's part to produce a book using TjjX really

depends on several factors. For example, with an

excellent compositor, it may take both less time and

less energy with the traditional method; but a poor

compositor can significantly increase the time and

energy that an author must expend (not to mention

the added frustration).
A possible advantage of the traditional method

over TEX might arise when considering the intensity

of the project. I am referring to the fact that when

an author uses T@, there are rarely any breaks in

the action. With the traditional method, however.

the author generally gets a respite between the

completion of the manuscript and its copy editing,

between submission of the copy-edited manuscript

to the compositor and receipt of the galley proofs.

and between the galley proofs and the page proofs.

All i n all, for me the choice between 7Q-X and
the traditional method is clear-I choose W .

But, of course, each author will have to balance the

pros and cons of using rn based on his or her own
personal experience.

Bibliography

Adams, Robert. "Problems on the rn /Pos tScr ip t /
Graphics Interface." TUGboat 11(3), pages 403 -

408, 1990.
Knuth, Donald E. The w b o o k Reading, Mass.:

Addison-Wesley, 1984.

Weiss, Neil A., and Matthew J. Hassett. Intro-
ductory Statistics, third edition. Reading, Mass.:

Addison-Wesley, 1991.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Authors New To Publish a TextBook With a Publisher New to 7&X

Samuel E. Rhoads
Information and Computer Science, Honolulu Community College, 874 Dillingham Boulevard, Honolulu, HI 97817

(808) 845-9277

Internet: samQuhccux .uhcc . hawaii . edu

Abstract

This paper decribes our adventure of writing a texbook using

TEX and U r n , and in working with a publisher, William C.
Brown, Inc., who had not worked successfully with Q$ in the

past. The paper discusses the learning process we went through
in learning w, in working with a publisher new to Q$, and in

writing a textbook. It is hoped that by sharing our experiences,

other authors and publishers will realize how easy producing a

high-quality book can be, and perhaps some of the mistakes we
made can be avoided.

Introduction

In April of 1987, I received a phone call from Mike

Gearen who teaches computer science at Punahou

School in Honolulu. He had seen a teacher's guide

for the Advanced Placement Computer Science

course that I'd written. and he wanted to know

what programming-in-Pascal textbook I used in my

classes. He had been unable to find a book he liked
and thought maybe I'd found one I liked. We met a

few days later and discussed writing our own book.

I'd heard of 'l&X and thought that using would

make the writing of a book easier. Thus began
our experiences with TEX and with publishing a

textbook.

It's a n understatement to say that the four
years since that meeting have been exciting. We

have seen many frustrating times. but the rewarding

and exciting times far outweigh the frustrating ones.

I still get excited everytime I see a beautiful page

of print coming out of my laser printer.

We purchased our first copies of 7&X and

I P W from Addison-Wesley in the summer of 1987,

and started writing. The start-up time in learning

and l3m was much shorter than I'd feared.

In what now seems like no time at all, we were

preparing pages of the book. In fact, we had enough

done by the end of the year that we used our laser

printer output as a textbook in our classes in the
spring semester of 1988. (Although we used I P W

for the preparation of the book, we always have
thought of it as using 'l&X. Unless the distinction is

important, for the rest of this article, I'll say ''W
instead of saying "'l&X and IP'l&X.")

We sent a prospectus and a couple of chapters

(done in TEX. of course) to several publishers in

late '87 and waited to hear from them. Two of

the publishers liked our prospectus. and offered us

contracts. In both cases we made it very clear that

we wanted to use to prepare the manuscript.

Neither publisher had had a successful experience

with before. One publisher had had no expe-
rience at all with m, and the other had only had

one, unsuccessful attempt. (More on the unsuc-

cessful experience later.) Both publishers initially

discussed what they called "electronic submission

of manuscripts." To them, this meant sending the

manuscript to them on a disk so it would not have

to be typed in again. By this time we were so

impressed with the appearance of the book that we

were brave enough to insist that the book be done

in m as a condition of signing the contract. After

thinking about the two publishers, and trying to

decide which offer was better, we decided to go with
William C. Brown Publishers, Inc., and signed the

contract on February 3, 1988.

By this time a rough version of the majority

of the book had already been completed, and, as

mentioned above, we were using it as a textbook in

our first course in programming during the spring

semester, 1988. We were still working on the later

chapters and developing our 'l&X skills. Rough

versions of these chapters were completed in time

to hand out to our classes by the time they were
needed.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Samuel E. Rhoads

TEX and I 4 ' ' Skills

As our work on the manuscript progressed, we de-

cided it would be convenient to define some macros.

Our first macro was designed to simplify the print-

ing of (b l o c k) . We saw that we could accomplish

this by typing: \langleC\it block)\rangle

everytime we needed it, but soon realized that there

was an easier way. Looking back, it seems like a

minor victory but we were pleased when we learned

that we could define the Urn macro:

\newcommand{\block)

{\langle{\it block)\rangle))

and from then on whenever we wanted to see (b l o c k)

in our book, we only needed to type \block.
As would be guessed, this quickly led to many

other macros. We busied ourselves defining macros
that were intended to make our typing easier. We

decided to collect these macros in a file, macros. tex,

and to input the file at the beginning of each

.tex file. It was easy to get carried away with

this. In looking at macros. tex. I see a macro:

\newcommand(\real){{\tt real)). Even though

we had defined this macro, we seldom used it; we
just typed {\tt real) rather than \real.

Fonts. In our book we spend a great deal of time

discussing algorithms. We stress the development

of an algorithmn prior to the writing of the code.
We decided that we should use a special font to

represent an algorithm, and we started looking

through Computer Modern Typefaces for a font

to use. We wanted a typeface that reminded the

reader of handwriting - algorithms probably should

be handwritten rather than typed-and we found
crnf f I0 and crnf il0. Knuth [Computer Modern

Typefaces, page 281 calls these fonts computer Mod-

ern Funny Font and computer Modern mnny Italic,
respectively, and says that cmfil0 is not quite as

"hilarious" as cmff 10. I'm not sure whether Knuth

expected people to actually use these two fonts, or

was just defining them for fun. In any case, we
don't find crnf i10 funny at all; we like it. We tried

cmff 10, but it proved too hard to read. I wonder if

any other use for either crnf ilO or cmff 10 has been

found by other authors.
The definition for this font-we call it \a1

for "algorithmic" -was placed in macros . tex.
Thenceforth, to produce: Store true in Founu,
we just typed: {\a1 store True in Found).

While this worked fine for short examples of a

step or two, when we wanted a complete algorithm

to appear, we encountered a harder problem: We

wanted a n algorithm to fit completely on a page

and not to be broken where I4W decided to break

the page. We wanted the algorithm to be printed in

the algorithmic font we'd chosen. We also wanted

to be able to indent the examples of algorithms and

code that we presented in the book, and we wanted
the indentation to be uniform. This was one of the

hardest IPT@ problems we had to solve. As with

many problem solutions, I'm not sure our solution

was the best solution - in fact, I'm sure it isn't -

but it works and we've used it since. We played

with different ideas for quite awhile, and finally

developed the following two I4W definitions:

Then whenever we wanted to write a complete
algorithm, we just coded:

\balg

START OF Algorithm

END OF Algorithm

\ealg

to produce:

START OF Algorzthm

END OJ Algorithm

The minipage environment forces I4m to

keep the entire algorithm on the same page; this

sometimes caused ugly page breaks that we had

to fix by hand. The tabbing environment allowed

us to indent our algorithms by just typing \+
whenever we wanted to move to the right one level

of indentation, and \- when we wanted to move

388 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

The Blind Leading the Blind

to the left one level. The \mbox{\)\\ produces

an empty line. The \a1 changes to the algorithmic

font, and the \rm changes back to roman.

The appendix contains an example of how we

typed an algorithm for a function that returns the

greatest common divisor of two positive integers,
and the algorithm as it appeared in our book.

Figures and Pictures. We made great use of

I 4 W ' s figure and picture capability. We defined

figures and pictures to be things that floated.

Figures and pictures always had captions; indeed

every picture was in a figure. As an example of

how these figurelpictures were coded, I've included

a very simple one in the appendix.

Both of us have decent math backgrounds so

the geometry and algebra that were required to

get the coordinates of the rectangles, lines, vectors.
ovals and circles correct wasn't hard. I imagine that

for less mathematically trained writers this would

prove intimidating, and thus I would expect other

authors to turn to more powerful aids. Indeed, as

easy as we found it, it would be nice to know better
ways to get the pictures of syntax diagrams and

trees drawn.
One figure in particular needs to be discussed.

Early in the book we give a skeleton of a complete
Pascal program. It was supposed to look like this:

program (programname) ((f i le l is t)) ;

(block)

I Figure 4.1 The Form of a Pascal Program /

Instead, it looked like this:

program (programname) ((filelist) > ;
(block)

Figure 4.1 The Form of a Pascal Program

We had decided to put all examples of algorithms

and all figures in a different color (blue). We had

also agreed to have the final pages of the book done

on a high-resolution printer by ArborText, Inc., in

Ann Arbor, Michigan. In order to do the second

color, the publisher had to "cut out" some of the

final copy and print it in blue. (I'm not sure how

this is done, so I'm being deliberately vague.) When
Wm. C. Brown printed it, they must have thought

the period was a flyspeck, or something, and they

left it off. That wouldn't have been so bad except

on the next page of the book, we wrote, "Did you
see the period after the (block) in figure 4.1? It's

easy to miss, but it's necessary." It sure was easy

to miss, it wasn't there.
Wm. C. Brown must be given credit. When

they learned of the missing period, they had some-

one go through the warehouse and put a little dot

in every one of several thousand books.

Other Design Issues

Illustrations. We have always been taken with

Duane Bibby's illustrations in The TJJYbook and

decided to find an artist to draw illustrations of

a computer programmer, a user, and a personified

computer for our book. (We considered trying to

find Duane Bibby himself, but couldn't muster up

the nerve.) After considerable searching, we finally

contacted a local caricaturist, Katie Ralston, and
had her draw the illustrations. (Wm. C. Brown

calls these illustrations "cartoons.") I mention the

illustrations since they were the only things in the
book not done by 7&X. The publisher had to insert

them into the final pages prepared by ArborText.

We did, of course, leave room for them in the proper

places.

Style Files. The design staff at Wm. C. Brown

wanted a few changes made in the design of the

book. In order to implement these changes, we had
to modify the style files. We didn't want to change

the . s t y files themselves, so we made copies of

the book.sty, bklO.sty, bk l l . s ty , and bkl2.sty

files, giving them different names, and made the

modifications to those files. Rather than describe all

these changes, I'll just describe one, as an example.

We used the book style with 10-point type. In
this mode, IPTQX causes the running heads to be
printed in ten-point, uppercase italics. The design

people wanted nine-point upper- and lowercase

italics. We searched through our renamed style files
until we found the following definitions:

\def\Oevenhead{\rm\thepage
\hf il\sl\lef tmark)

\def\Ooddhead{\hbox{}\sl
\rightmark\hfil\rm\thepage)

We modified these two definitions to:

\def\Qevenhead{\rm\thepage
\hfil\small\sl\leftmark)

\def\Ooddhead {\hbox{)\small\sl

\rightrnark\hfil\normalsize\rm\thepage~

The \small that we added simply changed the
running head to nine point. The \normalsize

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting 389

Samuel E. Rhoads

changed it back to ten point before printing the

page number on odd-numbered pages.

That took care of changing the size of the
letters. Now we had to see if we could have it print

the head in upper- and lowercase rather than all

uppercase. Again searching through our renamed

copy of book. s t y , we found this definition:

\def\chaptermark##l{\markboth
{\uppercase
{\ifnum\cQsecnumdepth\mQne\Qchapapp\
\thechapter. \ \fi ##1)){))

We finally figured out that the \uppercase was

turning the name of the chapter into all uppercase

letter. (Actually, it was easy figuring out what

it was doing; the hard job was finding it.) By

changing the definition to:

that is, by just removing the \uppercase, the

running head was in upper and lower case.

We made several other changes to the style

files. We changed the margins so that odd and even
pages would print with margins that would make it

easy to cut the book down to a 9 x 7; format. We

changed the definition that printed the caption in

figures to print the word Figure in bold face. All
of these changes took time to figure out what to do,

but none were particularly hard to figure out.

Comments From the Publisher

I asked the woman who copyedited our book to

send me some feedback concerning our use of rn
to print the book, explaining that I was writing

this article. She forwarded my request to Wm.

C. Brown's electronic text coordinator, the person

responsible for working with authors "preparing

manuscripts on disk." Here are her comments
regarding Wm. C. Brown's experiences with w:

WCB's initial experience with TEX was
not a successful one. About three years
ago, Kendall-Hunt had an author working
on who produced a math book. Man-
ufacturing was persuaded to purchase the
TEX program, as it seemed to be becom-
ing the software of choice for those who
wished to produce texts containing math
and other types of equations. After several
unsuccessful attempts in- house to tailor
the files to be compatible with our type-
setting system, manufacturing resorted to
going t o an outside preparer (an engineer)

who produced camera-ready pages from
laser output.

Approximately a year later, WCB
received a computer programming book
that was done in BW. Outside suppliers
using TFJ (and its various versions) had
been busy writing software to make the

program compatible with traditional
typesetting systems. We were able to
find an outside vendor who produced high-
resolution, paged output from a typesetter.

The authors worked with in-house
staff on questions of design, layout, and
typography. They were cooperative in
making adjustments wherever possible to
achieve a pleasing format for the text.

The disadvantages of this were that
control of the project went out of house.
Also, at that time, the choices of typefaces
were limited.

The advantages, however, outweighed
these disadvantages. Namely:

1. The authors were willing to make
whatever changes were needed be-
cause of copyediting, so WCB had no
involvement in time or personnel in
the updating process. The respon-
sibility for getting "perfect" disks to
the vendor was the authors'.

2. The vendor worked directly with the

authors and was able to solve any
start-up problems.

3. There was no keystroking required
in- house.

4. All formatting integrity was main-
t ained.

5. WCB received paged output in ap-
proximately three weeks -much less
time than "traditional" output.

6. All graphics were in place on the
page except for photos and acquired
cartoons, minimizing hand keylining
time.

7. Corrections were minimal.
8. The cost of the project was much

lower than if it had been handled
traditionally.
The project was such a success that

we will continue to consider sending any
project to an outside vendor that

is capable of sending the files to high-
resolution output. There are at least two
projects that will be handled that way this
year. Progress continues to be made in
expanding the capabilities in regards to
typefaces and output possibilities.

T)$ is also offering various forms of
its own product to attract and expand its

390 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

market potential. We continue to monitor
these products as there is interest in our
math area about products. Many of
our math authors and math ancillary au-
thors are using w. We may want to test
the possibility of having manufacturing
using the software in typesetting.

The one drawback may be that Tj$
does not give the same high quality that
may be expected in upper-level textbooks,
and it is difficult to integrate it with
traditional typesetting modes. Also, one
must be careful regarding vendor claims to
be able to print pages for nominal charges.
There are hidden traps in these offers.

Response. While I don't intend to discuss each

of these comments, there are a couple of things I

want to say: The "computer programming book"

she refers to is, of course, our book. The "vendor"

who produced the high-resolution paged output was

ArborText, Inc.

It's clear that doing a book this way causes
things to be done differently than they have been

done in the past. In our case. the copy editor made

changes on the hard copy we sent her, and then

sent these changes back to us to make. In a few

instances, we didn't want to make the change. I
suspect that this might have caused some problems.

She has the impression that T)$ is only good

for math and "math ancillary" textbooks. I hope.

and suspect, that the future of 7&X will prove it to
be the best choice for books of all types.

She indicates that the choices of typefaces were

limited. That may have been true, and it may still

be true; I 'm not sure. In any case. I would have
chosen Computer Modern if I had a choice. so I'm

glad that there weren't others available.

I don't know what she means by .'All formatting
integrity was maintained."

It seems clear that Tj$ made the project both

faster and cheaper for Wm. C. Brown. The final
sentence is puzzling, though. I don't know whether

she is refering to the first experience or the second,

and I don't know of any hidden traps. The process

of sending the disks to ArborText and having them

send high-resolution hard copy to Wm. C. Brown
seemed to go very smoothly.

I am concerned about the "drawback" regard-
ing quality. Here I must take the blame. I'm con-

vinced that is capable of producing textbooks

of the highest quality. If there was a limitation
perceived by Wm. C. Brown, the limitation was in

my ability, not in W ' s . I will have to try to make
that clear to them.

The Blind Leading the Blind

Conclusion

The experience of writing a textbook was quite a

challenge. It was the first major book either of us

had written, and we didn't know much about the

process. By doing it in 7&X, I suspect there are

many things we never had to learn.

I have a friend who wrote another textbook at

the same time we were writing ours. His book was

published by a different publisher, and his publisher
re-typed the entire book-even though he had

sent thern disks. He complains to this day about

typographical errors that he finds in the book that

were not there in the version he sent them. He had

a chance to proofread his book, but he was not able

to find them all. Our experience was quite different

from his; once we finished a page, we knew what
the final version would look like, and typographical

errors could not creep in through the typesetting

process. I wouldn't think of trading places with

him.

A good part of the fun was in learning w;
another was in reading The W b o o k . The inter-

change between us and the various editors at Wm.

C. Brown was a learning experience that we won't

soon forget.

After all is said and done, and even though
there were times that we got frustrated, it's obvious

to us that ?'EX is the way to go. Had we not

had TEX to use to prepare the prospectus and the

preliminary versions that our students used, I doubt

that it would ever have gotten finished. Indeed.

without the beautiful prospectus, it might never

have been accepted for publication.

I'm convinced that any author can learn enough

Tj$ and/or L 4 W to write their articles, books and

papers; it's not necessary to become a W p e r t
to develop beautiful results. A fast computer-

I'm now using a Sun workstation- and a previewer

make life easier. I cannot imagine writing without

my.

Bibliography

Knuth, Donald E. The r n b o o k . Reading, Mass.:

Addison-Wesley, 1986
Knuth, Donald E. Computer Modern Typefaces.

Reading, Mass.: Addison-Wesley, 1986.

Rhoads, Samuel E., and Michael V. Gearen. Dis-

ciplined Programming Using Pascal. Dubuque,

Iowa: William C. BrownPubIishers, 1990.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Samuel E. Rhoads

Appendix

This is how we typed the algorithm for GCD:

\balg

START OF GCD$($First , Second$) $\\

Precondition: First and Second are positive integers\\

\mboxC\)\\
store the remainder of First \div Second in Remainder\\

loop while Remainder $>$ 0\+\\

store Second in First\\

store Remainder in Second\\

store the remainder of First \div Second in Remainder\-\\

return the value stored in Second\\

\mbox{\ I \ \
END OF GCD

\ealg

And this is what the algorithm looked like in the textbook:

START O F GCD(FirSt, Second)

Precondition: First and Second are positive integers

store the rernalnder oy First + second in Remainder

loop while Rernaznder > o
store Second in First

store Remainder in Second

Store the remainder oy First + Second in Remainder

return the value stored zn Second

END O F GCD

The following is an example of a simple figure/picture done in I P ' . It draws a syntax diagram of

the Pascal while statement. This example is included just to show, in general, how we constructed such
diagrams. Most of the figure/pictures were much more complicated.

% whstate .tex the while statement

\beginCf igure) [htb]

\begin{picture) (352,64)

\put (0, 48) {{\it while statement :))

\put (8, 24) C\vector(I ,0) i24))

\put (56, 24) {\oval (48,l6))

\put(56, 24){\makebox(O,O)C<\tt while)))

\put (80, 24) C\vector(l ,O) C24ll

\put(l04, 16)(\framebox(88,16){{\it Boolean expression)))

\put (192, 24) C\vector(I ,O){24))

\put (232, 24) {\oval (32,161 1
\put(232, 24){\makebox(O,O)Ci\tt do)))

\put (248, 24)C\vector (I ,O)C24))

\put (272, 16){\framebox(48, 16)CC\it statement)))

\put (320, 24) (\vector(l ,0) {32))

\end{picture)

\caption{\label{whstate))

\endCf igure)

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

The "Five Cs" : A Guide to Successful Publication Using TjjX

Colleen Brosnan
College Book Editorial-Production, Prentice Hall, Englewood Cliffs, New Jersey 97632

(201) 592-2312

Abstract

From the perspective of working at Prentice Hall College
Division, my paper will cover the importance of the five C's:

early Contact with your publisher, Consistency of macros,

Compromises on issues such as design, Constraints of time and
cost, and Communication, which is probably the most important.

I am manager of Technical Manuscripts in

the College Book Editorial/Production Department

at Prentice Hall and I would like to take this

opportunity to share with you the experiences that

we at Prentice Hall have had with authors who have

submitted manuscripts prepared in 7&X.
Until a few months ago, I was Production

Manager of the Computer Science and Engineering

team. My team handled the majority of w
manuscripts that were published by the College

Division, so I think I've seen it all- good and bad.

The Prentice Hall College Division has been
working with authors who have been preparing their

manuscripts in w for about five years and has

published about 100 titles.

Over the years, we have encountered authors
at all levels of expertise in TEX. Some have been

extremely proficient in the use of 7&X but have not

been able t o create acceptable page layout. For

those. we send the author's files to a compositor who
formats the files according to our page makeup spec-

ifications and inserts copyediting changes. Other

authors are able to do it all-providing us with

camera ready copy, even with separations for two-

color books. And others provide us with files that

are virtually unusable for a variety of reasons-

we send those manuscripts to a compositor to be

keyboarded from scratch.

We have learned a great deal during those

years by working closely with our authors and

compositors. The result of this collaboration is

that we have developed what I like to call our

"Five C's" -the keys to successful, painless (for

both author and publisher) publication of TJ$
documents.

These "Five C's" are early contact with your

publisher, consistency of your macros, compromises
on issues such as design, constraints of time and

cost, and, of utmost importance, communication.

Contact: Better Now Than Later

In an attempt to avoid unnecessary work, you
should always contact your acquisitions editor be-

fore beginning any formatting of your manuscript.

Your idea of a great design for your book may

not be the publisher's - especially if the trim size

you've selected is not appropriate for the market.

The hours you've spent in creating your design will

be wasted if your design won't be used. At Prentice
Hall. we spend a great deal of time analyzing the

marketplace and select designs that will be cost

effective (use of tints, for example, may be quite

costly to produce), geared to the audience (an in-

troductory computer text may warrant liberal use
of highlighted text or boxed material that would be

distracting in a graduate-level programming book),

and conform to the style of book that professors
and department heads have told us works best for

their courses.

If you feel you want to take a stab at preparing

camera ready copy, ask your acquisitions editor to

send you a set of book specifications for you to

follow. Possibly the typesetting language that we

use in writing our specifications will be as much

Greek to you as your macros are to us. If so, call

your production person and ask for a translation.

After you've formatted a sample chapter that

contains the most representative elements in your

book, send it to us in both hard copy and electronic

form. If you're not sure whether we want your

files on a cartridge, tape or floppy disk, call us and
we'll advise you. Some compositors work only from

floppy disks-others can use all types of media.

Your sample chapter will be reviewed by a

production manager and art director for style and

quality. Based on their recommendations, your

acquisition editor will decide whether your format-

ting meets our standards for publication in that
particular market.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Colleen Brosnan

At times. even though the formatting is close

to acceptable, we feel that more "fine-tuning" is

needed. In those cases. we send the chapter back

to you with instructions for improving the design

or page layout. From the feedback we receive,

we can get a sense of your expertise in this area.

By the same token, you can decide, based on our

comments and suggestions. whether the amount of

work that will be expected is a task that you want
to undertake.

If we decide that you will provide camera copy,

do not format your entire book yet. Send us

a double-spaced manuscript that we can use for

copyediting. After you enter the copyedits, then

you should do your final page makeup.

This initial contact is only the beginning of our
effort at P-H to ensure that your rn manuscript

will be converted to a bound book with the least

amount of effort in the shortest time possible.

If we -or you- decide that page makeup is

best left to the "experts", we will send your
electronic files to one of our compositors who

specialize in 'lJ$ for a test to determine if the files

can be used with a minimum of time and effort.

Our compositor will go through your macros

and set selected elements, according to the spec-

ifications we have provided. You should give us
guidelines on which elements or special characters

you want to see set. These sample pages will help

the compositor to identify any "glitches" in your

macros that you will be asked to correct before sub-

mitting the entire manuscript. These sample typeset
pages will be sent to you to review to make sure

that elements have been typemarked correctly - for

example, whether computer code has been set in

nonproportional fonts and whether headings have

been given the proper order of importance. You

should proofread these samples carefully to verify

that any special characters you have used have been
translated properly.

Consistency

Consistent preparation of macros is one of the most
critical issues determining whether your electronic

files can be used by our compositors. "Keep It

Simple" is the advice that all of our compositors

give. Don't be so concerned about writing macros

that "look good" at the expense of macros that
"work well."

Even the most ambitious among you may find

that keyboarding your entire manuscript in 'lJ$ is

simply too time-consuming. If this turns out to be
the case for you and you have to turn the job over

to your assistant or several graduate students -or

if you have co-authors who are involved in your

project -be sure to give them clear instructions on

what macros you have used and what hard coding

you have done so they can duplicate your work.

Whenever possible. use the default macros

available in the version of rn you choose. If

you need to make some modifications-perhaps a

special macro or two, or some time-saving string

definitions-put these into a file of their own,
using the \ input command to read it in during

processing. Be sure to put any customization files

onto your tape or floppy so they are available.

The file should always include a "read me" file

explaining the macros and identifying any hard

coding that has been added. Compositors spend

an inordinate amount of programmer's time trying
to unravel several different sets of macros for the

same elements. Time spent by compositors trying

to figure out what an author has done is a poor

utilization of their resources.

A "clean" file should contain macros that
can easily be converted to the macros that the

compositor uses to implement the publisher's design.

So, if there are elements of your manuscript that

occur frequently, such as theorems. examples, or

quotations, develop macros for them instead of

putting space around them or putting them into

other fonts. For example, you could use a simple

macro that would add space before a theorem, set

the heading in bold, print the theorem, and add

spa,ce after it. If uncomplicated macros such as these

are used consistently throughout your manuscript.
our compositors will have a much easier job of

implementing our design specifications and, in turn,

will be able to produce finished pages faster.
Although the default font in TfjX is Computer

Modern, at Prentice Hall we prefer to use Times

Roman in typesetting our books. Our compositors
have redefined most of the standard font calls

to conform to our specifications. Therefore, keep

your personal font definitions t o a minimum to

enable our compositors to translate to our fonts

more quickly and easily. However, we do have one

exception. We have continued to use Computer

Modern for all math because of spacing problems

in the conversion. Several of our compositors are

working on this problem and we may be using

Times Roman for that as well in the near future.
Remember that our compositors base their

estimate of the work involved in your project on

the files you submit in the beginning. After

your sample chapter has been test-run and the
compositor has given some feedback on the usability

of your electronic manuscript, you will be asked to

send in your entire manuscript in both hard copy

394 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

The "Five Cs": A Guide to Successful Publication Using

and electronic form. Be sure to save each chapter

as a separate file; extra long chapters should be

broken into two files.

Always send in two sets of the electronic

files as we send your manuscript and files to two

compositors for bid. We don't routinely duplicate

tapes or disks. Failure to send in duplicates will

only slow down production of your book as one

compositor will have to review and return your files

before the other compositor can do the same. We
are aware that tapes are expensive, and we will

try to return any unused tapes to you. However,
the cost of tapes is minor compared to the cost of

delaying the in-stock date of your book.

The complete manuscript, which should incor-
porate any suggestions made by the compositor

who looked at your sample chapter, is then sent

out for a thorough castoff and estimate by our two

compositors. A decision regarding which composi-

tor is awarded the job is made based on the time

and amount of work they feel is needed for your

project. So whatever you do, don't decide to change

your macros -or switch versions of w, or even to

a different word processing package - after you've

sent in your original manuscript, unless you notify

your production manager. Believe me, this has

happened, and has caused an inordinate amount

of anguish on the part of our compositor who had

spent days trying to figure out why the files couldn't

be loaded. Not only did this project cost more than

anticipated, it was unnecessarily delayed because
the author did not let us know about the switch.

Because macro usage is such an important

issue in the decision to typeset from TEX files,
Prentice Hall has worked with our compositors
in developing standard macro packages, complete

with documentation. These macro packages are
designed to simplify the preparation and production

of technical books and will cut time from the final

production of your book. Be sure to ask your

acquisitions editor about these standard macros

before you start on your project to save time for

both you and us. These macros will not produce

final, single-spaced book pages - rather, they will

enable you to print out, on whatever printer you
have available, a double-spaced manuscript that we

can use for copyediting. After you have reviewed
our copyediting, the compositor will then substitute

our design macros, implementing our fonts and

specifications, to produce the final galleys and

pages for your book. These compositors also offer
technical support if you have questions about the

macro packages.
An added benefit to using these packages is

that at the end of the production process, if your

electronic files have been used, you will receive

not only a professionalIy produced book but also

an electronic file that matches the book for future

updates and revisions.

Compromises

Publishers have certain standards for producing

books. Authors have certain standards for their

material. Sometimes these two clash. For instance,

you may want a lengthy computer statement to

be contained on one page. Often this is simply

physically not possible so the compositor will break
the computer statement at a place required for good

page makeup. To avoid inappropriate breaks, send

us a list or samples of where computer statements

can be broken for the compositor to follow. If you
are concerned that the student may not understand

that the computer statement continues onto the

next page, ask us to insert a "jump" line at the
bottom of the page that says "continued on next

page." Or you may have equations that are too

long to fit within our text column. The choices

are to either set those in smaller type (which I

don't recommend if you have subscripts that may
become unreadable if set smaller) or to break the

equation into two or more lines. Our style is to

break equations before an operational sign, but you

may have different ideas. If you let us know your

preferences before we begin typesetting, we can

implement them without additional cost or delays.

If you see typeset pages and then want to make
changes, the cost can be considerable.

You may be used to printing small quantities of
your work in a corporate or academic environment

where the style, for example, may be to begin a

new page for every first-level heading. As book

publishers who produce thousands of copies of your

book at a time, we have to be concerned about the

number of pages your book contains. We try not

to have books that have a lot of wasted space-

blank pages or pages with only couple of lines of
text. Our concern is for the readability of the

book-pages that do not follow a logical pattern

are difficult for the reader to understand. Book

publishing is a competitive business, and books that
may be excellent in terms of content may not even

be considered as possible adoptions because the

format is totally different from what professors are

accustomed to seeing. So be aware that the design
compromises that we ask of you are not based

on arbitrary decisions -rather, there are sound

economic and marketing issues involved.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Colleen Brosnan

Constraints

Authors and publishers share a common goal: turn-

ing a manuscript into a bound book and in a

reader's hands as quickly as possible.

To accomplish this goal, some hard decisions

may have to be made.

You may be a whiz at page makeup, can

translate our design specifications perfectly, and

have access to a high resolution printer. After

discussions with your acquisitions and production

editors, you have decided to provide your own
camera ready copy. Then the project hits a

snag. Copyediting changes may be heavier than
you anticipated, page layout may become difficult

or just plain tedious, or your printer may become

unavailable. If any of these scenarios materialize.

contact your editors immediately. We can help

find reasonable solutions (for instance, we do have

service bureaus that can provide high resolution
output of your Postscript files). Keeping the

project moving may call for a change of plans.

Also, as I discussed earlier. our compositors

base their estimate of the cost of producing your

book on the amount of work your manuscript needs

to turn it into book form.

If you have used macros inconsistently, a pro-

grammer may need hours to work through the

problems encountered. This is not only costly -

a programmer's time can be quite expensive - but

time consuming as well. The original schedule we

had drawn up for producing your book will have
to be scrapped because of these delays. We have

asked our compositors to alert us whenever they
encounter serious problems with a manuscript be-

fore proceeding. In many instances, it is better

for the compositor to keyboard your manuscript

from scratch. A programmer's hourly rate may be
five times that of a keyboarder's. From a strictly

economic viewpoint, it's not hard to see which path

makes sense. Remember, too, that even if we did

decide to have a programmer unravel your macros, a

keyboarder is still needed to insert any copyediting

changes.

In another scenario, the macros may have

been flawlessly prepared and the compositor has no

problems converting the macros to our design. But

the amount of copyediting is substantial. In those

cases, the compositor's keyboarder can actually

rekey the entire manuscript more quickly than

insert numerous changes to an already existing file.

Often I have heard from authors that the reason
they want their files used is that they don't have

time to proofread the typeset galleys and pages. You

always have to proofread galleys and pages- even if

your files are used with no intervention. No matter
how sophisticated the typesetting system is, the

possibility for glitches exists. For instance, a special

character could not convert properly or automatic
numbering could get turned off inadvertently. We

have excellent proofreaders who check your galleys

and pages, but only you know exactly what should

be in your book. Review of galleys, pages, and

art takes time so let your acquisitions editor and

production editor know in advance if you are going

to be out of the country or are meeting other

deadlines during the times scheduled for review.
We will rearrange our schedules whenever possible

to work around your other commitments.

Most authors will be unhappy that their 'I)$

files are not used, but if they keep in mind our
goal-getting the book on the bookshelf quickly

and economically-the decision will be easier to

underst and.

Communication

In conclusion, I would like to stress the importance
of communication. Authors have their desires and

expectations. Publishers have their requirements

and deadlines. Compositors have their constraints

and needs. Unless all three can communicate, there

is bound to be some misunderstanding.
From your initial contact with us, don't hesitate

to ask questions. We may not know all the answers

immediately -for instance, should you send your
electronic files on tape? 1600 bpi? -but we will

contact the compositor who will be working on
your job and find out. If you have a technical

question, we may ask our compositor to contact you

to resolve it. Our production editors are not

experts - we leave that to the professionals -but
we will guide you to the proper source. Questions

about design issues, copyediting preferences, and

scheduling problems should be directed to our
production editors - that's their area of expertise.

In conclusion, I would like to review again

our "Five C's" - contact, consistency, compromise,

constraints, and communication. By keeping these

in mind and working together to solve problems

and concerns, authors and publishers will be able

to learn from each other, share our knowledge, and

smooth the production of your 'I)$ document from

manuscript to bound book.
Remember, at Prentice Hall, publishing your

'I)$ manuscript in the most convenient, cost effec-

tive way is our ultimate goal.

396 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

I ~ ~ / T J $ User: A Typist, or Typesetter?

Anita Z. Hoover
University of Delaware
002A Smith Hall
Newark, DE 19716
Internet: anitambrahms .udel . edu

Abst rac t

The purpose of this paper is to point out that a IPI$$/'TEX user

who produces documents in camera-ready form is more than

just a typist; he/she is a typesetter. These users need to go

beyond learning the basics, but not to the point of frustration.

There are several issues that should be considered when using

IPI$$/TEX for publishing. This paper attempts to look at these
issues and share strategies to help those who use IP'I$J/W for

camera-ready publishing.

Introduction

IPTEX/TEX user: A typist or typesetter? This ques-
tion has recently become an interesting topic. Is the

person who uses I P W and/or I$$ more than just
a typist? I think so! If a person is using IPI$$/m

to publish a document, following a layout specified

by a publisher, this person is more than just a typist.

She or he is a typesetter.
From the preface of the m b o o k ,

. . . m , a new typesetting system intended

for the creation of beautiful books - and es-

pecially for books that contain a lot of math-
ematics. By preparing a manuscript in =
format, you will be telling a computer exactly

how the manuscript is to be transformed into

pages whose typographic quality is compara-

ble to that of the world's finest printers. . . .

In the past year, I have spent a large portion of

my consulting duties helping graduate students, sec-

retaries and professors at the University of Delaware

put together documents that were published using

IP= and/or m. There are two ways these doc-
uments can be produced.

1. User-Defined Macros

The user must define macros to set up the

document to meet a publisher's specifications

and then submit a final printed copy. This re-
quires a lot more work for me and a lot more

time before the final copy is completed.

2. Publisher-Defined Macros

The publisher supplies macros that meet the

publication specifications. The user uses these

macros t o set up the document, and then

either submits a final printed copy or sends in

the P'I$J/'I$J file. This is a real advantage,

as long as the publisher can provide good docu-

mentation on how to use the macros. If a lot of

time is needed to interpret the use of the macro,

then half of the advantage is lost.

Experience with User-Defined Macros

Thesis format. My first challenge was setting up

macros in IPTEX/TEX to meet the requirements set
by the University of Delaware's Office of Graduate

Studies for theses, dissertations, and executive posi-

tion papers. During this project I realized that many

of the specifications had been based on typewritten

documents. For example, the document is supposed
to be double spaced. It took me three months to

convince the Office of Graduate Studies to accept

a I P T E X / ~ document that was spaced 1; times
rather than 2.

Four important points came from this project:

1. Having the macros does not mean that the user

does not have to pay attention to the original

specifications or guidelines. It is important that

the user check the document for correctness.

Macros are developed with the intention of be-

ing correct, but errors do happen.

2. Users need to be reminded that the macros have
been defined to meet certain specifications, and

as a result the macros should not be changed.

I hear complaints such as, "I don't like the way

the document looks." The point is that it does

not matter how they think it should look, and
altering the macros means the document no

longer conforms to the specifications.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Anita Z. Hoover

3. There needs to be good documentation on how

to use the macros. References to which macros
fulfill which specifications are important.

4. Examples should be provided whenever possi-
ble. Example documents of the input and out-

put are easy ways of showing the organization
of the document, how to use the macros, and

what they will produce.

Books. I have been involved with several publishers

that have accepted IPTEX/T~$ as the final output

for books, but that did not provide macros. Listed
below are a few examples:

1. (m - U N I X)
Karl W. Boer. Advances in Solar Energy, 6 vol-

umes, Plenum Press, 1982 - 1990, ca. 500 pgs.

Karl W. Boer. Survey of Semiconductor
Physics, Van Nostrand Reinhold. 1990, ca. 1400

Pgs.

2. (UTE?-PC)
Thomas K. Gaisser. Cosmic Rays and Parti-

cle Physics, Cambridge University Press, 1990.

ca. 280 pgs.

All of the people doing the typing were familiar

with IPTJ~X/TJ~X, but were not familiar enough to

modify and/or create macros to do what was neces-

sary to meet the requirements of the publishers. As
a result, most of this work was done by me. It is

important to provide this level of support initially.

because the pay-back on future books is invaluable
with respect to time. Discoveries to share are:

0 using the I P W book style required the least

amount of work. This definitely depends on the

publisher; and

0 you need to have a large version of 7&X to pro-

duce books of this size. The main problem

have been cross referencing, size of captions in

figures and tables, and size of tables. Our local

configuration of is listed below.

Parameter Maximum

strings 4613

string characters 64042

words of memory 262141

multiletter control sequences 9500
words of font info 72000

fonts 255

hyphenation exceptions 607

stack positions 300i
40n

6 0 ~
2000b
4000s

With the above configuration I never run into

a problem of m ' s capacity being exceeded, except
when an actual error occurs. (You all know the case

of the infamous missing).)

Experience with Publisher-Defined
Macros

Most of my experience has been with users who were
supplied macros for journal publications. Each of

these journals provided incentives for users to sub-

mit papers using its I P m / W macros.

1. American Geophysical Union, Journal of Geo-
physical Research

0 saves time;

0 final product looks better; and

0 saves money on page charges ($40 vs.

$140).

2. SIAM (The Society for Industrial and Applied

Mathematics)

0 provides greater control over the final ap-

pearance:

0 eliminates introduction of errors from re-

typing;
eliminates one round of proofreading; and

0 the author receives 100 free reprints.

I suspect there are many other publishers who

provide this service. It is my hope that more pub-

lishers will supply macros and documentation on
how to meet their specifications and that this in-

formation will be published in TUGboat or some
type of a newsletter to keep the community

informed. Regardless, it is obvious to me that the
users of these IP'I)jx/W macros need to know more

than just the basics. My concern is: How much.

more?

l&m/7&X User as Typesetter?

Many users become frustrated because most of the

time they don't need to be concerned with such de-

tails. They feel they get caught up in the details

of learning I P m / m rather than in the actual

writing. This was my primary motivation for set-

ting up the thesis macros. I thought that it would

be easier in the long run to have I P W / m users

use my macros instead of designing new ones them-
selves. As a IPW/7&X consultant, I try to pro-

vide as much help as possible in meeting specifica-
tions for situations such as journals, books, etc. I
quickly found out that many questions had nothing

specifically to do with I P W I W , but in fact were

questions about how to interpret publisher's specifi-

cations. These questions show that the users know

398 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

IPTf$/Tf$ User: A Typist, or Typesetter?

very little about the tools that exist to help ease the

process of creating a document. As a result. I be-
gan to see that the following concepts can help most

users ease their frustration.

1. Bridge the gap between the terminology used

in IPWITEX and that used by publishers.

Space between lines

Space between paragraphs

Size of characters
Margim

Headings

I think that many I 4 W / m users (myself in-
cluded) would be greatful for a document that

lists the common terminology used by publish-

ers and the proper IPm/Tj$ macros that cor-

respond to each. Again, having this informa-

tion published in TUGboat or some type of a
newsletter would be an invaluable reference for

the TEX community.

2. Understand the macros.

How to modify

create i use
One comment: Don't reinvent the wheel! I

spend a considerable amount of time finding out
whether or not what I need has already been

created or is close enough that I can modify it

to do what I want. This is especially impor-

tant for the casual user. It is much easier for
the casual user to learn how to use a macro or

change it slightly than to start from scratch.

Most users are more than willing to solve the

problem using this strategy and only resort to
my help if they can't find a macro to do what

they want. In fact I encourage users to call me

before they get too frustrated. I'm glad they

try themselves and I am all for self-sufficiency,
but I don't like anyone to become so frustrated

they want to give up totally.

3. Know the tools that make IPTJ~X/QX easier.

utilities for matching C and 1, and

\begin. . . and \end. . . ;
spell checker (removing all control

characters);

screen previewing; and

including graphics through PostScript

Many of these tools exist for different envi-

ronments. Here are some that I find extremely
helpful:

Matching

texmatch is a program that checks
matching in T)$X and I4m documents.

It gives error messages if it detects un-

matched delimiters. Delimiters are braces,

brackets, parentheses, dollar signs (sin-

gle and double), and IP7&X's \begin and
\end. I know that this program is avail-

able on UNIX and PC systems.

Spell check

detex is a filter that strips TQX and

I P W commands from a file. This really
helps in a UNIX environment before using

a program like s p e l l or i s p e l l .

In our PC environment, most users pre-

fer WordPerfect. Since WordPerfect con-

tains a spell checker, all you need to do is
to set-up the spell checker once to ignore

the control sequences. This has a hidden

advantage. Not only are all of the mis-

spelled words caught, but also misspelled

control sequences are found, thus avoiding

a error.

Preview

The important point is not what pack-

age you are using, but that you have the

capability to preview. In my opinion, one

should not even consider creating a docu-

ment that is going to be published without

the ability to preview. So much time and

paper is wasted without this tool.

0 Graphics

Again, if something works for you, then

more power to you! However, I have found
that Postscript-capable printers are the

most flexible and provide the best sit-

uation for incorporating graphics into a
I4m/m document.

dvips is a program that converts a TEX
. dvi file to a Postscript file.

psf i g is a w macro package that facil-

itates the inclusion of arbitrary PostScript

figures into w and I P W documents.

macps is a program that adds the ap-

propriate Macintosh Laserprep file to the

beginning of a Macintosh PostScript file.

This is very useful as a first step in printing

a Macintosh PostScript file on a computer

system other than a Macintosh. Other

steps are required to include such a file into

W m / Q X documents. I know that this
program is available for UNIX systems.

Once again, I hope a list of tools for Ww/Tj$
will be published with periodical updates in TUG-
boat, or some type of a newsletter that will con-

tain all the information about what each tool can

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 399

Anita Z. Hoover

do, what environment was the tool designed for and

where can you find it. Right now, some very good

information, such as "Frequently Asked Questions

about and "Supplementary Information

(FTP sites)" is available. But is there more that I
am not aware of?

Conclusion

How does all of this impact an organization?

The user must invest a considerable amount of

time learning how to produce a document based

on the publisher's specifications. Here is where
a considerable amount of time can be saved if

the publisher supplies the necessary macros. It

is also important that users who do this type of
work be recognized for their skills as typesetters

rather than as typists.

Efforts must be made to offer good support to
users so the documents can be completed in a

timely fashion. Support has been the key to

users being willing to use m and/or I P W for
publishing documents. Many times I thought to

myself, "Why did I ever suggest using w or

V m ? " My reason is obvious when the final

document is printed: Nothing compares to the

quality of m .

Using Tj$ can save dollars. The final cost

of a book or the cost of publishing a paper is

certainly going to save an organization money.
However, there are hidden costs that should be

kept in mind. The user now spends more time

inputting the material and taking care to for-
mat the document correctly, and I spend more

time helping people who need to follow a spe-

cific layout.

Update

During the TUG conference, there were a few very

interesting points that surfaced and I feel they

should be included in the paper.

There are many publishers who are interested in

authors as compositors. In talking to many of

these publishers, I found that most of them are

making efforts to provide style files for I P w

and/or macros for m. This was very en-

couraging to me. I believe that a list of pub-

lishers and the style files/macros they supply

and/or accept should be published in TUGboat

or some newsletter to the 7J$ community.

There is a big difference between a graduate
student writing a thesis/dissertation and an au-

thor of a book. A graduate student can be

threatened with not graduating if he or she does

not follow the specifications, but what about
authors? Can a publisher threaten to not pub-

lish the book? I don't think so. It is impor-

tant to both parties that the book is published,

but compromise is essential. I feel that authors

have to realize that publishers are the experts

in designing books and the author is the expert

about the content of the book. Comments:

If an author is planning on using
V m / W then choose a publisher that

accepts this format or, more importantly,

one that has experience using this format.

An author should discuss design specifica-
tions with the publisher as early as possi-

ble and decide what is acceptable.

The publisher needs to specify clearly

what types of changes to the design speci-
fication are acceptable in order for authors

to express themselves.

Lack of communication between the authors

and publishers seems to be the number one

problem. Speaking from a support point of
view, making these issues as clear as possible

up front will save everyone concerned time and

energy.

There may be no savings, or an actual increase

in cost can occur when using V w / W . I

was very surprised to hear that this can hap-

pen. In many cases, costs stayed the same or

increased because authors insisted on certain
design changes. Here is a primary example of

where my comments in 2. can help.

Bibliography

Academic Computing Services. The UD The-
sis Format. University of Delaware, Newark,

June 1990.

Academic Computing Services. The T&Y UD Thesis
Format. University of Delaware, Newark, June

1990.

Knuth, Donald E. The l&Xbook. Computers and
Typesetting, Vol. A. Reading, Mass.: Addison-

Wesley, 1986.

Lamport, Leslie. UTEX: A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1986.

TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

Simultaneous Electronic and Paper Publication

John Lavagnino
Department of English and American Literature, Brandeis University, Waltham, MA 02254 USA

617-736-2080

Internet: lav@binah. cc . brandeis . edu

Abstract

Many current applications in computerized text processing

involve the creation of "multiform texts". Such a text is designed

for use in several forms: in both print and electronic form, for

example. This is a valuable goal for many kinds of text; one

example that may perhaps seem unlikely is the edition in

progress of Thomas Middleton's complete works. The central
question in creating a multiform text is the choice of a language

for the basic text files; SGML seems to be the best choice. It

has worked well on the Middleton project so far, and has worked

well together with m in solving some of the problems that
have arisen specific to this text.

Multiform Text

An underlying thread connects a number of different

projects in the computer processing of texts: the
idea of a "multiform text", a work that is meant

to be read and used in several different forms-

most characteristically, both electronic and printed

forms.

One of the most familiar instances of such a

text is the computer manual. If you're writing a

manual for a computer you're likely to be using a

computer to make it: and then why not use the

computer t o access it as well? That access doesn't
necessarily require giving any special thought to

making the electronic edition useful: many of us

have long depended on having a copy on disk of the

7&X source for The m b o o k A text editor is all
you need t o work with it.

But one does not read m source very happily:

this system is fine if you want to look at a macro

definition, but it's unsatisfactory if you're interested
in what an example produces on the printed page.

More interesting are those systems that attempt to

provide both print and electronic versions that are

equally usable. On-line help systems for computers

often work from a textual base that's adapted

from, or also issued as, print manuals: both
usually contain much the same information, and

the attraction of writing the documentation once,

not twice, is obvious. The UNIX man command is
one familiar example: it draws on text encoded in

the t r o f f typesetting language, and formats that
text for display either on the user's terminal or

on a printer, so that when you ask for help on a

command, you get the same text that's presented

in the printed manual.

This system is possible because the documen-

tation is encoded in a way that doesn't make it

impossible to print on a typewriter-like device in-

stead of on a real typesetter. The on-line access,

however, gives you nothing more than page images;
these provide as much information as the printed

manual, but they also provide no more than that.

In contrast, the programs distributed by the Free

Software Foundation use a more sophisticated docu-

mentation system that takes better advantage of the

computer's powers for structuring text in ways not

available in print. The Texinfo system not only uses
a descriptive markup (based on w) that encodes

the structure of the text and lets macros decide how

to present the information; it also includes encoding

for cross-references that allow a user who's got the

GNU Emacs editor to more effectively find informa-
tion in the manual and move to related topics in it

(see Stallman and Chassell).

Such a system combines the advantages of print

and electronic editions. The print user can still read

in bed, write on the copy, suffer less eyestrain,

and use the document when the computer is down;

the electronic user can search for a topic or phrase

much faster, follow connections that may not be

represented in the sequential text of the printed

manual. and get assistance with a program from

within that program. The best use of the system

seems to come not from using one or the other form

exclusively, but from switching back and forth,

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

John Lavagnino

using the form which is best for addressing each
momentary need.

That sort of combined publication needn't be

limited to computer manuals. The advantages of
multiform text are there for all sorts of works.

The Oxford Middleton

My own interest in the multiform text comes out

of my work as one editor of an edition of the

complete works of Thomas Middleton (1580- 1627),

the English Renaissance playwright. This edition is

being prepared by an international team of editors
for publication by Oxford University Press in 1994.

It will include the texts of all Middleton's works-

above all, his twenty-seven extant plays, but also

numerous masques, entertainments, poems, and
prose works; and it will provide introductions and

very detailed notes to all these works. This is the

first complete edition of Middleton's works in over

a century, and we hope that it will not only collect
all the accumulated scholarship on Middleton, but

also establish his importance as a writer.
Such a complex work is usually quite expensive

to set in type, so that the advantages to us of

using TEX to do the typesetting ourselves are

clear. The advantages of creating a multiform text

(instead of concerning ourselves solely with entering
the right 'I)$ codes to print the work) may be

less immediately apparent. Yet a multiform text
is of value both for us, during our preparation

of the work, and for other readers and scholars

after its publication. Editors and scholars have

long depended on concordances to help them in

understanding the characteristics of an author's

style and thematic concerns; the electronic text

gives us, in effect, such a concordance to the text as

we prepare it, rather than long after it's published.

Providing an electronic text also makes possible a
later conversion of the work into a hypertext that

can allow readers quick access to the various sorts
of notes to the work.

The creation of a multiform text is not an

experimental approach, but instead one that keeps

the labor for everyone to a minimum and creates

the most valuable print and electronic editions. In

the following discussion of the salient issues in this

case, 1'11 mention these work requirements as they
come up.

The Choice of a Language

Most of t he important questions about how to

create a multiform text are related to the choice of

a "markup language" -the language in which the
text and its structure are specified. The basic idea

is to choose one form for the text from which all

other forms, electronic and printed, will be derived.

The markup language for this basic form should

make the derivation of other forms work easily and
well.

The UNIX man command, and the GNU Texinfo

system. both use typesetting languages with macro
capabilities- rn itself, in the latter case. And

that choice might seem to make sense in the general

case: after all, one thing we want to make is a
printed text created by w, and so using TEX as

our markup language seems to automatically solve
the problem of creating one of our final forms. But it

isn't a helpful choice when it comes to the electronic

side: TF,X is not especially easy to translate into

other markup languages. The nature of its macro

definition facilities means that a program needs to

know rather a lot of what TjjX knows if it's to be
able to make the conversion. Consider the rules

in for determining when a macro name has

ended: according to Knuth [page 471, these require
that we know the difference between letters and

other categories of characters-a distinction that

can be changed by a T)$X input file. Argument

delimitation is still more complicated [Knuth, pages

203-2041. (I am assuming here that the most

desirable approach is to transform the basic form

directly into other electronic forms. Carr and

Part1 have discussed separately approaches based

on taking dv i output and converting it to other

electronic forms, approaches that make things still

more difficult .)
For the Middleton edition, we have chosen

SGML, and use 7JjX only for the typesetting, not

for our text representation. (See Laan for an
introduction to SGML.) SGML is, first of all, rather
easy to convert to other forms: the names of

"tags" and "entities" in SGML, two different sorts

of commands that are similar to different aspects
of rn macros, are in the normal usage terminated

in an unvarying way-by '>' for tags, and ';' for

entities. Converting our text from SGML to I$$
seems to require nothing more complicated than

global substitutions, and a few simple TE,X macros
to deal with the product.

A more important reason for choosing SGML

lies in another facility it offers. It is intended not

only to handle the electronic representation of a

document's structure, but to allow the specification

of rules governing that structure, and verification of

a document's conformance to that structure. TEX
checks only that you aren't transgressing the rules

402 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Simultaneous Electronic and Paper Publication

of its input syntax; it has no facility for ensuring

conformance to any specifications narrower than

those in the The W b o o k . One can build such

specifications into any macro set, to some extent:

IPm provides an example, in its checks on the

proper nesting of \begin and \end commands

(among other things). IPm still doesn't check
everything, and its specifications are those of the

whole macro set, not a user's subset.

This question of verification matters for any
kind of text, but it's of particular importance with

the multiform text. It's necessary with such a text

to keep close tabs on what commands are used:

you want t o ensure that you don't wind up with

something that can be represented in one medium
but not the other. We're familiar with struggles to

get a page printed just right; but there's another

level to the problem in this perspective, that of

getting it "just right'' in more than one medium.

SGML helps prevent surprises in this realm.

The use of SGML's facilities does require some
extra work to formulate the specifications for the

text's structure, but some consideration of those

specifications has usually been necessary with mul-

tiform texts; the advantage of SGML is that it can
help to enforce those specifications.

SGML is also more securely oriented than any

typesetting language towards encoding the structure

and meaning of text elements, and not the details

of how they're to be printed. The importance of an

encoding that is focused on structure and meaning

has already been argued at length (see Coombs

et al. for a theoretical presentation, and Lafrenz
for a publisher's agreement with it on practical

grounds). Greater abstraction will also help us

with uses we've never anticipated (but which may

suddenly be of importance when our publication

date in 1994 rolls around): our ability to generate

new forms of our text will be enhanced if we have
precise specifications of what's going on in our text.

Finally, for our particular project, there is

the advantage that the international Text En-
coding Initiative is currently developing guidelines

based on SGML for tagging electronic texts, with

particular attention to the needs of scholars (see
Sperberg-McQueen and Burnard for a draft of these

guidelines). We want our text to get used and
studied, and adhering to standards is a good way of

doing that.

Most people get the impression that SGML is
not good to use for data entry, because its markup

appears to b e very bulky. This is only true when no

use is made of the extensive provisions SGML makes

for minimizing the markup; with proper use of these

features, SGML requires no more typing than 7JjX
does. But we began our project without any SGML

tools, and so we handle the data entry in another

way. Our approach has been to devise a very terse

markup that's used solely for data entry, adapted
very narrowly to the kinds of texts we're encoding;

we convert this immediately to SGML. and perform

all further processing on the SGML files. The

creation of the programs to do this conversion has

been one of the principal tasks involved in setting up

this mode of working-though it has hardly been

an onerous one. If we had obtained appropriate
SGML tools at the beginning of our work, even this

task would have been unnecessary.

Referring to the Printed Text

The careful choice of a markup language should

make it possible to contain the problems that come

from our need to do a great deal of computer

processing of our text: it should make the necessary

transformations easy, and ensure that we aren't

entering textual elements that can't be processed

within both realms.

But there is another layer of problems that can
arise. What would happen if we needed to include

information in an electronic text about the details

of how the printed text looked? That would mean
that the printed text would not just be a spinoff of

the electronic text, but that we'd need to extract
information from our printed text -or from the d v i

file - and fold it back into the electronic version; it
could be a difficult task.

The conventional index is a good example of
this: the text of an index is an analysis of the book

in which it appears, and it's dependent in a very

sensitive way upon how the page makeup came out.

Of course, we know how to handle index-making

with m. Its \write command is designed to

facilitate capturing information for an index or table

of contents that needs to know about page numbers.

In other multiform texts it's been common to use
references not to page numbers but to important

structural divisions, which don't depend on the page

makeup: the UNIX documentation that's used by

the man command is broken up into small chapters,

rarely more than a few pages long, one chapter for
each command.

The particular traditions of publishing in liter-
ary studies pose a problem for us with Middleton.

One demand that scholars make and are not going

to give up is for a very precise system for referring

to particular lines in the text, a system traditionally

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

John Lavagnino

implemented. in fact, with line numbering. Mid-
dleton's plays are typically written in a mixture of

prose and verse, often changing within a speech.

Prose is traditionally numbered using physical line

numbers: that is, each actual line of type is counted
as a line. Verse is numbered using logical or struc-

tural line numbers: a line of verse may take more

than one line of type to print, but it's still counted

as only one line in this numbering scheme. On top

of this, stage directions are handled in a different
way: whenever a stage direction appears that's not

on the same line as spoken text, it's given a physical

line number in a decimal numbering annexed to the

previous speech's line number: 18.1, 18.2, etc. The

stage directions that appear at the opening of a

scene are numbered 0.1, 0.2, etc.

The force of tradition makes it impossible to
use a different system (and it seems difficult to

come up with another that would be as precise and

as easy to use for readers of the printed text). We

can print such line numbers readily enough, using

the EDMAC macros (see Lavagnino and Wujastyk).
EDMAC can also create footnotes and endnotes

that use such line numbers in references, but we

also need to get them back into our SGML text:

that is, t o mark in the SGML text the point at
which each line begins. The reason is that users of

the electronic version, as well as users of the paper

version, need to be able to look things up using

these line references, and to find the line address for

a passage so that they can tell others where they're
looking.

This is a problem because the line numbers

that we ultimately want to fold back into our base

text are all generated in the course of typesetting.

and actually it's not an easy matter to find out
what they are and get them back into our SGML

text. Consequently, there's a need for software that

can take information out of our typesetter file - out

of a file that is usually deliberately made to focus on

niggling presentational details and tell us nothing
about structure- and interpret it for incorporation

into the SGML. It's a striking instance of how the

printed page is not merely an end product that

leads no further, at least not within the electronic
world.

I said that one reason behind our use of SGML

was to stress the representation of meaning rather

than structure in our text. But the reference-

system problem leads to a curious inversion of

this situation: if we want a print-based reference

system, we must process the output from our text

formatter - output which consists of text that's

been converted to a format that tells us as little

as possible about meaning, and far too much about

appearance.
For ordinary prose this isn't really a huge

problem. In dramatic texts, line numbering is com-

plicated, being partly logical and partly physical.

It's quite difficult for a program to determine the

numbers by just looking at the type on the final

page, unless every single line is numbered. It can
be done, but at the expense of writing a program

that's highly dependent on the details of how your

pages are laid out, since a lot of the clues that we

as readers depend on to figure out whether some-

thing is prose or verse or whatever have to do with
indentations, details of spacing, and font selection.

Our approach to this problem puts all the

burden of assigning line numbers to blocks of text on

TEX itself. Rather than try and write software that

guesses the line numbers, we have 7&X itself issue

\ spec ia l commands at the start and end of every
line of text: to specify the line number, and to mark

that text as a part that is numbered (since every

page includes headings. marginal line numbers, and

other text that is part of the presentation of the

text, not the text itself). This much is a simple
extension of the EDMAC macros that generate the

line numbers: those macros already add each line of

text to the output page separately, so inserting the
\ spec ia l commands that enclose each line of text

is straightforward.

The bigger task is interpreting the resulting dvi

file: we need to convert it into something that's close

enough to our original SGML file that we can match
up the texts and see where to put the line numbers.

This is by far the most substantial programming

task that the production of the Middleton edition

has required so far, and I don't expect that anything

to come will prove more difficult. The problem,

however, would be more difficult with any typesetter
other than T@. Not only does it have the unusual,

but very useful, \ spec ia l mechanism; it also comes

with its binary-file formats documented in a very

thorough manner, and with ancillary programs that
already demonstrate how to read things like dvi

files. Indeed, the dvitype program already does

a great deal of the task for us: our preliminary

version of this software simply starts from dvitype

out,put, not from the dvi file itself.

Although this is a thorny problem, it is one

whose solution is made much simpler by certain

well-known (but perhaps insufficiently-appreciated)

merits of w: its extensibility, its excellent docu-

mentation on its internal workings and file formats,

and its wealth of supporting programs, all available

in source code.

404 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Simultaneous Electronic and Paper Publication

Conclusion

Many people who prepare texts on computers are

already finding themselves drawn to the creation
of multiform texts. In this account I've tried

to identify the general questions that should be
considered in doing this; but it's probable that
others will also run into problems specific to the

kind of text they're working with, as we have with

reference systems in our work. The use of flexible

tools also makes the successful resolution of these
problems easier.

Bibliography

Bell Telephone Laboratories. Unix Time-sharing

System: Unix Programmer's Manual. Seventh edi-

tion. Murray Hill, New Jersey, January, 1979.
Carr, L., S. Rahtz, and W. Hall. "Experiments in

m and HyperActivity." TUGboat 12(1), pages
13-20, 1991.

Coombs, James H., Allen H. Renear, and Steven

J. DeRose. "Markup Systems and the Future of

Scholarly Text Processing." Communications of

the ACM 30(11), pages 933 - 947, 1987.

Knuth, Donald E. The m b o o k . Reading, Mass.:

Addison-Wesley, 1984.
Laan, C. G. van der. "SGML (, 7$J and . . .)."

TUGboat 12(1), pages 90- 104, 1991.
Lafrenz, Mimi L. "Textbook Publishing- 1990 and

Beyond." TUGboat 11(3), pages 413 - 416, 1990.
Lavagnino, John, and Dominik Wujastyk. "An

Overview of EDMAC: A p la in 7$J Format for

Critical Editions." TUGboat 11(4), pages 623 -

643, 1990.

Partl, Hubert. "Producing On-Line Information
Files with I4m." TUGboat 10(2), pages 241-

244, 1989.

Sperberg-McQueen, C. M., and Lou Burnard,

eds. Text Encoding Initiative: Guidelines For the

Encoding and Interchange of Machine-Readable

Texts. July 1990.

Stallman, Richard M., and Robert J . Chassell.

Texinfo: The GNU Documentation Format. Cam-

bridge, Mass.: F'ree Software Foundation, 1988.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

SGML versus/and

Robert W. MCGaffey
Oak Ridge National Laboratory, Building 2506 MS 6302. P.O. Box 2008, Oak Ridge, T N 37831-6302 USA

615-574-0618; FAX: 615-574-1001
Internet: mcgaf f eyrwOorn1. gov

Abstract

Everyone who handles computer documentation faces the
problem of proliferating application-specific versions of a source
file and the added difficulty of merging changes back into the
source. SGML is a resource for building a generalized solution.
TEX and SGML offer a particularly harmonious synergism for
documentation applications.

Consider This Problem:

You have a database with important information.
You need to publish some of the information and
wrap it inside appropriate text. Furthermore, you
need to create an abstract for printing inside a pro-
fessional journal in preparation for a presentation of
your paper at an international meeting. Meanwhile,
a colleague calls and requests a copy of some of
the database for his/her research if you furnish it.
Finally, your latest experiment dictates that you
must change some of the data you have already
placed in half a dozen places. Wouldn't it be grand
if you could just keep all of that information in one
place and only have to modify one copy and be sure
that all of your data was up to date? Of course it
would. But you can't. Well, suppose you could keep
one "official" copy and automatically generate all
of the others whenever the "official" copy changed?
Would you be interested? If so, welcome to the
world of SGML.

What Is SGML?

SGML (Standard Generalized Markup Language)
is an international standard which purports to
standardize the way information is marked up in
a storage medium. But in practical terms, SGML
implies a system of programs which helps us to
create both the "official" computer file and the
automatic copies we have to generate. Here's how
it works:

First we create a file, called a Document Type
Definition (DTD), which describes completely how
the information is organized in the "official" file.
The DTD is intended to support hundreds or even
thousands of documents organized in the same way.

For example, consider a "theme" which will contain
one title followed by one or more paragraphs.

Next, we can build what is called an "instance"
file, which is the official name for our "official" file.
A simple DTD file could lead us to the following
instance file:

<document >
<t i t le>The t i t l e < / t i t l e >
<p>The f i r s t paragraph.</p>
<p>The second paragraph.</p>
</document>

Note that a SGML "element" is most often repre-
sented by something like <tag>(the SGML element
named "tag" goes here)</tag>.

But our sample is not what I call real SGML
because it is so attached to the formatting of the
theme. We should be happier to see something like:

<theme>
<title>The title</title>
<idea>The first paragraph.</idea>
<idea>The second paragraph.</idea>
</theme>

Note that we are now tagging information rather
than the formatting of the information.

Smart editors already exist which will help us
with the two steps above. They will help us create a
legal DTD file and then make sure that the instance
file we create matches the DTD we created.

Now, we have our "official" file. How do we get
the automatic copies?

Other programs exist which parse the instance
file and translate it into another format. That
means that I can translate my "official" file into
my favorite typesetting language (m) by writing
a program for my parser-translator and when I do
so I will get something like:

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

SGML versusland 7$X

\starttheme

\starttitle The title\finishtitle

\start idea The first paragraph. \f inishidea

\startidea The second paragraph.\finishidea

\finishtheme

which, with a suitable set of w macros, will
generate my paper copy.

Why Is SGML Better Than T@C?

Because it is more than a typesetter. Consider
the way in which TEX typesets a superscript.
How does w indicate a footnote marker?, an
atomic weight?, the degree symbol?. and sometimes
trademarks etc.? Answer: often all by the same
mechanism; i.e., $*(whatever)$. Real SGML forces
you to treat these differently because they have
different meanings. Thus, an SGML document has
more inherent intelligence than a rn document.

Since SGML is independent of the programs
used to typeset, store in a database, extract an
abstract, etc., your documents become "official",
i.e., the one and only storage medium needed
to hold all of the information. Therefore, any
typesetter, database, etc., may be accommodated
by changing only the program which drives your
parser-translator. Thus a change in one file makes
the new output automatic. So if I decide to switch
typesetters from 'QX to NIT without modifying my
instance files at all.

The first time I heard that, my objection was
that instead of having QX files you then have
SGML files and, "What happens if SGML changes
and I want t o convert my files to NISGML?" what
is the difference? The answer is. if SGML is
ever modified (and I sincerely hope it is!), all of
your SGML files could be run through the parser
mentioned earlier and converted in one huge batch
file. Try doing that with any other system and you
will get an appreciation for SGML and the available
parsers.

Why Is Better Than SGML?

When you consider the example of a mathemat-
ical expression, taking full advantage of all the
capabilities that SGML offers, you cannot read
the equation. The corresponding equation is
rather easy t o read. The SGML document may
also contain cumbersome structures necessary to
distinguish between the various uses of say, periods.
In such cases, the (f i l e n a m e) . t e x document is much
easier to type and to read than is the instance file.
But these a re excuses -if the information needs to

be available, then the tagging needs to be done no
matter what the result is in the instance file.

Naturally, is better at typesetting because
SGML is not a typesetting system. There are

those who try to make it so by misusing SGML's
attributes and forcing SGML files to contain for-
matting information. But it is not. It should be

used to mark the information without regard to its
format. There are even those who would sacrifice
printing quality for the sake of the instance file.
But when you can have your SGML file and it
too, why not?

Then We Say, "SGML and T@C for

Publishing"

There are at least four main reasons for inserting
SGML in front of m:

1. Due to the writing of smart editors, it is
much easier to create a properly structured
document with SGML. But what we did not
mention before is that the smart editors force
typists to enter all of the data and in the
correct order. (It is true that you can still
make a mistake but you have to make it on
purpose.)

2. SGML allows us to have the luxury of the
"official" document. I don't think that I will
appreciate all of the problems that this solves
until we have had a working system in use for
some period of time.

3. SGML can be used (with the proper parser-
translator) to generate input to a database
system as well as other typesetting systems
or anything else where information is stored.
Thus, the input information can be confined to
one file (the instance file) and yet many output
mediums are possible.

4. Because of extra intelligence available from
SGML, the rn macros needed to typeset
the document are easier to write. Consider,
for example. that we do not need to concern
ourselves with whether or not our document
has (or does not have) a title because we will
know that it does. Thus, our 7QX macros need
not check for this.

There are at least four reasons why Q X should
follow SGML:

1. There are SGML aficionados who feel that
typesetters like QX should be executed quietly
behind the translator and that users need never
know that it is being used at all. QX is one

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 407

Robert W. MCGaffey

of the most programmable typesetters around
and thus more capable of this than other
typesetters. For example, consider typesetting
a table from an instance file. SGML is aware
of the structure of the information but has no
idea of the lengths of the various elements.
So, typesetting a table from an instance file
means adopting some standard format which

will hopefully satisfy some high percentage of
tables. Some of the table information will
be wide and some narrow. And it is not
likely that the lengths of the table headings
will correspond to the lengths of the data they
head. As a result, the simple table of Figure
1. becomes "strung out" and ugly because its
headings are so long.

No. of samples Exposure rate Standard Error

Max Min Ave

Input Summary 80 110 6.6 18 3.5
Output Summary 254 11 5.8 7.1 0.043

Figure 1: Table generated with eyes closed.

No. of
Exposure rate Standard

samples Error
Max Min Ave

Output
Summary

254 11 5.8 7.1 0.043

Figure 2: Table generated after seeing disaster above.

Most of us would probably agree that the

rendering shown in Figure 2 is better. QX
is one of few typesetters capable of making
the decision to change the pattern of the table
on the fly. That is, T@ is smart enough to
decide that the second alternative is better, all
by itself. The number of places where such
decisions could be made is probably only a limit
of our own imaginations. Thus, QX can hide
behind SGML better than most typesetters.
But there are cases that cannot be handled by

automatically.
2. There are things that you can do with QiX that

make the published-on-paper copy so clean.
For example, QX can assure us that all of
the columns of any output page will never

end in a hyphenated word and yet will be
the same length. The author thinks the
best way to do this is to look at the final
document and then use \hboxC(hyphenated

word)) whenever it is needed. Sometimes the
use of \looseness=(number) is also required to
prevent widows and orphans in such columns.

3. Editors will want to make formatting changes.
Editors always want to make changes.

4. Yet the main reason to use QiX as a backend
to SGML is the reason we all started using it in
the first place. It is still true that nothing else
sets math like QX (or paragraphs either) so
we should continue to use QX simply because
it does such a beautiful job.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Typesetting SGML Documents Using TjjX

Andrew E. Dobrowolski
ArborText, Inc.

internet: aedQarbortext . corn

Abstract

Since its publication as an international standard in 1986, the

Standard Generalized Markup Language (SGML) has become a

preferred document-markup standard within many industries.

Many users have developed their own document type definitions
(DTDs) that define the elements (tag sets) for their documents.

However, if SGML is to become a universally accepted standard

of document interchange, then a standard way of specifying

formatted output and a means of producing that output will be

needed.

The U.S. government's Computer-aided Acquisition and

Logistic Support (CALS) initiative selected SGML as the standard

for text interchange. The output specification section of the

CALS standards proposed the Formatted Output Specification

Instance (FOSI) as the means of formatted output specification

interchange.
TJ$ can be used as the formatting engine to implement

FOSI-based formatting. But without extending w, not every
FOSI formatting request can be fulfilled. Conversely, certain

capabilities cannot be formulated in terms of FOSI

characteristics. However, a FOSI/m-based formatting system

would be a major advance towards fulfilling the document

interchange needs of a growing community of SGML users.

Document Interchange Standards

In the past ten years, w has become a well known

and widespread language for typesetting technical

documents. From its original base of universities

and colleges, it has spread to such an extent that

people in industries with only incidental needs for

publishing have heard about it. A large part of

w ' s appeal comes from its portability, since the

program is in the public domain and has been

ported to quite a number of operating systems.

There is no standard for the way a document

is "marked up"; this is dependent on the macro

package used. Given the right macro package

and fonts, the formatted output of two different

implementations on two different machines will

produce identical results.

By contrast, generic markup systems identify
document structures without making assumptions

about the end application of the document. This

makes the same document useful to various pro-

grams and for various applications. Generic markup

has been around in several flavors for over ten years.

These dissimilar flavors were a hindrance to its util-

ity. To remove this hindrance and to promote the

portability and acceptance of generic markup, an

international standard (IS) specification for generic

markup was established in 1986. Since then, SGML

(Standard Generalized Markup Language) has be-

come extremely important to industry, especially in

areas where huge quantities of data have created a

document-management nightmare. Today a large

number of programs can read and write SGML on a

variety of platforms.

The U.S. government's Computer-aided Acqui-

sition and Logistic Support (CALS) initiative gave

SGML additional clout by selecting SGML as the

standard of text interchange between the Depart-
ment of Defense and its subcontractors. However,

SGML contains no information pertaining to the

printed representation of a document or to the
meaning attached to the markup. The compan-

ion standard to SGML that addresses standardized

formatting specifications, the Document Style Se-
mantics and Specification Language (DSSSL), is

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting 409

Andrew E. Dobrowolski

still in the design stages. It is not expected to be-

come an international standard until at least 1993.

For this reason the output specification section of

the GALS standards proposed the Formatted Out-

put Specification Instance (FOSI) as the means of

output specification interchange.

SGML and FOSI Structure: An

Overview

All SGML documents must conform to certain rules

that are defined partially by the standard and

partially by a prolog to the document; this prolog
is called the document type definition (DTD). The

DTD defines the "elements" of a document; in a
document instance, these are marked off by start

tags and end tags. For example. a hypothetical

section might be marked up like the fragment in

Listing 1. Here, <head> and </head> (pronounced

"head" and "end head") are start and end tags that

delimit the head element. The parent of head is

section and its siblings are the two para elements.

A DTD also defines what "attributes" are

associated with an element. An attribute is an an-

notation that appears in the document instance and

augments the information provided by the markup.

Attributes appear within an element's start tag. If

the element "head" has an attribute "id" for use in
cross references, then that attribute can be assigned

some value in the document instance, for example:
<head id="overviewU>.

It is important to note that SGML allows the
same element to appear in many contexts within a

document structure. The same markup can be used

to describe a chapter head, a section head. and even
a table head. At some point, a distinction must be

<sec t ion>

<head>SGML and FOSI S t r u c t u r e :

An Overview</head>

<para>Al l SGML documents must conform t o
c e r t a i n r u l e s t h a t a r e def ined p a r t i a l l y by

t h e s t a n d a r d and p a r t i a l l y by a p ro log t o t h e

document, which i s c a l l e d t h e document type
d e f i n i t i o n (DTD).</para>

<para> I n a d d i t i o n t o being f i r s t o f f t h e

s t a r t i n g blocks t o becoming a n a t i o n a l

s t a n d a r d , t h e FOSI i s a l s o t h e most
manageable, </para>

< /sec t ion>

Listing 1. A Document Instance Fragment.

made between these various contexts, at least for

the purpose of formatting the document. But since

the DTD also restricts the context in which any

element may appear, the task of defining the style

of every element in every one of its possible contexts
is fairly well defined. Thus, a FOSI will not define

the formatted output style of a document element

but of an element in context (or e-i-c).

Many industries have developed DTDs that de-

fine the elements (tag sets) used to mark up their

documents. Before SGML becomes a universally

accepted standard of document interchange, one of

SGML's conlpanion standards for output specifica-
tion must be fully implemented. TEX could be the

engine in the implementation, the means of produc-

ing standardized output for any SGML document.
The ultimate goal would be to make this process
automatic for the arbitrary DTD document. The

only information that would need to pass from one

site to another in order to print a document would
be the document instance, the DTD, and an output

specification.
It appears that of all proposed output specifica-

tion standards, the FOSI is the closest to becoming
a recognized standard. In addition, the FOSI speci-

fication is the easiest to implement. A FOSI is itself

an SGML document that conforms to the Output

Specification (OS, or outspec) DTD. But, instead of
being made up of parts, chapters, or sections, a FOSI

is made up of divisions that describe page models
and the output format of each of the document's

elements.
There are six major divisions in an output spec-

ification instance: the security description (secdesc).

the page description (pagedesc), the element style

description (styldesc), the table element style de-
scription (tabdesc), the graphical element descrip-

tion (grphdesc), and the footnote area description

(ftndesc). All but the pagedesc and styldesc are

optional. There still is no definition for the output

style of mathematical formula elements. Thus, the

mathematics must either be passed through in the

native language of the formatting system and trans-

lated into the native language by the translator,
or the output specification for the mathematical

elements must be "hard wired" in the formatting

system.
The style description is the most important di-

vision of the outspec for simple text documents. The

styldesc contains a document description (docdesc),

zero or more environment descriptions (envdesc),

and at least one formatting specification for an
e-i-c. It is in these subdivisions that special FOSI

elements called categories appear. Each category

410 TUGboat, Volume 12 (1991). No. 3-Proceedings of the 1991 Annual Meeting

Typesetting SGML Documents Using

SGML and FOSI Structure:
An Overview

All SGML documents must conform to certain

rules that are defined partially by the standard
and partially by a prolog to the document,

which is called the document type definition
(DTD).

In addition to being first off the starting

blocks to becoming a recogized standard, the
FOSI is also the most manageable.

Figure 1. Typeset Document Fragment.

provides data on a different aspect of the formatted

output. There are 24 categories (with names such

as font, leading, etc.), and each of these has from

one to 13 attributes. These. when fully specified,

exactly define the formatting aspect with which

their category is concerned. These attributes are

called characteristics, of which there are 128 in

total. Once values for all the characteristics of

any given e-i-c have been determined, it should be
possible to define the appearance of that e-i-c on

the printed page.
The categories control the font, leading, hy-

phenation, word spacing, letter spacing, indents.

horizontal justification, highlight. change marks,
prespace, postspace, page breaking, vertical justifi-

cation, text breaking, spanning, page borders, rul-

ing, character fill, enumeration, print suppression.
automatic generation of text, automatic generation

of graphics, the saving of text for cross reference,

and the use of text saved for cross reference.

As mentioned above, the elements that may

appear in a styldesc are docdesc, envdesc, and e-i-c.
The characteristics of the docdesc define the style of

the overall document and specify the default values

for characteristics that are needed but not specified

in an e-i-c. When used in this way, the docdesc is

called the default environment. The envdesc section

defines "named" environments that may be used

instead of t he default environment. The actual style

definition for an element in a particular context in

the document instance is given by an e-i-c. The

SGML terminology for an element's name is the
generic identifier (gi). An e-i-c specifies an element,

its context, and its occurrence within that context

Listing 2. FOSI fragment.

by using the gi . context, and occur attributes, as
shown in Listing 2.

Furthermore, this FOSI also uses the occur at-

tribute of an e-i-c to make a distinction between the

output format of the first and non-first occurrences
of the para element. The paragraph indent of the

first para within a structure is zero, while non-first

paragraphs have an indent of 15 points and an
additional prespace of 6 points. Figure 1 shows

the formatted output from the document instance

fragment. Characteristics not explicitly listed in

the e-i-c definitions default to the values sepecified

in the docdesc (not shown).

SGML-to-'I@ Translation

As with most SGML documents, the FOSI must first

be read by an SGML parser or a dedicated program,

and then translated into a form suitable for the

formatting engine. Likewise, the document instance

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Andrew E. Dobrowolski

must be translated by some process into a suitable

form.

Translating a FOSI into 'lJ$ creates a series of

macro definitions that appear in the TEX translation

of the document instance. Given a suitable starting

set of macros, it is possible to load the new macro
definitions produced automatically from the FOSI

translation and to format the document.
Because the output specification for a given

document element is context sensitive, either the
translation process or 'TEX must track and differen-

tiate between differing contexts. To make the work

of the macro package easier, the context sensitivity

should be built into the translation process. In

fact, W ' s limited look-ahead capability dictates
that the translation will be context sensitive. 'lJ$
cannot recognize when an element is the last of

its kind within the parent structure, but some oc-
currence conditions require that this distinction be

made. For example, the last item in a list may need

to inhibit a page break from separating it from the

second-to-last item. This occurrence recognition

must therefore be done by the translation process.
The easiest way to accomplish this is to give

each e-i-c in the FOSI a distinct name and to use

that name, when appropriate, in the translation of

the document instance. Listings 3 and 4 show the

translation into TFJ of the document instance from

Listing 1 and the sample FOSI fragment of Listing 2.

Notice how the two sets of <para>. . .</para> tags

are translated according to their occurrence.

\section{)
\sectionhead{)SGML and FOSI Structure :
An Overview\endsectionhead{)

\firstpara{)All SGML documents must
conform to certain rules that
are defined partially by the
standard and partially by a

prolog t o the document, which is
called the document type
definition (DTD) . \endf irstpara{)

\nonf irstpara{)In addition to being
first off the starting blocks to
becoming a recognized standard,
the FOSI is also the most
manageable. \endnonfirstpara{)

Listing 3. Translation of Document Fragment.

Implicit Specification of

Characteristics

Let us examine more closely the specification of the

first para e-i-c in the FOSI fragment in Listing 2.
It explicitly sets the values for the f i r s t l n charac-

teristic of the "indent" category and the s t a r t l n

and endln characteristics of the "textbrk" category;
however, it neglects to explicitly define many other

important formatting parameters. Nowhere was the

font mentioned, or the prespace, or the justification

(quadding). Nonetheless, as the formatted output

suggests, these characteristics are well defined. In

general, one of two implicit methods is used to de-
termine the value of a characteristic not mentioned

explicitly in an e-i-c.
One of the methods is inheritance. An un-

specified characteristic that is inherited assumes the

value it had at the level of its parent. In the

example of Listing 1, the font family of the head is

inherited from its parent (the section). If the font
family characteristic for section is changed, this will

in turn affect the head. This method of determining

the value of an unspecified characteristic has to

Listing 4. Translation of a FOSI Fragment.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Typesetting SGML Documents Using

be explicitly requested by setting the i n h e r i t at-

tribute of the affected category to one, as shown in

Listing 2. Explicitly assigned characteristic values
override inherited values.

The usual method of determining the value of a

characteristic that has not been explicitly assigned

in the e-i-c is to look up its value in an environ-

ment. Every FOSI contains the document environ-

ment that explicitly mentions all 128 formatting

characteristics. This is the default or "unnamed"

environment normally used when a lookup must be

done. For example, the prespace category (presp)

was entirely omitted from the declaration for head

in Listing 2. So head was typeset using the default
environment's prespace characteristic values, which

were all zero.

Other "named" environments may optionally

be defined in the envdesc section. For an e-i-c's
characteristic to be looked up from a named envi-

ronment, the structure in an e-i-c that contains the

categories (charlist) must set its envname attribute

to the environment name.

Of the two methods of determining the values
of unspecified characteristics (inheriting from a

parent and defaulting from an environment), the

inheritance method is the more problematic. Since

the value of an inherited characteristic cannot

be decided until the element's context is known,

current characteristic values must be tracked by

m. Fortunately, W ' s grouping already works
this way. The characteristic values that must be
looked up from an environment can be added to the

definitions in the FOSI as part of the translation

process, or the lookup can be performed by TEX as

part of the typesetting process.

Typesetting the Translated SGML
Document

The processes performed by m that culminate in

typesetting the translated document can be sepa-

rated into two levels. The top level is responsible
for the inheritance, lookup, and setting of charac-

teristic values, as discussed above. Macros, such as

\ s t a r t e i c and \endeic used in Listing 4, group

these values to restrict inheritance, while \ font ,
\ t ex tbrk , and the like are used to set explicit

overrides.

The bottom level is responsible for the setting

of TEX parameters. This layer is invoked at the
end of every start tag. In Listing 4, it is the call to

\e iccont e n t that triggers this processing.

Various optimizations are possible. For exam-
ple, if the only category changed since the last text

fragment is the leading category (which controls

line spacing), then there is no reason to change the
current font. By keeping track of the categories that

have not changed since the last time the bottom

layer was called, we save the overhead of computing

any parameter that relies entirely on those
unchanged categories.

Whatever optimizations are used, it is required

that the current font, horizontal and vertical sizes,

margins, indent, interword space, page and line

breaking, and baselineskip parameters be properly

set. Some non-primitive parameters (for example,

for controling the number of columns) must also

be set. In addition, certain commands, such

as inserts, vertical and horizontal skips, counter

increments, macro text expansions for typesetting,

and so on, must be executed at the appropriate
times. All of these actions must conform to the

current settings of the FOSI characteristics.

Sometimes the correspondence between FOSI

characteristics and W capabilities is close, and a
simple transformation will allow T@ to produce

the results specified by the FOSI. An example

is the transformation of the pre-space category

(presp), which controls vertical spacing. Presp

contains characteristics, called minimum, nominal,

and maximum, that specify the whitespace that

precedes an e-i-c. The actions T@ must take can

be defined by means of the transformation:
Cpresp nominal=x minimum=y maximum=%> +--+

\vskip z plus min(% - x, 0) minus min(x - y, 0)

The indent category's characteristics are also

easy to transform into w. There are only three

indent characteristics, all of which are dimensions:

leftind, rightind, and firstln. It is possible to
specify that a dimension be absolute or relative

to its current value. So, assuming that the con-

ditional \ i f abs l ind is set to false if the leftind

is specified relatively and to true if it is specified
as an absolute value, and likewise assuming that

\ i f absr ind and \ i f absf ind are appropriately set,

the transformation becomes:

<indent left ind=x right ind=y first ind=z> +-+

\ifabslind\else\advance\fi\leftskip x

\ifabsrind\else\advance\fi\rightskip y

\if absf ind\else\advance\f i\parindent (z - x)

Another fairly straightforward transformation

between FOSI characteristics and T@ parameters

is the font assignment. The FOSI font category

includes characteristics named style, famname, size,

posture, weight, width, allcap, smallcap, and offset.
A table lookup scheme can be devised that allocates

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 413

Andrew E. Dobrowolski

the fonts found on the user's system based on the

classification given by these characteristics. I would
exclude allcap and offset from the classification, as

these are not really properties of a font.

Difficult Transformations

The three transformations listed above are among

the easiest. The characteristics affecting one TEX
parameter do not necessarily come from a single

category. Sometimes the transformation into TEX

requires a long and complex algorithm. The

seemingly simple request would

cause an element to interrupt the current column
mode in a multicolumn document, balance off the

existing text on the page, switch into one-column

mode for the duration of the element contents, and

then switch back into the interrupted-column mode.
These changes would also affect any parameter

whose setting depends on the \hsize. Nonetheless,
multicolumn algorithms exist and the required side

effects of switching column modes can be rigorously

determined. So the span characteristic can, in

theory, be implemented.
There are characteristics that are impossible to

implement in w : The category that controls page

breaks (keeps) contains the characteristics keep,

widowct, and orphanct. The first is a toggle (0

or 1) that inhibits the breakability of the entire

e-i-c. The other two are integers that control the
number of widow or orhan lines to be kept together

if the element must break. But T$$ only provides

widow/orphan control for page breaks between the

first two and the last two lines of a paragraph. So
the best transformation is only approximate:

The lettersp category concerns kerns between

letter pairs. can be made to do "track

kerning" in limitied circumstances, but the process
is inefficient and the conditions under which it can

be used are limited. There seems to be no point in

attempting to implement this capability.

The quadding category controls justification of

lines within an element. Among other possibilities,

it gives the FOSI designer the power to request that

paragraph lines be ragged on the inside margin only

or the outside margin only. But 7&X cannot justify

the lines of a single paragraph based on which page

they fall on, at least not in a one-pass system. This

is yet another esoteric request that would not cause
a book designer to lose any sleep if it were glossed

over.
Still other FOSI capabilities can be imple-

mented by using extensions to 7&X. The category

that controls underscoring and overstriking (highlt)

may require a TEX extension or some driver assis-

tance via \ spec i a l commands. This same category
gives control over the background and foreground

colors.

TEX Capabilities That Are Not

Expressible In a FOSI

It is interesting to note that just as there are FOSI

capabilities that are not possible to implement by

TEX, there are TJ$ capabilities that cannot be
described in a FOSI.

The p l a i n . tex package already provides many

typographical parameters to which the FOSI de-

signer will have no access. Only parameters and

capabilities that may need to be used in the middle

of a document will be listed, since the macro pack-

age can set up the other parameters easily. The list
includes: horizontal kerning; \vboxes and \hboxes
to any fixed dimension; the capabilities of \ h a l i p .

\val ign, and simple tabbing; mathematics and all

parameters related to mathematics; \ looseness,

\par shape, and the paragraph- hanging parameters;

\ l i ne sk ip and \ l i ne sk ip l imi t control; \ topskip;

multilingual hyphenation patterns; marks of various

flavors; and \xspaceskip, although interword space
can be adjusted.

Adding macro packages increases the short-

comings of the FOSI. Add to the list: mixed

multi-column modes on one page, although span-
ning to one column is possible; precise control

of figure placement and many insert categories;
side-by-side paragraphs; "picture" modes; multiple

levels of footnotes; marginal notes; paragraph line
numbering. The list goes on.

In general, the major advanced capabilities

that has over FOSI capabilities are macro ex-

pandability, contitionals, and the ability t o define

custom output routines. For the time being, these

are not serious limitations. It is more important to

find an interim solution to the arbitrary DTD for-
matting problem. The FOSI-driven TE_rC formatting

engine provides a good solution. Its wide accep-

tance in the SGML community would also mean a

wide acceptance of w, a factor that would weigh
strongly in W ' s favor.

414 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Specifying Document Structure:

Differences in IbW and TEI Markup

C. M. Sperberg-McQueen
ACH/ACL/ALLC Text Encoding Initiative
University of Illinois at Chicago
Internet: U35395@uicvm. cc .uic. edu

Bitnet: U35395QUICVM

Abstract

I4m and the Standard Generalized Markup Language

(SGML), specifically the SGML tag set created by the Text
Encoding Initiative (TEI), are two major systems developed to

make it easier to create and verify valid documents. Each at-

tempts to specify and enforce explicit definitions of valid textual
structures; each faces questions regarding the structural compo-

nents of texts, as well as the choice of abstract structures for

representing and of formal notations for specifying them.
This paper focuses on the ways I4m and the TEI identify

and classify the structural and other components of text; dis-

cusses the models of text underlying the two systems and the

methods of text definition and validation they make possible;

describes a number of specific issues that arise; considers some

systematic differences; and describes one possible way in which

they might coexist.

Introduction First, 1'11 discuss the substantive questions of what

As mechanical processing of text becomes easier,

it also becomes easier - and more important -to
specify formally what a text is and to use that speci-

fication to ensure the validity of the data stream that

represents the text in the machine. Validation be-

comes important because application software uses
increasingly complex data structures for text rep-

resentation, and because our mechanical processing

can destroy or corrupt data with an efficiency and
thoroughness that far exceed the wildest dreams of

the most assiduous scholar working by hand. Vali-
dation has become easier because computer science

has provided a rich set of data structures to use in

representing texts and increasingly sophisticated no-

tations for specifying the valid forms of those data

structures.

Today I want to discuss the specification of doc-

ument structure in I4m and in the SGML tag

set defined by the ACH/ACL/ALLC Text Encod-

ing Initiative (TEI), an international effort to define

an application-independent, language-independent ,

system-independent markup language for general

use (especially in research). This has four parts:

the structural components of texts are; and, second,

the methodological questions of choosing abstract

structures with which to represent texts and for-

mal notations with which to specify the abstract

structures. Third, I'll describe briefly a number
of concrete problems in the proper application of

such abstract structures and formal notations to pre-

existing texts of the sort studied by most textual
scholars, and, finally, I'll describe how I think SGML

and IPw can usefully coexist in practice.

Any text-encoding scheme must provide ways

to represent the characters of a text, its basic struc-

ture, intrinsic features other than structure, and ex-

trinsic information associated with the text by an

annotator. I am here concerned not with the first of

these, but only with the other three.

Substantive Issues: What Belongs in
a Text?

Basic text structure. On the basic structural

components of text, there is a rather surprising

agreement among the various markup languages in

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

current use - at least among those which attempt

to assign structure to texts.

I 4 m implicitly divides a text into a title

page (created by the \maket i t le command, which

must be preceded by author, document title, and

similar information), followed by the text body

and, optionally, by back matter (marked with the

\appendix command). The body and back matter

comprise either undivided text or a series of \par ts

or \chapters. Within parts, there is a straightfor-

ward hierarchy of chapter, section, subsection, sub-

subsection, paragraph, and subparagraph. in which

the hierarchical relationships are enforced automat-
ically.

The TEI tag set similarly divides documents

into front matter (which can contain more than the

title page), body, and back matter, with body and
the parts of the front and back matter all divided

into hierarchically nested blocks of text. Since exist-

ing (historical) texts may use structural units with

names other than chapter, etc., TEI uses the generic
term div for these blocks of text: The text body is

a series of <divO>s, divided into <divl>s, divided

into <div2>s, etc. The user can specify what name

should be associated with a given level by giving the
name as the value of an SGML attribute on the tag;

for example, <div l name= ' Chapter' >. The current

draft stops at <div5>, but this is a purely arbitrary
decision and can be changed.

An alternative proposal (used in some exist-

ing SGML tag sets) is to eliminate the redundant
nesting-level numbers and replace <divO> through

<divN> by the single tag <div> or <block>. Since

the nesting level can be readily calculated at process-

ing time, blocks at different levels can be processed
differently. This is elegant but complicates life for

whoever is specifying the processing.

Lower-level floating s t ructures . Within the

main structural divisions of the document, text is
divided into paragraphs, and these have no visible

internal formal structure. There are some chunks of

text, however, that do have visible internal struc-

ture; these I call crystals, borrowing a term from
Steven J. DeRose (in a TEI working paper). Crys-

tals are internally structured free-floating units of

text, such as figures, tables, or bibliographic cita-

tions. Leslie Lamport calls (some of) them floating
bodies.

I 4 W and the TEI recognize roughly the same
set of large-scale crystals: lists, verbatim exam-

ples, displayed equations, figures, tables, and bib-

liographic references. The TEI further expects to
provide tags for marking much smaller crystal struc-

tures like dates, addresses. personal and corporate

names, and so on. This reflects a major difference

between I 4 W and the TEI: does not need

special markup for addresses or personal names, be-

cause these do not typically require special treat-

ment in document layout. The closest IPW gets

are with the conventions used by BIB^ to distin-

guish first names from last names based on where

one puts the comma. The TEI is not exclusively or

primarily concerned with producing hard copy from

documents, but with making it possible to mark the

documents' logical structure in support of whatever

kind of processing the user might want to do. Histo-

rians. librarians, office-automation people, and oth-
ers may all want special processing based on the in-

ternal structure of names and dates-not for print-

ing, perhaps. but for indexing or other reasons.

For the converse reason, the TEI has not yet
made any concerted attempt to provide yet another

language for the description of mathematical equa-

tions, figures, graphics, or tables. U r n , being con-
cerned with processing for output (as well as with

the logical structure of the text), can hardly get by

without providing markup for such crystals. The

TEI has thus far exploited a feature of SGML that

allows sections of the text to be marked up in non-
SGML notations so they can be processed by some

appropriate processor. This keeps SGML out of

the graphics-standards wars and allows designers of

SGML tag sets to stay out, too. Although tables

often have a clear logical structure, and it would

make sense to attempt to capture this in descriptive
markup, the TEI has yet to make any concrete rec-

ommendations in this area; this is an area of ongoing

work.
For bibliographic citations, the TEI provides a

structured form patterned on the standard forms for

bibliographic references developed by librarians, as

well as a much less tightly structured form for those

with less concern about database usage of their cita-
tions. The structured form provides more structure

than appears to be available in the prose segments

of IPW documents, but is less rich than the cor-

responding B I B W structure. This is an area in

which the TEI tags must definitely be extended to

at least the level of detail offered by BIB^.

Phrase-level a t t r ibutes . Within the paragraph,

the rigid hierarchical text structure of chapter, sec-

tion, subsection, etc., suddenly breaks down, and

we are confronted with a non-rigid mess with the

consistency of soup. Within this soup, some larger

chunks (crystals, like figures and tables) may be

416 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I P m and TEI Markup

floating that we've already discussed. Some non-

structured bits may be floating there as well: em-

phasized phrases, quotations, and the like. Here,

U W and the TEI take a very similar approach.

Instead of describing the visual presentation of the

text in a particular output medium,.both encour-

age the user to describe its logical characteristics.

Thus, IPQX provides an \em command for empha-
sized text and suggests that the \bf, \sc. and sim-

ilar commands "should appear not in the text but

in the definitions of the commands that describe the

logical structure." Similarly, the TEI provides sev-

eral tags for marking words, phrases, or passages

that are specially marked in some way:

0 emph

0 foreign

cited word

0 term

book or journal title

0 quotation

'scare quotes'

article or poem title

In addition, since for historical texts one doesn't

always know why something is presented in a differ-

ent font, one can also mark such material simply

as <highl ighted> without any attempt to explain

why. This is a necessary compromise between the

advantages of logical or descriptive markup and the

requirements of scholarly integrity.

Typographic details, layout, processing.
Treatment of typographic details, layout, and sim-

ilar matters is predictably far more elaborate in

I4W than in the TEI tag set. I47&X, even with
its explicit preference for logical document design

over visual design, does after all have the function

of providing good typeset output; since good type-

setting is not wholly algorithmic, ?'EX and

provide plenty of opportunities for the user to give
them hints on what the output should look like.

The T E I tag set is far poorer in this respect,

for two reasons: First, we are attempting to create

an application-independent markup scheme, suit-

able for many different types of processing. It seems
more important just now to stress the possibilities

for processing other than printing, because these are

so often overlooked. Trying to provide a rich set of
layout tags i n the first draft would invite serious mis-

understandings and suggest that the TEI was try-

ing to compete with and other typesetting sys-
tems. The second reason is that SGML is designed

as a declarative, not a procedural language - pre-

cisely to ensure the application independence it is

designed to achieve. It is possible to specify presen-

tation declaratively rather than procedurally, as we
do already with the <highl ighted> tag described

above. But a full declarative description of page

layout is a large, challenging assignment, one that

requires a lot of further work. It is also a task that

the International Organization for Standardization

(ISO) is already addressing with its Document Style

and Semantics Specification Language (DSSSL); if

the DSSSL project is successful, the TEI can piggy-

back on their success by basing its further work on

layout problems on DSSSL.

Annotation. U W provides useful tools for anno-
tation: footnotes, marginal notes, and (in S L I ~)

inljne display notes. These correspond directly to a

single TEI tag, <note>, that uses an attribute value

to specify its location or type. But the TEI pro-

vides a large number of other tags for annotation of
various kinds that do not appear in I P W :

e an extensive document header that documents

the electronic text: its date and place of origin,

names of those responsible, copy text used, and

specifics of the encoding used;

tags for special items, like dates and numbers,

that allow their values to be given in a standard

format (so that a note containing the sentence,

"Let's have lunch next Thursday," might tag

"next Thursday" as a date with the standard

value 18 July 1991 or, in IS0 format, 1990-07-

18);
tags for recording editorial interventions, such
as corrections in the text, normalized spelling,

additions, deletions;

page and line references to canonical editions;

text-critical apparatus; and

most notably, a set of tags for the specification
of linguistic analysis or other interpretive ma-

terial relating to a text, which can be used (for

example) to specify part of speech information

or syntactic structure for every word or sentence

of a corpus.

This wealth of annotation markup reflects, of
course, the particular interest in analysis and in-

terpretation of existing texts found in the research

community, the need for which led to the creation

of the TEI as a project.

In all, I P W and the TEI tag set present a fun-

damentally similar view of the major components of

text; they have much the same view of basic text

structure and provide similar facilities for handling

most of the phrase-level markup needed for prose.

They differ in the amount of attention paid to fig-

ures, tables, and similar matter; in the amount of

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 417

detail possible for the typographic description of the

text; and in the richness of their facilities for annota-

tion. These differences reflect in part the difference
between those interested in technical documentation

on the one hand (which I take to be the original audi-

ence of I4W) and those interested in the study and

analysis of existing texts, which is the constituency

of the TEI. In part, they reflect the difference be-

tween a mature piece of software aimed at a particu-

lar kind of processing, and a markup scheme still in

progress designed to be independent of any particu-
lar application and any particular piece of software;

and in part, these differences reflect a slightly dif-

ferent model of what text is. It is to this difference

that I now turn.

Models of Text and Text Grammars

Any markup language must embody some idea of

what text is. formally. How complex and how suit-

able that idea is for formal processing vary, of course.

Some languages (especially early ones) equate
text with internally unstructured strings of char-

acters; often this unstructured character string is
punctuated by occasional processing instructions

that themselves are constrained only by specific im-

plementation details. When no processing instruc-

tions are allowed, you have ASCII-only text, in
which markup is limited to the command repertoire

of a 1956 Teletype machine (carriage return, vertical

and horizontal tab, backspace, and bell).

For serious processing, extensive command sets
have been developed, mostly oriented to the task

of getting ink on paper in the right places. Com-
monly known schemes of this type include Waterloo

and IBM Script, troff, most word processors, and,
of course, m. Processors built on this model are

flexible and very easy to understand, but very diffi-

cult to prove correct. The number of states in which

such a processor can be explodes with the number of

commands, and there can be very tricky interactions
among various states. Since the state of the system

at any point is a function of the entire document

up to that point, it is hard to process documents in

languages like this except by left-to-right scanning.

And since almost any string of characters and com-
mands is legal. these languages offer no real help in

verifying the structural validity of machine-readable
documents.

A dramatic reduction in the combinatorial ex-

plosion of possible states comes with systems that

view text as a block-structured hierarchy. The hi-
erarchy is typically a relatively simple one of two

or three levels. below which one is back in a sort

of primordial prose soup without visible structure.

Well-known markup languages in this class include

IBM and Waterloo GML, various macro languages

for Script and troff, some style packages for micro-

computer word processors, and, of course, IPW.
These languages introduce a new (hierarchical)

model of text, and can thus avoid some interac-

tions among states by simply declaring them ille-

gal. Thus, in U r n , it is not legal to have a docu-

ment body without an enclosing document environ-

ment, and, in Waterloo GML, the software checks

to ensure that the front matter does not follow the

back matter. But no formalisms are introduced to

make the document hierarchy fully explicit; there

is no explicit document grammar. It is naturally

impossible then to enforce document validity fully

or automatically. Waterloo GML does not check

to see that the back matter does not precede the

body of the document. Since the more rigid no-

tion of valid document structures is not consistently

enforced, these document languages are a bit like

programming languages with weak type systems and
automatic type coercion and control structures built

around the GOTO, by relying on the user to fol-

low good practice rather than by verifying that good

practice formally and mechanically. The constraints
which are enforced are hard-coded into the process-

ing code and can thus be hard to change.

The next distinct model of text visible in text
processing uses fully explicit, well-defined hierar-

chies of text elements to define legal text structures.

In some cases, like Word Cruncher markup, the hier-

archy is so simple that there may still be no explicit

specification of the underlying document grammar;

in others, the legal structures of documents are spec-
ified explicitly and can thus be enforced formally.

The best-known markup scheme in this class is the

Standard Generalized Markup Language (SGML),

which differs from its prototype (IBM GML) pre-

cisely in the addition of explicit document gram-

mars with context-free power. (Strictly speaking,

of course, SGML is not a markup language but a

meta-language that allows the definition of markup

languages, precisely because it provides an explicit

language for the expression of document grammars.)
SGML markup is of two types: Structural units

of the text or specific points in the text (elements

in SGML parlance) are indicated with SGML tags,

delimited conventionally by angle brackets or by left-

angle-bracket-plus-slash and right-angle bracket.
Segments of the text are delimited by a start-tag and

an end-tag, much the same way structural units in

are delimited by \begin{environment) and

418 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I 4 m and TEI Markup

\end(environment) commands or by left and right

braces.

The second type of SGML markup, entity ref-

erences, allows one to insert characters in a docu-

ment by referring to an entzty that contains those

characters. Entity references can thus be used for

special characters not on one's keyboard (analogous
to I 4 w ' s commands for accented letters, etc.),

for include boilerplate language (analogous to user-

defined macros in w that insert formulaic lan-

guage into a document), and to include external files

(analogous to M w ' s \input and \include com-

mands).

Any markup used in an SGML document must

be explicitly declared in a document type declaration.
Entities are declared by specifying their name and

the replacement value (which can be the name of a

system file or a string of characters). Elements are

declared by specifying their name and their allow-

able content; the declaration for element X specifies

what can occur within an X (or within the scope of

an X tag), such as character data, other tags, etc.
The document type declaration is thus similar to

a grammar that specifies the legal forms of a doc-

ument of a given type; the individual declarations

correspond to the production rules of a grammar in
Backus-Naur Form (BNF) .

The SGML element declaration, however, uses

a slightly richer notation than BNF. The content

model of an element is (more or less) a regular
expression composed of the names of SGML ele-

ments and the keyword #PCDATA (parsed char-

acter data). SGML thus resembles a regular right-

part grammar more than BNF does, but there are

further wrinkles we need not go into here that can

make SGML content models slightly more compact
than regular right-part grammars.

The use of an explicit grammar, together with
the explicit delimiters for enclosing each SGML ele-

ment, leads t o a natural view of an SGML document

as a tree rather than as a simple unstructured string.

The complexity of the processing is contained, since

the grammar is basically context-free, and the state
of the system at any point in the text can be read by

traversing the tree from the root node. M m docu-

ments (like any documents with a block-structured

model of text) can be treated this way, but the ab-
sence of any explicit grammar tends to make such

treatment a purely academic exercise.

Specific Design Issues

Some design issues arise in any attempt to specify a

document structure that is at once rich and flexible

enough to be usable in practice and rigid and precise

enough to be formally verifiable.

Prescr ipt ion a n d description. First of all, one

encounters a fundamental tension between pre-

scriptive and descriptive specifications of document
structure. If one is purely prescriptive, one can en-

sure that the documents one processes will all have

very similar structures. Software can make good use

of this consistency. However, when one is encoding

an already existing text written by someone else-

posssibly long dead-it is fruitless to expect it to

match a specific prescriptive document style, and

historically misleading to try. Rigid formal docu-

ment specifications may fail to match the chaotic

reality of historical documents; unless we are willing

to violate the historical integrity of the texts we are

studying, we have to provide a more flexible formal

structure within which we can find a representation

even for unconventionally structured texts.

Excessive flexibility means, of course. that the
document grammar may allow spurious document

structures that never would occur in practice. Given

the choice between excessive rigidity, which makes

some documents unrepresentable unless the gram-

mar is loosened, and excessive flexibility. which
makes some errors undetectable unless the gram-

mar is tightened, the TEI has consistently chosen

excessive flexibility. The issue does not arise in this
form for IPT)&X. because it does not claim to provide

a markup language for arbitrary existing texts; it

is comfortable, therefore, with its current degree of

prescriptiveness.

Controlling complexity t h rough modularity.
Whenever a document grammar is rich enough to

handle real texts with serious markup problems,

it has enough markup primitives to begin confus-

ing users and developers. It is useful, in this case,

to group tags into tag subsets that can be defined

and understood independently of each other; this

helps control the overall complexity of the markup

scheme. Of course, it helps a lot if the software can

guarantee that tags in different subsets don't have
long-distance interactions. We can see such modu-

larity in I 4 w in the separation of the specialized

tags needed for slides and bibliographies into the

semi-detached units of S L I ~ and BIB^. In the

TEI, similarly, the tags for specialized uses are en-
tirely separate and have no interaction with the core

tags for phrases and the like. Linguistic analysis,

text criticism, editorial intervention, etc., can all be

turned on or off by the user. The current direction of

development will lead to more such encapsulations

in the next version of the TEI DTDs.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

The user, of course, may need to use arbitrary

combinations of these specialized tag subsets to-

gether; this requires a careful specification of their

semantics to avoid side effects.

Multiple hierarchies. Although most texts fall

comfortably into a hierarchical analysis of their

parts, the use of cleanly hierarchical, block-
structured markup does lead to problems whenever

the text falls comfortably into more than one such

hierarchical structure. The volume, page, column,

and typographic line numbers of a standard edition
form a simple, clean hierarchy, but one which prob-

ably does not nest well with the logical hierarchy

of part, chapter, section, paragraph, sentence, and

word. If there are several standard editions whose

page references should be noted, we have one hier-

archy for each edition. When the text is in verse,

we can add the metrical hierarchy of canto, stanza,

line, and foot. And, of course, the labors of schol-
ars may assign rhetorical, thematic, narrative, and

other structures to the text.

The TEI scheme uses the SGML feature of con-
current m a r k u p to allow the user to maintain sev-
eral hierarchies in the same document. Bound by

the strict block structuring of TEX, it is hard to see

any solution to this problem for users of I P W ex-
cept to choose one hierarchy as the main one, and

to reduce the other hierarchies to simple scope-less

declarations in the text.

Systemic comparison of SGML and PTjijX.
I4W and SGML resemble each other strongly in
their common goals of providing system- and device-

independent markup and processing for texts, and

in their basically similar hierarchical models of text.

SGML pushes the hierarchical model and the notion
of formally specified, verifiable document structure

farther than does I4w. It provides a mechanism

for formal specification of a document grammar, and
validates the document automatically against that

grammar.

SGML attempts to provide a notation that is

not only system- and device-independent but also

software- and application-independent. The origins
of SGML are in attempts to ensure the reusabil-

ity of machine-readable texts by divorcing markup

from processing, and stressing descriptive or logi-

cal markup rather than procedural markup. IP'I'EX
stresses t he utility of logical markup to ensure the

structural soundness of a document and to make it

easy to lay it out in different styles. SGML and the

TEI push that concept farther and stress the impor-
tance of logical markup in ensuring that a document

can be processed without change for entirely dif-

ferent applications, including applications that have

nothing to do with text layout or typesetting.
This insistence on application-independence

leads SGML into what is its most striking feature as

a markup language: its complete lack of semantics.

SGML markup languages are entirely declarative,

not least because SGML simply provides no formal

mechanisms for defining any non-declarative mean-

ing for them. SGML allows you to say that a given
stretch of your document is (say) a quotation. It

does not require that your say how you want it pro-

cessed; indeed, it makes it impossible for you to do so
in SGML. You specify how an application program

should process an SGML document by talking to the

application program, not by talking to SGML. The

document itself remains a logical object untouched
by specific processing instructions. (N.B.: Insert-

ing processing instructions directly into SGML doc-

uments is allowed, provided the instructions are ex-

plicitly marked as processing instructions so they
can be skipped by other software.)

Coexistence

The TEI is intended to be an application-

independent markup language for texts of any pe-

riod, any genre, and any language. Because many

of its users will need or want to use already existing

software for processing their texts, without modify-

ing that software to read SGML documents, the TEI
is intended from the outset to coexist with other

software-dependent file formats. The fundamental

similarities of goal and the basic harmony of their
common emphasis on the logical structure of text

combine to make it very simple for the TEI scheme

to coexist with I4W in a single system.
Any file stored locally is stored in some partic-

ular file format. This local storage format may or

may not be identical with the input format of any

application program. If only one application is run
on it, the file is almost certain to be stored in that

application software's input format. A document

processed repeatedly with several different packages,

however, might have its own format, from which it

is translated into the input formats required by the

software.
One obvious use for a scheme like the TEI tag

set is as a local document storage format. When one

wants to make a concordance from a document, one

translates it from the TEI format into the form re-

quired by the Oxford Concordance Program or some
other concordance package: when one wants to make

420 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Specifying Document Structure: Differences in I P W and TEI Markup

hard-copy output, one translates it into the form re-

quired by the desired formatting or typesetting pro-

gram. The structural similarities of the TEI scheme

and MT@ mean that a TEI-to-MT@ conversion is
relatively straightforward, and for the most part the

same may be said of a Urn - to -TEI translation.'

In other words, I4m is a natural choice for the

typesetting of TEI-tagged documents, just as the

TEI format is a natural choice for the encoding of

a text's logical structure so that it can be processed

by many different pieces of software.

Acknowledgments

The TEI, an international cooperative effort to de-

velop and disseminate a common format for the en-
coding and interchange of machine-readable texts, is

sponsored by the Association for Computers and the

Humanities, the Association for Computational Lin-

guistics, and the Association for Literary and Lin-

guistic Computing.
It is funded in part by the U.S. National En-

dowment for the Humanities, an independent fed-

eral agency; DG XI11 of the Commission of the Eu-

ropean Communities; and the Andrew W. Mellon

Foundation.

The work is done by many generous individu-

als from the community who volunteer their time to
serve on the working committees and work groups

of the project.

References

[I] DeRose, Steven J. "Suggestions for improving

the AAP tag set." TEI working paper, document

TEI T R R7, August 1989.

[2] Knuth, Donald. The m b o o k . Reading, Mass.:

Addison-Wesley, 1984.

[3] Lamport, Leslie. U W : A Document Prepara-
tion System. Reading, Mass.: Addison-Wesley,

1986.

[4] Sperberg-McQueen, C. M., and Lou Burnard,

eds. Guidelines for the Encoding and Inter-
change of Machine-Readable Texts. Text Encod-

ing Initiative, Chicago, Oxford, draft version 1.1

edition, 1990.

This document, for example, was drafted using

SGML tags and converted to I P r n for submission.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

A Structured Document Preparation System- AutoLayouter

Version 2.0 -An Enhancement for Handling Multiple Document Types

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki M i y a b e , and Kazu Tsuga
Information and Commu~lications Research Center

Matsushita Electric Industrial Co., Ltd

1006 Kadoma, Kadoma-shi, 0sa.ka 571 Japan

+81 6 906 4873; FPIX: +81 6 906 8148

Internet: kakiuchiOis1 .mei. co. j p

Abstract

Autohyouter is a structured document preparation system used

to increase efficiency in creating and reusing designed documents

in offices. AutoLavouter consists of an easy-to-use structured

editor and a Japanese Brn i -based formatter. With a struc-

tured editor. the user need not be concerned with page layout,

and can concentrate on creating the contents of the document.

Because these documents are structured logically, they can be

easily reused or processed further by other systems.

At the 1990 TUG meeting, we presented AutoLavouter ver-

sion 1.0. Since then we have been improving the system to han-

dle more complicated document structures, such as are defined in

SGML. In this paper, we describe 1) new document structures,

and 2) ALmY, which directly formats structured documents.

Introduction a text formatter for logically structured documents.

Recent research projects on document processing

have been directed a t structured document rep-

resentations, such as SGML. The basic idea of a

structured document is to separate a document into

structure and content; its contents are the11 ex-

tracted in terms of its structure. In an SGML doc-

ument. the structure is defined explicitly as a DTD

(Document Type Definition), so that docume~its cre-

ated with the same DTD are interchangable. Such

a structure can also be used by a document process-

ing system to retrieve the required information: for

instance, the title, author, and date of technical re-

ports can be retrieved through their structure and

merged into a summary table.

The structured document representation, espe-

cially the logically structured one, is essential to

making the best use of electronic documents. We

can store documents in electronic format, and load

and print them on paper, using conventional word

processor o r desktop publishi~~g systems. These doc-

uments cannot be processed by other systems, how-

ever, unless the logical meanings of their contents

are preserved, because there is no other way to iden-

tify the contents. Because of its abstract, declarative

language, LATEX is often referred to as an example of

L A W is used as a document preparation tool by

computer software engineers because they can use

any editor and can concentrate on a document's con-

tent and structure without paying any attention to

its physical appearance.

In Japan. the advance of word processing tech-

nology has meant that business documents are pre-

pared and stored electronically, but they must also

be kept in printed form. The format of most

Japanese business documents separates items with

rule lines. This standardizes the items to be writ-

ten and determines the text area available for each

item. Japanese word processors possess some char-

acteristics for editing these forms: they draw ruled

lines and insert text in the area surrounded by the

rules. However, this augmentation of rule-line func-

tions has made it too complex to manage document

files and to reuse document contents. As a result, a

document must still be managed in the printed form,

even though it is stored in an electronic format.

To solve these problems, we have developed a

structured document preparation system, Aut0La.y-

outer, whose objective is to increase efficiency in

creating and reusing preformed documents. Auto-

Layouter consists of a structured editor for creat-

ing SGML-like documents, and a Japanese U W -

422 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

based formatter called A L W . In the subsequent

sections of this paper. we mainly describe the docu-

ment structures of Autolayouter and implementa-

tion issues of A L W formatter.

Document Structure

M o d e l for d o c u m e n t s t ruc tu res . The AutoLay-

outer document is represented as a tree structure

(like an SGML document). Each node of the doc-

ument tree, except the leaves, has a unique label

associated with it. Each leaf of the document tree

contains a text segment, which is represented as a

sequence of characters. Any node may have an ar-

bitrary number of attributes, represented as nanie-

value pairs.

A major difference between the document

structure of AutoLa.youter and SGML is that the

AutoLayouter document has two structure layers,

namely the logical structure and the generic struc-

ture. The logical structure presents the logical

meaning of the subsidiary structures) such as a

sender's address in a letter, which is specific to

the document type. Meanwhile, the generic struc-

ture presents such document elements as itemiza-

tion, enumeration, and centering; these are common

to all document types. The generic structure is al-

ready predefined in the system. When defining a

document structure, we need only specify the logi-

cal structure.

The whole document structure is organized as

follows: the root node of the document belongs to

the logical structure, and its descendents can belong

to either the logical structure or the generic struc-

ture, according to the document definition. ,4 node

in the generic structure cannot be a parent of any

nodes in the logical structure; furthermore, siblings

belong to t h e same structure. In the rest of the pa-

per, we shall call nodes in the logical structure the

logzcal element, and nodes in the generic structure

the yenerzc element. Each leaf of the document is a

special generic element that has only a text segment

with no children.

A model for structured documents should be

well designed so as to make it easy to define docu-

ment structures and maintain consistencies between

them, and also to make its editor easy to use. In

SGML, the whole document structure must be de-

fined explicitly, using the fully expressive descrip-

tion language. This means that to use the contents

of one document in another document, the structure

definitions of both must be strictly consistent with

each other; such consistency requires as much effort

as does designing database schemes. Furthermore,

Feb. 1, 1991

Since our company ...

i t e m - the names of ...

i t e m - hardware capability

Generic S t ruc tu re

F i g u r e 1: Document structure in AutoLa.youter

the user interface of a structured editor tends to be

awkward because of the flexibility required to handle

all document structures as generated from their def-

inition. This is analogous to the trade-off between

functionality and ease of use involved with most sys-

tems, namely, easy-to-use tools can be achieved a t

the expense of their restricted flexibility.

In Au toLa.youter, the generic structure is pre-

defined in the system and only the logical structure

needs to be defined; thus, only the logical part of

document structures should be designed to be con-

sistent. Moreover, we can build in the easy-to-use,

dedicated user interface for editing the generic struc-

ture; this contributes to efficiency in preparing doc-

uments. A user often manipulates a document's

generic structure rather than its logical structure,

because most of the logical structure can be gener-

ated automatically by the system and need not be

modified so frequently, whereas the generic struc-

ture contains the text segments t o be typed and the

layout directives that have been left to the user.

E x a m p l e 1: 171 Fig. 1, a wh.ole document structure

is divided into two structures. The document defi-

nition specifies only the loyical structure, shown on

the left side.

By using these two-layered structures, the de-

sign of a new document type is accomplished by

defining a logical part of its structure and specify-

ing how to present each element on paper (layout

definition).

S t r u c t u r e def ini t ion. The structure definition of

a document type is a generic specification of its log-

ical structures. This is expressed in a grammar for-

mat that specifies the logical elements and the order

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga Takashi Kakiuchi,

- I Document File I

Structure S t r u c t u r e d

Edi tor

TEX File rn
F o r m a t t e r

F i g u r e 2: System diagram of AutoLayouter

in which they will be generated. Each rule consists

of a left-hand side, which corresponds to a node,

and a right-hand side, which is a restricted regular

expression that specifies occurrences of its children.

System Structure of AutoLayouter

S y s t e m overview. As shown in Fig. 2, AutoLay-

outer consists of two subsystems: a structured edi-

tor and a formatter.

The structured editor interactively performs

the following tasks:

interprets a structure definition;

edits documents, showing the structure ele-

ments to be inserted and checking illegal struc-

ture modifications;

loads and saves structured document files; and

converts documents into files.

Meanwhile, the formatter completes the following

tasks:

typesets the document in accordance with the

layout definition (style file) provided; and

converts formatted documents (dv i file) to a

specified device such as a bitmap display or a

Postscript printer.

In t h e rest of this section, we describe vari-

ous file formats used by subsystems, to clarify their

roles.

F i l e fo rmats . The data files used in the Aut0La.v-

outer are the following:

a structure definition file (for input);

a structured document file (for input and out-

put):

a TbJ file (for output) .

a layout definition file (for input); and

A structure definition &file. In order to define docu-

ment structures (see the Model for Document Struc-

tures subsection on previous page), we use the fol-

lowing three syntaxes in the structure definition file.

1. A node having children of logical elements is

defined using the following syntax:

< !node node-name ,
regular-expression>

This implies that if a node is a logical element,

then its siblings are also logical elements.

2. A node having children of generic elements is

defined using the following syntax:

< ! l e a f node-name , type>

4 type field, which can be genera l , s t r i n g ,

or i n t e g e r , and so on, specifies a selection

of the subsidiary structures that are allowed

t o appear; g e n e r a l allows any kind of generic

elements, including any nested sub-tree of a

generic structure; s t r i n g allows only a string

in a text segment; and i n t e g e r allows only an

integer in a text segment.

3. Attributes associated with a node are defined

using the following syntax:

< ! a t t r i b u t e node-nam,e,

{attr-type

attr-n,ame = initial-value}*>

An attribute, which may be used for any pur-

pose, is typically used to define layout param-

eters, such as paper size or column layout.

In addition to the syntax above, we provide a

syntax just for the structured editor; this is used

to define help information for each logical element.

such as a label string shown in the editor.

E x a m p l e 2: The following is the structure defin.i-

t ion of the document shown i n Fig. 1.

<!rootnode LETTER, DATE.FRDM.BODY . . . >
<!leaf DATE, date>

<!node FROM, COMP.SECT.NAME . . . >
<!leaf CDMP, string>

. . .
< !leaf BODY, general>

The structured editor reads the structure defi-

nition file in two situations: when selecting a docu-

mrnt style to create a new document, or when start-

ing to edit an alrrady existing document.

424 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System Au toLayouter Version 2.0

A structured document file. We directly represent a

tree structure of an AutoLayouter document as a

block structure of the document file. A node n ,

whose children are m l ,mz,...,rnk, is expressed in the

document file as follows:

A TEX file. The structured editor outputs a rn
file to be input by the formatter. The rn
file represents the tree structure of the Auto-

Layouter document directly, converting a node

<n>, ..., </n> in the document file into a TEX com-

mand \beginnodein), ..., \ e n d n o d e m , and replac-

ing all special characters with TEX commands

that generate the characters literally.

\beginnode{n) [attribute-list] C
\beginnode{ml) [attrzbute-lzsU

The name of the root node that appears a t the

top of the file identifies the style file.

A layout definition file. The layout definition file is

a style file. This will be discussed later.

Editing the Structured Document

As shown in Fig. 3, the editing field of the struc-

tured editor is divided into two areas, a style field

and a layout field, that represent the logical struc-

ture and generic structure, respectively. Usually we

use different labels in different structures, such as

text labels in style field and graphical labels in lay-

out field. This makes it easy for users to see the

whole document structure. In each field, we use in-

dentations t o show substructures.

When creating a new document, one selects the

document type, such as l e t t e r or r e p o r t . The edi-

tor reads the structure definition file of the specified

document type and generates a mandatory and min-

imum structure according to the definition rules.'

Since the mandatory structure has already been gen-

Each leaf of the logical element has a generic

element for a text segment.

r--- Style Label

t _ _ _ _ _ _ _ _ _ _ l L.. ,

Style Layout Field
Field Layout Label

Figure 3: Snap shot of editor screen

erated. one completes the document by simply typ-

ing text into each text segment.

One may insert a logical element, such as a re-

port date field, as needed, whenever it has been de-

fined as optional or is repeated in a regular expres-

sion. When the insert command is selected for the

layout field, the editor displays candidates for the

logical elements that can be inserted a t the speci-

fied position. One only needs to select a candidate

to insert it. Since only valid candidates are shown,

an illegal structure can never be generated. When

deleting a node, the editor checks whether this vio-

lates a rule; if it does, the editor displays an error

message and ignores the user's operation.

In the layout field, one can insert any generic

element a t any position, as long as the type of its

ancestral logical element is declared as g e n e r a l in

the definition. When the insert command on the

layout field is selected, the editor shows a label list

containing all generic elements.

The editor also has additional features listed

below:

Motzf as Graphical User Interface. Motif provides

a consistent look and feel in different applications.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga

Japanese Kana-to-Kanji conversion. We developed

Japanese input as a front-end processor. Commu-

nication between this and the text editor realizes

in-line conversion of Japanese.

Operations with keys. Most commands can be oper-

ated with either a mouse or a keyboard. This satis-

fies a wide range of users, from novice t o expert.

Browsing functions. Moving around labels that

have a keyboard focus switches the contents of the

panels that display the attributes and the help mes-

sages.

Formatting with ALTjjX

AutoLayouter formats its structured documents us-

ing an original typesetter called " A L W , which

has the following features:

0 handles a tree-structured document directly;

and

0 provides ready-to-use macros to support layout

abstraction.

AL?'E)I is implemented in L A W . ' Therefore, not

only can LAmY users include their L A W documents

within an A L W document, but L A W experts can

easily describe a layout definition by using U m
commands.

We will describe our A L W in detail with re-

spect to these features in this section.

F o r m a t t i n g t r ee - s t ruc tu red documents . First,

we will explain the mechanism for mapping a struc-

ture to i ts layout. As we mentioned in the section

System Structure of AutoLayouter, a structure ele-

ment in a document is represented in the form

\beginnode{ . .) , . . . , \endnode{. .)

in an A L W file produced by the structured ed-

itor. A L W expands the two control sequences

\beginnode and \endnode in the same way that

it is used in the IPW environment, namely

\begin{. .),...,\end{. .). For instance, a structure

\beginnodeifoo} [attrzbute lzst] {

is expanded to the following:

)\endnodefoo\endgroup

This expansion indicates that the layout for a struc-

ture foo is based on the definition of two control

sequences, \nodef oo and \endnodef 00.

In th is mechanism, it should be noted that the

text segment of a structure is enclosed with the

Japanese L4?'E)I (ASCII version), to be exact.

grouping symbols { and). The braces allow the

text segment to be processed as an argument t o a

macro in some cases, or t o be laid out as text

as soon as it appears in other cases. To be more

specific, in the case where the text segment is to be

placed directly into the main vertical list, one can

define the control sequence \nodef oo as

In this case, \nodef oo works as a pre-processor be-

fore the text segment is laid out on the page. If, on

the other hand, the text segment needs processing,

or it should be saved once and laid out later, one

defines \nodef oo as

\def\nodefoo#l#2{ . . . I

This form of definition enables us to describe any op-

erations on the text segment (i.e., argument #2) in

the replacement text of the macro definition. How-

ever, note that the former form is recommended

wherever possible, because the latter form consumes

more memory.

E x a m p l e 3: Let us consider a dejlnition for a dec-

laration of the author of an article, similar to

the \author command in D m . In the BT@
a r t i c l e . s t y file, the \ au thor command is defined

as:

i.e., the \ au thor command saves its argument into

a macro \@author . In order to implement the same

function as the \ au thor command in A L W , we

define a \def \nodeAUTHOR macro for a logical struc-

ture AUTHOR as:

The mechanism mentioned above is not applied to

the outermost structure, namely \beginnode{root}

and \endnode{root), which represents the root node

of the document, because it requires extra tasks.

The \beginnode{root) command should load a lay-

out definition file and set up miscellaneous param-

eters, and the \endnode{root} command should

flush out the main vertical list and process cross-

references.

Incidentally, A L W expands attribute lists in

a uniform fashion. For instance, if an attribute list

of the structure foo appears as:

then each "attribute=value" pair is expanded into a

command \f oo@~~ttribute{vaIue}, i.e.:

426 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

TUGboat, Volume 1 2 (1991), No. 3-Proceedings of the 1991 Annual Meeting 427

To process the expanded attribute list, we must

prepare control sequences that have one argument

"\f ooQattributen for each attribute associated with

a node foo in a layout definition file.

Layout model and layout definition. When

considering a practical usage for a document prepa-

ration system that is based on a structured docu-

ment, providing a toolkit to facilitate layout defi-

nitions is indispensable. When using a document

preparation system with WYSIWYG and direct ma-

nipulation features, we can perform any page layouts

with some cumbersome efforts. Obviously, -4uto-

Layouter's automatic layout feature does not work

without a layout definition. This becomes the most

critical bottleneck in practical use.

To keep the toolkit from being complex and

confusing, i t should be based on a well-designed and

simple layout model. In A L T m , we provided two

layout models, a paragraph layout model and a form

layout model. Each tool is an abstraction of a layout

based on these models.

In the rest of this section, we present these two

layout models, as well as the way to use the toolkit

to map the logical structure element to the physical

layout.

Layout model. The sequence of words in a text

segment is broken into lines with the paragraph lay-

out model. The result of paragraph layout is a

box that might either be put into the main verti-

cal list directly, or aligned vertically or horizontally

together with other boxes before being put into the

main vertical list. In the latter case, the alignment

is performed on the form layout model. Kow, let us

see each model in detail.

Paragraph layout model. This model is provided for

the sake of putting the contents of a structure el-

ement into the heap of lines. Each text segment

in the leaf elements contains logical paragraphs.

These are put into the physical layout of the para-

graphs, whose shapes vary according to the parame-

ters shown in Fig. 4. We utilized W'S line-breaking

mechanism in implementing this model; itemizing,

centering, and flushing, for example, can be repre-

sented with this model.

Roughly speaking, this model corresponds to

LAW'S l i s t environment with only one \ i tem.

However, our model has such extended features that

we can set labels on top of the second and subse-

quent paragraphs, as well as the first one, and we

can set the arbitrary shape of any hanging indent,

and so on.

Furthermore, when both a node and its chil-

dren are laid out with this model, the margin of the

parent node is inherited by the children. This is

why the layout of nested items is guaranteed, as is

expected.

Incidentally, we furnished A L W with a com-

mand to define a structure as this model. Assume

structure foo is defined as a node laid out with

this model, then the result of \beginnodeuoo) ,...,
\endnode{foo) is put into a \vbox, such as the main

vertical list, after the text segment in the structure

has been broken up into lines.

Form layout model. This model is provided to make

forms in which boxes are aligned with each other. In

this model, the alignment of boxes is modeled as the

tree structure shown in Fig. 5(a). Each node of the

tree aligns its children either horizontally or verti-

cally. As our approach is based on my, this model

is implemented as nested \vboxes and \hboxes.

A L W also provides commands for making var-

ious boxes, as well commands to align the boxes. For

example,

a command to make a box with specified width

and height: the layout of the inside of the

box can be also specified, along with center-

ing, flushing. paragraph shape, and so on. (See

Fig. 5(b).)

0 the commands to make a box for the title and

t o specify the contents for it: the same layout

commands have the same function as above.

(See Fig. 5(c).)

In plain Tm, it is not easy to make a box with a

specified width and height, which is why we decided

to provide these commands a t the system level.

In addition, we created some commands, used

instead of \vbox and \hbox, to improve the read-

ability of the layout definition. Using AutoLayouter,

one can describe a vertical box with

instead of with

Two ways t o map a structure to its layout.

There are two ways of mapping a logical structure

element to its physical layout, namely direct map-

ping and indirect mapping, depending on how the

occurrence of the element corresponds to its layout.

Direct mappin,g. In the case of the l e t t e r or

a r t i c l e style, most of the logical elements are laid

out in the same order as they appear in a document.

Takashi Kakiuchi, Yuki Kusumi, Yoshiyuki Miyabe, and Kazu Tsuga

F i g u r e 4: Paragraph Layout Model

Label i s se t for the first

paragraph, to m a k e the \ f p indent : paragraph indentat ion.

top letter large.

\ /
\ f phangindent, \ f phangaf t e r :

.
hanging indentat ion.

The followin s a sample of paragraphs layout.

.

N o labels are set for

[RI
ecent research projects on documen

these paragraphs. ing have been directed a t a structu
ment representation like SGML, which m

contents-

I I I - w i d t h -

range .
tween baselines.

.

In Japan, most of business documents
own forms in which item are separat
lines.
.

To solve these problems, we have developed a stru
tured documents preparation system AutoLa

. outer, whose objective is

.

\epindent :

paragraph

indentat ion.

\ephangindent,

\ephangaf t e r :

hanging

inden ta t ion .

\ p a r l e f t m a r g i n :

- width +

heigLt contents-

(c) I

-

F i g u r e 5: Form Layout Model

left margin.

For these elements, we can put their contents into

the main vertical list as they appear, using para-

graph layout . In this case; assuming the name of the

node is foo, mapping is performed simply by declar-

ing the command \nodef oo and \endnodefoo for

paragraph layout. We call this direct mapping .

The sample shown above is

Example 4: Let u s consider the case where one

wants t o define the layout of the structure e lement

t o provzde a n agreement style:

(1) A member should notify the consortium

as soon as possible after modifying Au-

toLayouter.

A s s u m e that the n a m e of th is structure e lement i s

" P R O V I S I O N " . Al l that m u s t be done is to spec-

i fy the parameters t o the paragraph layout model for

PROVISION,

\parhodedef{PROVISION)%

{\fpindent\zO%

\afterparskip=.7ex plus .2ex%

\interparskip=.3ex plus .02ex)%

{increment=l;ctrlayout=hang;%

before=\bf (;after=))% counter

I)% use clef ault fonts

{showctr)% at the top of 1st pararaph

{default)% at the top of the others

skip after paragraphs.

where \parQnodedef i s the command to def ine a

structure e lement using the paragraph layout model.

Th i s definition directly m a p s the logical e l ement

" P R O V I S I O N " t o i t s layout.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Structured Documents Preparation System AutoLayouter Version 2.0

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Most generic elements, such as itemizing, enumerat-

ing, and flushing, are also directly mapped with the

\par@nodedef command.

Indirect mapping. In the case where the contents of

each structure element are laid out irrespective of

the order of their appearance, we can save the con-

tents once and lay them out later. We call this type

of mapping indirect mapping, and it applies to most

forms, the title structure of a r t i c l e , and the head-

ing of l e t t e r , for instance.

Now, let us consider this mapping with respect

to macro definitions. Assume that an element foo

is mapped indirectly, then the command \nodef oo

should be defined with the form (see subsection For-

matting Tree Structured Documents):

\def\nodefoo#l#2{ . . . I
In the replacement text of this definition, argument

#2, which contains a text segment, would be saved

instead of being put out into the main vertical list.

Only later would it be put into the main vertical

list.

Example 5: Let us consider Example 3 again.

A L W ' s toolkit provides the command that directs

an element t o save the contents of a text segment

using a macro definition. With this command, the

node AUTHOR can be defined as:

\def@nodedef{AUTHOR>{lO){>

where the first argument is the name of the element,

the second argument specifies how many occurrences

of the element can be allowed, and the last argument

holds the initial value for the element.

For each occurrence of the element AUTHOR,

\beginnode{AUTHOR), ..., \endnode{AUTHOR)

is expanded. In this expansion, the text

segment is defined as the macros \@AUTHORi,

\@AUTHORii,\@AUTHORiii ..., and so on. The roman

numerals i , ii, and iii in the name of the control

sequences stand for the order of occurrence of the

element.

Now, assume that HEAD is the parent node of

AUTHOR, then one should define \endnodeHEAD as

\def\endnodeHEAD{ . . .
\@AUTHORi

. . . 3
in order to lay out the contents of the AUTHOR

element.

Conclusion

In this paper, we have described AutoLa.youter, a

structured documents preparation system that uses

and LAmY commands for structuring and for-

matting documents. By dividing a document struc-

ture into two layers, each of which contains logical

elements and generic elements, respectively, we can

easily define the structure and layout of documents.

Furthermore, we built-in an easy-to-use, dedicated

user interface for editing the generic structure; this

contributes to efficiency in document preparation.

In a future version, we plan to develop tools for

defining the document's structure and layout, and

also document management facilities.

Acknowledgment

The authors would like to thank T . Ohno and R.
Kurasawa, who developed Japanese my.
Bibliography

Adobe Systems Incorporated. Postscript Language

Reference Manual, Second Edztion. Reading,

Mass.: Addison-Wesley, 1990.

I S 0 8879, "Information Processing- Text And

Office Systems- Standard Markup Language

(SGML)." Geneva ISO, 1987.

Knuth, Donald E. The mXbook. Reading, Mass.:

Addison-Wesley, 1984.

Kurasawa, Ryoichi. "Japanese a t ASCII Cor-

poration" (zn Japanese). Proceedings of 7&X
Users Group Japan, TX-97-5, September 1987.

Kusumi, Yuki, Takashi Kakiuchi, Yoshiyuki Miyabe,

and Kazu Tsuga. "Structured Document

Preparation System AutoLayouter - Design

and Implementation," IEICE Technical Report

OS90-23, 1990.

Lamport, Leslie. @w: A Document Preparation

System. Reading, Mass.: Addison-Wesley, 1983.

Miyabe, Yoshiyuki, Hiroshi Ohta, and Kazu Tsuga.

"Structured Document Preparation System:

AutoLa.vouter." TUGboat, 11#3, 353-358,

September, 1990.

Refining a Process

Linda Williams
The University of Tennessee Space Institute, Tullahoma, Tennessee, 37388 USA

(615) 455-0631 x:233; FAX: (615) 454-2354

bitnet: williamsQutsiv1

Abstract

Unlike word processing, the changes involved in using rn have

not concerned the program, but have instead involved the type
of user, equipment, and environment, all of which have evolved

through the years and into the 90s. This paper profiles the

various changes and offers suggestions for future structure and

encouragement in the use of lQX.

Introduction

Before one can truly understand 'I)$ one must
understand' its original purpose and intended user,

for these have impacted TJ$'s current use and

future applications in ways perhaps not anticipated
by Professor Knuth and his colleagues in the be-

ginning. Over the last decade, TJ$ has held its

ground through numerous equipment and environ-

ment changes within both the scientific community

and the computer industry. The direction and the
problems surrounding the use of lQX enter the

conversations of computer experts and novice TJ$
users alike. By shedding some light on m ' s history
and by sharing insight and hindsight, the current

and future use of TEX can be brought into focus,

along with what its proficient users consider to be

its positive aspects and what novice or non-users

consider t o be its negative aspects.

History

Purpose and application. As technology ad-

vanced into the computer age with its advanced

mathematical capability, mathematicians became
the forefathers of computer scientists. This group

developed computers and numerous computer lan-

guages. By the late 70s, computers had advanced

typesetting technology so quickly that within one

generation we had gone from typewriting to m!
For many years; the documentation of advanced

technology was made available to the scientific

community by an expensive and timely typesetting

method tha t allowed little or no interaction with the

originator of the documentation. More and more

experimentation was being done on computer by the

scientists themselves, but the documentation was

still dependent on the old, traditional typesetting

procedures. There was an obvious need for a

computer typesetting system that would enable its

user to produce quality documentation.
This need was quite obvious to Dr. Knuth, as

he started writing the many volumes of The Art of
Computing. By the second volume, he had resolved

to do the typesetting himself. With support from
the National Science Foundation, Office of Naval

Research, the IBM Corporation, the System De-
velopment Foundation, the American Mathematical

Society, and Stanford University, he developed a

program for typesetting his documentation, which
he called TJ$. While refining TJ$, Dr. Knuth de-

veloped METRFONT, the Computer Modern fonts to

be used with lQX. Being a perfectionist, Dr. Knuth

was not satisfied with the construction of the first

Computer Modern fonts and called them Almost
Computer Modern! The first version of was

written in SAIL, not a widely used language since it

only ran on DEC-20 computers. It was rewritten in

Pascal and then in WEB to permit greater portability

of the Pascal code. Others created a program to

convert the WEB code into C code.
TFJ was designed as a typesetting system to

create beautiful mathematical and scientific doc-

uments. TE,X received instant acceptance by the

scientific community. Documenting technology was

no longer at the mercy of previous typesetting

methods. TJ$ enabled its original users to produce
their own work and the results were as aesthetically

pleasing as those achieved by the earlier costly

and timely procedures. Finally, they had at their

disposal a language that they could manipulate

directly.

Users. The first users of lQX were the initial

programmers, a team put together by Dr. Knuth.

As this team grew and expanded, it came to be a

430 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Refining a Process

group of very specialized, unique users. A story

about this group may give a better picture: At

the first organized meeting of TEX users, discussion

centered around whether they should be an orga-

nized democracy or a loose anarchy; they chose the
latter!

'QX enabled the typesetting of one's own

documentation without encountering hassles with

printers or publishers. 'QX users became authors

and editors of their own documentation. This
was a one-wizard show: The user was keyboarder,

typesetter, technical typist, technical editor, and

proof reader; and if a new macro was needed, the

same wizard wrote it. From fonts to drivers, the

problems were handled; easily said, easily done-

or close to it. (See Figure 1.) Computer scientists

and mathematicians learned 'QX with ease and

excitement. (So as not to exclude other areas

of expertise and interest, it should be noted that

other divisions in academia, such as the English and

history departments at various universities, soon

tried their hand successfully at m.)

Figure 1: A One-Wizard Show

In the Preface to and METAFONT, New Di-
rections in Typesetting [1979], Dr. Knuth reversed

a quote by Leonardo da Vinci, "Let everyone who

is not a mathematician read my works." However,
considering m ' s original users, the original quote

by da Vinci, "Let no one who is not a mathemati-

cian read my works," should have been left alone.

The original quote describes TEX and its wizards

much more accurately. An even more accurate
description of the wizard might be: "The trouble

with having done something right the first time is

that the wizard does not appreciate how difficult it

is for anyone else."
As 'QX's popularity grew, so did the number

of its users; and it established new typesetting

standards for scientific and mathematical publica-

tions and documentation. The first users were the

pioneers, who were specialists in their fields.

However, as with any new technology, the use and

users changed with time and organization.

Present

The !l&X program is in the public domain. Dr.

Knuth spent thousands of hours to make sure that

". . . the system would produce essentially identical

results on all computers" [1990]. There are 1536

institutions and 3298 individual users of m . t 'QX
is used for all major European languages, and

for others that are written either horizontally or
vertically [Beebe 19901; in more than 51 countries.

the majority typeset English.? There are many

publications that demonstrate and document W ' s
various and diverse applications and users.

Current applications. Current applications are
numerous. Aside from extremely specific appli-

cations, often demonstrated and published in the
TUGboat, the primary application is still to typeset

scientific and technical documentation and to solve

difficult formatting problems.

The academic environment revolves around

publications. Institutions are frequently evaluated

in terms of their publications. The funding of many

organizations depends heavily on presentations and

documentation. As a result, an increasing number

of journal and other publishers use and/or

accept submissions in m. Many government and

government subcontractors use exclusively to

typeset technical documentation and publications

[McCaskill 19881.

Users. The users of these various applications fall
into two categories: (1) the do-it-yourself wizards,

and (2) the multilevel document-preparation-system

team members. (This second group must include

at least one person who will be responsible for

t This information was obtained from TEX Users
Group, May 1991.

TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

Linda Williams

instruction and system language support [Gibson

19901 .)
The first group is similar to the 'I)@ pioneer;

however, the use of 7l&X in a one-person operation

is no longer necessarily by choice, but is influenced

by time constraints. level of expertise, and funding.

The structure of the second group can be as
simple as two people, perhaps one author and one

typesetter, or as complicated as eight individuals,

each of whom does only one of the eight various tasks

involved in document preparation. The number of
personnel doing these tasks vary and responsibilities

overlap in some organizations, depending once again

on time constraints, level of expertise, and funding.

The roles that must be filled are: author (for
text), technical editor, design editor, illustrator (for

graphics), typesetter, keyboarder, proofreader, and

printer/photocopier. (See Figure 2.)

Figure 2: Multilevel Complexity

The ability to work together toward a common

goal is fundamental to the refinement of any process.
If an organization has two or more people involved

in the various steps of document preparation, each

member's understanding and knowledge of w and

of document preparation may differ widely, but all
must work well, together as well as independently.

Observation-filling in the gaps. It is not

difficult to outline 'I)@'s current applications and

users. In fact, one sentence summarizes this

observation: 71&X3s most efficient and effective use

is to support technical documentation departments

at educational institutions, research organizations,

government agencies, and publishing companies.

How the typical 'I)@ user moved from be-

ing an individual user to being a member of
a highly specialized team of technical users and

support personnel was less subtle and organization-

dependent. Various factors impacted these changes:
time constraints, computer expertise, and funding.

Historically, organizations and institutions that im-

plemented m as soon as it became available on

their computer systems later experienced structural
chmges. However, ?jEX still addressed the majority

of their typesetting problems, was in the public

domain, and produced beautiful documents in a

reasonable length of time.

At m ' s advent, word processing software was

not as user friendly as it is today, and rn could
be used to solve nearly every typesetting problem.

However, w use was not limited to wizards.

What could be so difficult about using a computer

language to typeset everything? The answer be-

came apparent when avid ?jEX supporters and users

wanted (or needed) to rely on clerical staff to type-

set technical documentation. m ' s high learning

curve became apparent and the need for TJ-$nical

support became quite obvious: The underpaid, over-

worked, stressed-out, clerical support staff emitted
cries of frustration, while the technically-oriented

document personnel emitted cries of gratitude. The

positive and negative aspects of TEX appeared all
at once, all involving accessible (at various user lev-

els) information, technical support, and structured

organizational levels (or the lack thereof). At this

point, WYSIWYG word processing systems for use
by non-technical clerical staff came of age, and TEX
was reclaimed by those who needed it and could use

it effectively and efficiently.

Various organizations have flip-flopped from

word processing packages to 'TEX or from rn to

word processing packages [Hoover 19891. Conscien-
tious institutions utilize both systems according to

their typesetting requirements. Time constraints,

computer expertise, and funding are now factors

tha,t organizations can analyze to determine the
best possible cost-effective document-preparation

system for meeting their needs. Organizations that

previously relied solely on TEX can now restructure.

By placing their capable m n i c a l personnel where
they will be of greatest benefit to the entire system,

that is, in a technical documentation department,

432 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Refining a Process

and using word processors for non-technical uses,

they can better use their often-limited resources.

Future

w n i c a l l y speaking. The future of T$$ depends

on its ability to meet the varying and continuously

growing needs for the typesetting of technical doc-

umentation. This is not for a novice, like myself,

to speculate on what technical innovations need to

be addressed; excellent observations have already
been presented by Nelson Beebe [1990] and Frank

Mittelbach [1990].

Today's market is flooded with word processing
software that address most typesetting and format-

ting requirements but that cannot typeset difficult

technical, scientific, and mathematical documenta-

tion. As word processing software continues to

address the needs of the commercial industry, TEX
must also adapt and integrate and, beyond this,

again set new standards and goals.

Non-wnical ly speaking. There are several ar-

eas of promotion and successful marketing and

development strategies that TEX users and sup-

porters have failed to use; the leaders of T@
need to address these. They include: encour-

aging more-accessible written information to close

the gaps between user levels, such as dictionaries

containing computer- and w - u s e r terms; pro-

viding multi-level computer-dependent and m -
related encouragement and publications; advertis-

ing already-established publishing practices; giving

more than lip service to suggestions; and making

sure that distributed information is received, is un-
derstood, and is applicable. The basic idea must be

to establish m ' s uses and users, and to support

them.

Conclusion

For hundreds of years, society advanced technolog-

ically through the sharing of scientific knowledge.

This century has seen many technological advance-

ments become commercial interests, to the point

that commercial interests too often dictate the
progress of technology. It has been difficult for 7&X

to hold to t he ideal of shared knowledge in the face
of commercial exploitation, but it is this ideal that

has made valuable to computer science and
to the documentation of scientific information. In

short, TEX is a brilliantly written, designed, and

executed program that was far ahead of its time.

If it had been developed later, rn could perhaps

have been more easily adapted and perhaps the
original goals would have been different. However.

it is the continuing ability of TEX users to use

this hindsight to their advantage, along with their

willingness to solve and share technical and non-

technical problems and solutions, that makes the
use of TEX such a refined process. Whatever the

future holds for TEX, there is no doubt that it has

already passed the test of time.

Bibliography

Beebe, Nelson. "Comments on the Future of

and METAFONT," TUGboat 11#4 (November

1990), page 490-494.
Gibson, Helen. "A Noddy's Guide to using 'l&X for

Text Production: From Manuscript to Bromide,"

TUGboat 11#3 (September 1990), pages 393-

399.
Guenther, Dean, Ph.D. Washington State Univer-

sity. Personal Interview on May 1990.

Hoover, Anita. "Using Wordperfect 5.0 to Create
TEX and IP-QX Documents," TUGboat 10#4

(December 1989), pages 549-559.

Knuth, Donald. "The Future of TEX and META-

FONT," TUGboat 11 #4 (November 1990), page

489.
Knuth, Donald. and METAFONT, New Direc-

tions in Typesetting. Bedford, Mass.: American

Mathematical Society and Digital Press. 1979.
Lafrenz, Mimi. "Textbook Publishing - 1990 and

Beyond," TUGboat 11#3 (September 1990),

pages 413 - 416.
Martin, Charles. "TEX for m n i c a l Typists," TUG-

boat 11#3 (September 1990). pages 425-428.

McCaskill, Mary. "Producing NASA Technical Re-

ports with w," m n i q u e s , 7 (August 1988),

pages 1 - 10.
Mittelbach, Frank. " E - w : Guidelines for Future

TEX Extensions. TUGboat 11#3 (September

1990), pages 337 - 345.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

A Text Processing Language Should be First a Programming Language

Luigi Semenzato, Edward Wang
Computer Science Division: University of California, Berkeley, California, 94720
Internet: luigiQginger.Berkeley.EDU, edwardQucbarpa.Berkeley.EDU

Abstract

Historically, typesetting languages have been designed for the en-

try of text. An embedded command language has since become

important, indeed essential, but has remained a second-class cit-
izen, sometimes masquerading as text, invariably clumsy and in-

adequate. We have designed a language that is a full-function

programming language with embedded text. This shift in em-

phasis results in a level of consistency, flexibility, and power not

otherwise possible.

Introduction

A batch-style computer typesetting system accepts

text files as input, to produce formatted documents
as output. Most such systems are extensible. They

allow definitions of new document styles and com-

mands. Some, like m, also allow the input syntax

to be changed. To do all this, the format of the

input must be a complex language. The design of
this language affects the robustness, ease of use, and

overall quality of the whole system.

A document, therefore, is a mix of text and
commands, some of which define new commands or

make syntax changes. Existing systems have em-
phasized the text portion of the input. In these lan-

guages, the commands are an afterthought. They

often follow the inconvenient lexical conventions of

the surrounding text, and make awkward program-
ming languages. This paper describes our attempt

to reach a better design, by turning the traditional

language inside out, giving priority to commands

and programming. We call this system and its lan-
guage Aleph.

An Aleph document is a sequence of commands,

some with embedded text as arguments. The com-

mands are in a programming language with a fixed

syntax. Text, on the other hand, can have a user-

specified syntax. Each command builds an internal

representation of a portion of the document. This

representation is then processed to produce the out-
put.

Aleph is an evolving design. Its current realiza-

tion (sometimes called Alepho) is written in Lisp.

Our immediate goal is not to produce a complete

typesetting system, but to design a language that
is a tool for both writing the system and using it.

One consequence is that the Aleph system does no

actual typesetting, but generates m as output.

The sections of this paper describe selected as-

pects of Aleph, in this order: basic constructs, ex-

tensible syntax, internal representation, implemen-

tation. The rest of this introduction is a discussion

of some of the issues in typesetting-language design.

Syntax separation. Commands should not obey

the syntax of the text around it.' For example, it
is often convenient to ignore whitespace and line

boundaries in a program, but not always possible

in the text of a document. In m, it is sometimes
hard to predict whether spaces and newlines in and

around commands will be part of the output. User-

defined syntax is a useful feature, but exacerbates
the problem - commands that change the syntax

may affect themselves.

In Aleph, commands (both definitions and in-
vocations) are in a language with a fixed syntax,

while embedded text follows a different set of rules.

Syntax changes for text are well supported.

Programming. Extensibility is a very desirable

feature in a batch typesetting system. It should

be supported with a full-function programming lan-

guage.
Extensibility is essential if new document styles

are to be written, and in practice, all but the most

casual users define shorthands for frequently used

text and command sequences. For the latter, a
macro language is the natural choice - after all,

We use the words lexical and syntactic in-

terchangeably, partly because text-processing lan-

guages have little of what can be called syntax, but
mostly because lexis, a candidate counterpart for

syntax, is not a common computer-science term.

434 TUGboat, Volume 1 2 (1991), No. 3-Proceedings of the 1991 Annual Meeting

nothing is easier to understand than textual sub-

stitution. Indeed, existing systems have preferred

macro languages over more procedural ones. On
the other hand. a document style is a large pro-

gram. U ' , for example, is 2000 lines of code.

Real programs need real programming-language fea-

tures. TEX, for one, has conditionals and loops, but

no real data structures or indeed any support for

writing large programs. In addition, macros them-

selves become unwieldy in large programs. That

allows fine control over macro expansion is an

indication of its complexity.2

Intertwined with issues of linguistic power is
the fact that typesetting systems are always im-
plemented in one language (a general-purpose pro-

gramming language) while they implement another.

(Most complete systems, of course, are written in
both.) This practice limits the power of user-written

programs - when a primitive to do something does

not exist, it cannot be done. The existence in of

complex functions as primitives (such as \ha l ign)

may be an instance of this.

Aleph is a full-function programming language,

with data types to represent textual objects and

functions to manipulate them. Users at all levels

use the same language. There is no barrier between

what the user can do and what the system can do.

Aleph and Lisp

Aleph is embedded in Common Lisp. In other
words, Aleph is implemented in Lisp as a set of

functions, data types, and syntax extensions. An
Aleph programmer must use at least as much Lisp

as Aleph.

Lisp is an expression language. Every program

construct is a value-producing expression called a

form. A function-call form is surrounded by paren-

theses: (f 1 2 3). Here, f is the name of the called

function. It is passed three arguments: 1, 2, and 3.

Identifiers like f are called symbols. In this paper,

a symbol can be any sequence of letters and -s. A

symbol in the first position of a function-call form
is a function name. A form that is a symbol alone

is a variable. The form (f x y z) calls f with the

Macros are not inherently less powerful. Af-

ter all, we know that lambda calculus is turing-

complete. W ' s own linguistic problems are also

quite complex. They are in part due to the need

to delay execution in some situations. In any case,

complexity is perhaps not a deadly sin. but the ap-

parent unpredictability that comes with complexity
is.

A Text Processing Language Should be First a Programming Language

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

values of variables x, y, and z. Forms can be nested:

(f 1 (g (h 2) 3) 4).

Common Lisp also has characters and strings.

A string is enclosed in double-quotes: "in double

quotes" . A character is written with the the prefix

#\. For example. #\a is a, #\% is %, and #\ \ is \.
A symbol that begins with a colon, : , is a key-

word. A keyword is an uninterpreted identifier that

stands for itself. It is used like the identifiers defined

by an enumerated type in C or P a ~ c a l . ~

Not all forms in parentheses are function calls.
There are built-in and user-defined forms that have

special syntax (nevertheless made out of symbols

and parentheses), and interpret arguments in spe-
cial ways. The most visible ones in Aleph are those

that begin with def .

We now know enough Lisp to understand the

Aleph extensions.
A document (or a part of a document) in Aleph

is represented by a tree, like nested boxes and

lists. For example, the TEX box of boxes made by

would have a fairly similar Aleph tree:

t e x t " a bl ' t e x t " c dl1

Trees are constructed using tree-building func-
tions-Lisp functions that create tree nodes. The

last example is constructed by the form

(vbox (hbox (t e x t " a b "))

(hbox (t e x t I1c d l ')))

An Aleph document is just a sequence of such

tree-building forms. However, entering a large doc-

ument with nested forms is rather clumsy. For most

forms, there is an equivalent Aleph string that is

more concise.
An Aleph string (or just string, when con-

fusion with Lisp string is unlikely) is enclosed in

brackets: [and 1. For example, [some t e x t 1 is

equivalent to (t e x t "some t e x t ") . As in W,
newlines and tabs in Aleph strings are treated

like spaces, and consecutive spaces are treated like

If this is confusing, then just treat keywords

as strings- think "xyzzy" when you see : xyzzy.

Keywords have no meaning except in their name
and in their use.

Luigi Semenzato, Edward Wang

one. [someu,text] is not the same as (t ex t

l'some,utext 'I).

The equivalence between a string and its corre-

sponding form is strict. The string actually becomes

the form as it is read by Lisp. The rest of the Lisp

system never sees Aleph strings.

Since they are equivalent, strings and forms can
be mixed freely. We now know enough to enter a

simple document:

(par [A very shor t document of
a s ing l e shor t paragraph

of a middling sentence.])

Just as we can go from Lisp to string, we can

go from string to Lisp. The string

[an @ (i t [i t a l i c i zed]) word1

has a string nested in a Lisp form that is in a string.
It is equivalent to

(group (t ex t "an "1

(i t [i t a l i c i zed])

(t ex t " word"))

which is in turn equivalent to

(group (t ex t "an 'I)

(it (t ex t " i t a l i c i z e d "))

(t ex t " word")

Since this string-Lisp-string double take is so com-

mon. we have defined a shorthand for it:

[an @it [i t a l i c i zed] s t r i ng] .

The escape character, @, is very much like \ in

w. A number of @-triggered featured are defined
in Aleph, and the user can define more. This and

other forms of user control over strings are the sub-

ject of the next section.

Mode and Syntax

A mode governs the way Aleph strings are turned

into tree-building forms. In TEX, the equivalent con-

cept is implicitly defined by the catcodes. Aleph, on

the other hand, supports a data type, mode, that en-

capsulates all the information that defines a mode.
For example, to define a mode in which the

character % expands to the italicized word "Aleph,"

we would write

(def syntax aleph

(# \% (i t [Aleph]) 1)
(def mode aleph aleph)

The first statement creates a new syntax table,

aleph, with the character definition. The second

statement creates the the new mode, also named

aleph, tha t uses the new syntax (named by the sec-

ond a l eph on the line). (We often, but not always,
use the same name for a mode and its syntax.) The

new mode can now be invoked using an escape se-

quence:

[. . .@$aleph[% is embedded i n Lisp]. . . I .
We can also give aleph a pair of delimiters:

(defmode aleph aleph

:open #\I
:c lose #\I) ,

and use them to invoke the mode more concisely:

[. . . (% i s embedded i n Lisp). . . I .

This is one of the reasons for separating defmode and

defsyntax. A syntax is the character definitions

used by a mode. The mode itself uses a syntax, but
may also have some supporting attributes.

A syntax can be built on top of an existing syn-
tax (assuming we already have a verbatim syntax

defined) :

(defsyntax valeph (verbatim)

(#\% (i t [Aleph] 1)
(defmode valeph valeph)

Thus, valeph has the behavior of verbatim but also

recognizes %.
A syntax can be a combination of others. We

could have (and indeed should have) defined valeph

like this:

(def syntax valeph (aleph verbatim))

The syntaxes in Aleph form an inheritance hier-

archy. Each syntax definition specifies a list of par-

ent syntaxes (multiple inheritance) and some local
additions. Looking up the definition of a character

in a syntax is a matter of trying, in order and until
a definition is found, the local definitions and then

the parents (left to right). In each parent, the same

process is repeated.
When modes nest (such as in [. . . C.. . I . . . I) ,

the lookup is first done in the closest enclosing

mode, then repeated in surrounding modes (inside

out), until a definition is found. Inside C.. . i%
is embedded i n Lisp). . . 1 , the definition for % is

found in mode aleph, but the other characters be-

have as they would outside the braces. This nesting

is lexical, even when a string goes in and out of Lisp:

[. . . (@ (i t [%. . . I)) . . . I .

The full form of def syntax looks like this:

(def syntax (name) ((parent). . . 1

(default-definition)

((chars) (definition) 1

. . . I

(Chars) is either a single character or a Lisp string

representing a set of characters. (Definition) is the

definition given to the character or characters. Any

number of ((chars) (definition)) pairs can be spec-
ified. Characters not explicitly mentioned receive

436 TUGboat, Volume 12 (1991), No. 3 -Proceedings of the 1991 Annual Meeting

A Text Processing Language Should be First a Programming Language

(default-definstzon), which can be left out, to leave

them undefined. So far. we know a character def-

inition can be a Lisp form. It can also be one of

several keywords, some of which we will see later.

In the most extreme case, a definition can be a Lisp

function. We won't use any of these in this paper.
A syntax or mode can be changed: character

definitions and parents can be added and deleted;

modes can lose or gain delimiters.

The basic Aleph defines these modes:

(def syntax de l imi te r (1)
(def syntax escape

(# \@ :escape))

(def syntax s tandard
(#\Newline :space)

(#\Space :space)

(#\Tab : space)
. . . more definztzons . . .)

(defsyntax defau l t

(de l imi te r escape s tandard))
(def syntax group 0)
(defmode group group

:open #\ [

: c lose # \ I)

Default is the outer-most syntax of all Aleph

strings. Escape contains the single character @.

Delimiter contains the delimiters defined with

defmode. Standard is the rest of the definitions for

the de fau l t mode. Group defines no characters. It

is the syntax for the delimiters [and 1 . Delimiter

is initially empty, but (defmode group . . .) soon
adds two definitions to it.

Escape, del imiter . and s tandard are separate

syntaxes to allow modes to inherit them indepen-
dently. For example, one may wish to define a mode

that behaves like the I 4 W verbatim mode but also

recognizes the escape character:

(defsyntax weak-verbatim

(escape verbatim))

This approach allows a change to the escape char-

acter to be effective everywhere.
The escape character behaves like a mode, but

without a fixed closing delimiter. The dispatch

syntax controls escape-sequence processing. These

escape sequences are supported:

@(. . . I
This is the escape into Lisp we have seen. The

Lisp form should be a tree-building form.

@(symbol)

This is equivalent to @((symbol)). (Symbol)

must b e a reasonable-looking Lisp symbol

(made out of letters and -s).

@(symbol) (delimited-string). . .
If the @(symbol) sequence is followed immedi-

ately by an opening delimiter (defined in syntax
de l imi te r) , then the delimited string becomes

the argument of (symbol):

@((symbol) (delimited-string))

(Delimited-string) can be repeated any number

of times. For example, @f [Aleph] [Beth] is the

same as @ (f [Aleph] [Beth] 1.

@$(symbol) (open-delim) (text) (close-delim)

Enter mode (symbol) for the duration of (text).
(Text) can contain any character other than

(close-delim). (Open-delim) is any character.
(Close-delim) is) , 1, 1: or >, if (open-delim)

is (, [, 1, or <, respectively. Otherwise,

(close-delim) equals (open-delim). This is how
modes without delimiters are invoked.

The rest of the line, including the end-of-line

character, is ignored.

@(accent)
A number of accents are defined in Aleph.

@\(char)
The character (char).

@(char)
This is equivalent to @\(char), if (char) has no
defined behavior (one of the above).

Flexibility: mechanism and policy. The user

of a mode is not necessarily the writer of the mode.

This is particularly true when canned Aleph code
from a library is used. I 4 W , for example, has such

a library. When a mode or a syntax is to be reused,

the programmer must anticipate the possible uses

and choose the implementation accordingly. To do

this requires some skill, but also a flexible syntax
mechanism.

For example. the mode aleph, though frivolous,

belongs to a common class of user-defined modes.

It defines only a few characters, so must be used
in conjunction with another mode (if nothing else,

with defau l t) . We expect such a mode to be used

in several different ways, depending on the user's

needs:

Enter mode when necessary, using delimiters or

@$.

a Use everywhere, by making it a parent of

de f au l t . An Aleph function is provided to do

this.

e Combine with other modes to make new ones

(like valeph).

As we have seen. the definition of aleph does allow

this freedom.

TUGboat, Volume 12 (1991). No. 3 -Proceedings of the 1991 Annual Meeting

Luigi Semenzato, Edward Wang

Consistency. A mode like W W ' s verb is very
easy to define in Aleph:

(defsyntax verb 0 :char

; ; make newline act like a space too
(#\Newline (t e x t I t I t)))

(defmode verb verb)

All characters are given the definition : char (mean-

ing just the character itself). Using verb looks like

its I P w counterpart: @$verb 1 . . . I .
It is simple to define verb in Aleph- we do not

have to write catcode-changing macros. Its other
advantage is the consistency of behavior. Wherever
@ is recognized, @$verb I . . . I can be used. Unlike in

I P w , there are no unpleasant surprises depending

on context or content.

Trees

As mentioned, an Aleph program constructs a tree

that represents the document internally. Nodes in
the tree have a type that indicates what object each

node stands for. The type is named by a Lisp key-

word. For instance, a node of type : box represents a
box, and its children the content of the box: a node

of type : p a r represents a paragraph, and its chil-

dren text or other material that needs to undergo

line breaking. We have given examples of how to

construct such trees in earlier sections.
A tree fully specifies a document fragment, but

requires some processing before it can be used for

output. Aleph performs such processing in a traver-
sal pass.

Aleph provides a number of primitive node

types. One can also define new types in the fol-
lowing way:

(defnode (type)
: c o n s t r u c t o r (c-function)
: t r a v e r s e - f unct ion (t-function)

: output-f unct ion (0-function))

Here (type) is an arbitrary keyword denoting the

node type. (C-function) is a function that con-

structs a node of that type. If one is not sup-
plied, a standard constructor is provided, with a

name equal to the node type (without the colon).

(T-function) is the traversal function for nodes of

this type. (0-function) is called during a similar

traversal t o output the document.
Each instance of a node has an associated set of

named values called attributes. Attribute names are

also Lisp keywords. For instance, a :box node has

a : d i r e c t i o n attribute indicating if its components

should be stacked horizontally or vertically; a :pa r

node has a :width attribute, whose numeric value

selects the width to be used for line breaking.

A few attributes are assigned at node construc-

tion time. Other attributes represent printing in-

formation. such as the final position and size of the

formatted object. These attributes are filled in by

the tree traversal. This starts at the root of the

tree and proceeds by calling the traversal function

of each node it visits. Besides computing attributes,
traversal functions are also allowed to modify the

tree locally.

To clarify these concepts, we introduce a sim-

ple example. We add the node type : f -box. This

node has a single child representing some printable

object. If the width of the object is less than 1 inch,
it is printed centered in a 1-inch horizontal space;

otherwise three dollar signs are printed.4

(defnode :f-box

: t raverse - func t ion # ' t rav-f-box)

The traversal function for : f -box is t r av- f -box;

its output function is the default output function,
which just outputs the node's children.

(def un t rav- f -box (n)

; ; First visit the (only) child
; ; of this node.
(t r a v e r s e (c h i l d n))

; ; Then destructively modify this node.
; ; Change its type:
(s e t f (type n) :box)

; ; Specify the width:
(s e t f (a t t r :width n) ! l i n c h)

; ; Change its child:
(s e t f

(c h i l d n)

; ; Use a centering construct
(c e n t e r

(i f (< (a t t r :width (c h i l d n))

! l inch)

; ; and inside it, put

; ; either the old child
(c h i l d n)

; ; or three dollar signs.

[$$$I 1 1)
; ; Traverse the modified node
; ; to set the glue.
(t r a v e r s e (c h i l d n)))

This example contains a few unfamiliar but quite

simple Lisp and Aleph constructs:

the defun form defines a Lisp function named

t r av- f -box, that takes the single argument n

and operates on it;

The letter f in f -box stands for FORTRAN.

438 TUGboat, Volume 12 (1991), NO. 3 P r o c e e d i n g s of the 1991 Annual Meeting

A Text Processing Language Should be First a Programming Language

the Aleph form (c h i l d x) refers to the value of

the single child of x. and the form (a t t r name

x) refers to the attribute name of node x;

se t f is the Lisp assignment operator. (se t f

place value) replaces the old value of place with
value. So (s e t f (c h i l d n) . . .) replaces the

child of n;

! (number)(unit) is Aleph's way of specifying a

length;

c e n t e r is an Aleph function that returns a

group with appropriate glue for centering.

This example reveals that our typesetting prim-

itives are very similar to those of w. In fact, we
think that most of m ' s primitives are well designed

and we are not attempting to improve on them.
One should define new node types with their

own traversal functions only when direct access to

the typesetting engine is needed. We expect style

writers to be able to do most of their programming
at the level of mode definition and tree construction.

The system programmer (us) should provide enough

node types to satisfy the most common needs.

Current Status and Future Directions

As we are submitting this paper, the implementation

of Aleph contains the described syntax mechanisms

and intermediate representation. We have also de-
fined a small number of node types, most notably

paragraphs, boxes, and glue. The output routines

produce plain m. is also used in interactive

mode to perform some computations currently not

implemented in Aleph, such as finding the widths of

objects in our table constructor. The Aleph process

communicates with the Tp$ process through Lisp
streams connected to a UNIX socket pair.

Aleph relies on for ligatures. line breaking,

math, and output. As a consequence, we expect

the exact semantics of traversal and retraversal to

evolve, as more is demanded of them. Also, it is at

present difficult to estimate the system's efficiency,
though we believe the tree-and-traversal model is

not fundamentally inefficient.

Of the missing features, ligature and math are

perhaps the hardest for our model. We plan to

tackle them first. Unrelated to m, we are also
considering ways to extend the syntax mechanism

to recognize multicharacter sequences.
Aside from completing this implementation and

refining it into a practical tool. our work suggests

many other research directions. For instance. to

what extent is Aleph's intermediate representation

suitable for a WYSIWYG-style document editing.

with incremental processing? And if it is. would it

simplify the task of integrating programmatic and
WYSIWYG interfaces? mre have not tried to answer

these questions, but we hope that our work, by al-

lowing one to look at an old problem in a new way,
will provide both a stimulus and a vehicle for further

research.

Acknowledgments

We thank Ethan Munson for his useful suggestions.

Luigi Semenzato did part of this work at the Dipar-

timento di Informatica, Universith di Padova, Italy.

Bibliography

Steele, Guy L. Common Lisp: the Language.

Burlington, Mass.: Digital Press, 1984.

Kernighan, Brian W. L'Issues and Tradeoffs in Doc-

ument Preparation Systems." Pages 1-16 in

Proceedings of the International Conference
on Electronic Publishing, Document Manipula-

tion & Typography, R. Furuta, ed. Cambridge:
Cambridge University Press, 1990.

TUGboat, Volume 12 (1991), KO. 3-Proceedings of the 1991 Annual Meeting

Luigi Semenzato, Edward Wang

Appendix

Table example

This is an example of use of our table primitive, with the resulting output. The table constructor is a Lisp

macro. Macros are a powerful feature of Lisp that we cannot attempt to explain here. In this context, just
think of a macro as a function with a more flexible argument-passing mechanism.

; ; ; W e thank Marcia Feitel for correcting a n important omiss ion.

(line

(center (bf (bind :size 12 [From page 236 of the TeXbook, more or less]))))

(vskip ! 0.5in)

(line

(center

(table

; ; Half o f the padding goes before the column, half a f ter the column.
:pad !0.5cm

; ; T h e vertical padding goes between rows.
:vpad !2pt

; ; T h e template is a list of column descriptors.
; ; Each descriptor i s a funct ion, o r a list of functions,

; ; called in t u r n wi th each corresponding en t ry i n a row
; ; as argument.
:template ((right bf) (center it) center center left)

:rows

; ; These are the rows. E a c h row is a list of entries.
(((sl [American]) (sl [French]) (sl [Age]) (sl [Weight]) (sl [Cooking]))

((sl [Chicken]) (sl [Connection]) (sl [(months)]) (sl [lbs .])

(sl [Methods])

; ; A special row that spans all columns.
(: span-all (left (vbox [I ! 0. lin)))

; ; $ i s the Aleph delimiter for the tex-math mode, a n escape i n t o W ' s m a t h mode.
([Egg] [Oeuf] [$-2\over3$] [$l\over6$1 [Boil, Fry, Poach, Raw1

([Squab] [~oussin] [2] [$3\over4$ to 11 [Broil, Grill, Roastl)

([Broiler] [Poulet Nouveau] [2 to 31 [l$l\over2$ to 2$l\over2$]

[Broil, Grill, Roastl)

([Fryer] [Poulet Reine] [3 to 51 [2 to 31 [Fry, SautQJe, Roast])

([Roaster] [Poularde] [5$l\over2$ to 91 [Over 31 [Roast, Poach, Fricassee])

([Fowl] [Poule de lJAnnQ'ee] [I0 to 121 [Over 31 [Stew, Fricassee])

([Rooster] [~oq] [Over 121 [Over 31 [Soup stock, Forcemeat])

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

American

Chicken

Egg

Squab

Broiler

Fryer

Roaster

Fow 1

Rooster

A Text Processing Language Should be First a Programming Language

From page 236 of the TeXbook, more or less

E'rench

Connection

Oeuf

Poussin

Poulet Nouveau

Poulet Reine

Poularde

Poule de Z'Anne'e

Coq

Age

(months)

2 --
3

2

2 to 3

3 to 5

5 ; to 9

10 to 12

Over 12

Weight

Ibs.

1

to 1

1; to 2;

2 to 3

Over 3

Over 3

Over 3

Cooking

Methods

Boil, Fry, Poach, Raw

Broil, Grill, Roast

Broil, Grill, Roast

Fry, Sautk, Roast

Roast, Poach, Fricassee

Stew, Fricassee

Soup stock, Forcemeat

TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

Should TEX be Extended?

Michael Vulis
Micropress Inc, 68-30 Harrow Street, Forest Hills, New York. 11375 USA

718-575-1816: FAX: 718-575-8038

Bitnet: cscmlv@ccnyvme

Abstract

This article examines three problems discussed in recent issues of
TUGboat: Graphics inclusion, Font rotation, and Font selection

scheme. The author compares the traditional solutions to the

problems (pure w) to the solutions that can be obtained by

slight extensions to either the language primitives or the

driver programs. For each problem, the article shows what can
and cannot be achieved with puristic (Clean) TEX solutions;

it will also describe how the limitations can be overcome with

(Dirty) TEX language extensions and document the extensions.

Since its inception eleven years ago, has re-

mained essentially unchanged. Meanwhile, the

world of personal computing has advanced dramat-

ically.
Circa 1980, a personal computer with 64k RAM

was still considered advanced. Laser printers did

not exist. VCTordStar and Displaywrite were leaders

in word processing. TEX was a revolution.

Circa 1985. Postscript was around, but pro-
hibitively expensive. Proportional fonts were still a

novelty. Desktop publishing was yet non-existent.

Graphics was non-integratable. And shined.

Circa 1990, leading word-processors (i.e., Word-

Perfect) format text almost as well as m. and

perhaps easier. They handle graphics and tables

much better than TEX, they generate indices and

they spell check. They do not handle equations as

well as ?jEX; however. they are not far off.

Circa 1995, could become a historical
curiosity.

On Extensions

Software systems that remain unchanged are des-

tined for oblivion. has lasted this long primarily

because of its fresh start: immense superiority of

7&X over other typesetting systems. This superior-

ity is over, or almost over. To survive, needs
to evolve.

There are two ways the evolution of TEX

can proceed: either one person, possibly even the

Grand Wizard himself, can undertake serious and

continuing rewriting of the system, or this rewriting

will be done in possibly incompatible ways by

several implementors. Since the Grand Wizard has

declared his unwillingness to make any changes in

the design, the second possibility appears likely.

The goal of the community should be to ensure

that this rewriting does not get out of hand-

to define the process of directing, implementing,
documenting and sharing the extensions.

Historically. language compatibility has been

assured by language standards. The existence of

Standard (ANSI) Pascal, in particular, made TEX
itself possible. A starting point, therefore, can be

defining Standard (m 3 . 1 4 1 5 9) . m 3 . 1 4 1 5 9

will be identical to the l&X appearing in The
W b o o k . with the following change: it will imple-

ment integer register compatibility. A LT&X' can
be deemed to be a 'm', if any source file that

either starts with

\compatibility=O

\let\compatibility\undefined

or does not include any of the new keywords should

be handled identically by this TEX and m 3 . 1 4 1 5 9 .
Notice that this definition both supersedes the TRIP

compatibility test and ensures that TQX documents

can stay compatible between different systems.

On This Paper

With this definition in mind we will proceed with

the study of a few changes to that implement

some of the desirable extensions. While the size of

this paper will prevent us from presenting complete

cha,nges to the 'I'EX code, these are available from
the author (requestware). The extensions described

442 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Should TFJ be Extended?

in this paper were implemented and tested under

VTEX system (see TUGboat, August 1990). The

four extensions discussed here include:

Font rotation

* Incorporation of graphics

Automatic indices

Font selection and/or substitution

Case Study I: Font Rotation in

Of the three problems discussed in this article,
font rotation probably received the least attention.

The reason for it may be that before June 1990,

no one has realized it was possible and afterwards
no one thought it was practical. In June 1990.

Alan Hoenig opened the chapter on Font Rotation
with his beautiful examples (see TUGboat, 1990

Conference Proceedings) and closed the chapter

with a scary explanation of how they were made.

Hoenig's approach consists of generating a

series of fonts via METAFONT, one font per

required angle of rotation. For instance, to typeset

a 24-character line of text around a circle, one would
need to generate 24 variants of the original font.

Similarly, a 100-character example requires 100

pre-generated fonts. 101-character example requires

101 different fonts (gcd(100,lOl) = I) , while a

300-character can use the fonts generated for the
100-character example, but cannot be printed in

most T# versions (font -max<255). Hoenig's use

of METAFONT was forced by two distinct reasons:
drivers' inability to rotate fonts and, more to the

point, T#'s inability to position characters when

typesetting not on a horizontal line. To correctly

update the reference point, m needs to know the

sine and cosine of the typesetting angle; Hoenig

made METAFONT compute them and pass them to
T'@ as extra \f ontdimen parameters.

Hoenig's examples remain in the realm of cu-
rios, since it would not be practical to generate

many fonts each time rotation is required. Even

when drivers support font rotation (V W drivers

do and Postscript drivers can). the problem remains

as to how t o compute sine's and cosine's. While it

can be proven that macros for computing trigono-
metric functions can be written in TEX, a somewhat

easier (and much faster) way is to simply trans-
plant the relevant code (the n-sin-cos procedure)

from METAFONT into w. In V m this is done
by implementing a new \sincos primitive com-

mand and t he \sine and \cosine dimen registers.

Entering \sincosipt fills \sine with sin(lO) and
\cosine with cos(lO) (notice that one degree is one

point). These values can be now used in typesetting

computations. In addition, \special{R### ,###I is

used to tell the drivers about the desired rotation

of the font. To avoid re-computing sines/cosines in

drivers. we pass their values instead of the angle.

Finally. we will need to somewhat modify Hoenig's
macros:

{\catcode'p=12 \catcode't=12

\gdef \\#lptC#l3)%

\let\getf =\\
\newdimen\x \newdimen\cos

\newdimen\y \newdimen\sin

\def\initialize{%

\global\x=Opt\global\y=Opt)

\def\dolist{\afterassignment

\dodolist\let\next=

\def\dodolist{\ifx\next\endlist

\let\next\relax

\else \\\let\next\dolist\fi

\next)

\def\endlist{\endlist)

\def\\{\expandafter\if\space\next

\addspace\else\point\next\fi)

\newbox\spacebox

\setbox\spacebox=\hbox{\

\def\addspace{\setboxO=%

\copy\spacebox\newcoords)

\def\point#l{%

\setboxO=\hbox{#l)% for \newcoords

\setbox2=\hbox{#l)% for typesetting

\wd2=0pt \ht2=0pt \dp2=0pt

\rlap(\kern\x \raise\y \box2)%

\newcoords)

\def\newcoords{%

\global\advance\x by \cos

\global\advance\y by -\sin)

\def\angletype#i{\initialize

\leavevmode\setboxl=

\hbox{\dolist#l\endlist~\boxl~

Now. we define

\def\tryrotation#l{%

\setrotation #lpt%

\def\sinC%

\expandafter\getf\the\sine\wdO)%

\def\cos{%

\expandafter\getf\the\cosine\wdO)%

\special{R\the\cosine,\the\sine)%

\angletype{%

This text is rotated #1 degrees)%

\special{RO,O)) % Turn off rotation.

and type

TUGboat, Volume 12 (1991), KO. 3 -Proceedings of the 1991 Annual Meeting

Michael Vulis

\vskip-lcm ?hskip8cm

\font\anglefont=mvssbxl0 \anglefont

\tryrotation{60)% Remove spaces to

\tryrotation{150)% keep the reference

\tryrotation{240)% point the same for

\tryrotation{330)% all four lines

to obtain

Other examples shown in Hoenig's article can

be handled similarly.

Internals. The changes needed in the TEX program

are as follows: define new dimension parameters
\sine and \cosine (new codes are sine-code and

cosine-code) and new extension primitive \sin-

cos (using compute-sincos code) and accordingly
modify init-prim and print-cmd-chr. Procedure

do-ext ens ion receives new case:

compute-sincos:

begin

scan-normal-dimen; {angle*1000)

n-sin-cos (cur-val*16) ;

n-sin:=n-sin div 4096;

n-cos:=n-cos div 4096;

eq-word-def ine

(dimen-base+ sine-code,-n-sin);

eq-word-define

(dimen-base+cosine-code, n-cos);

end ;

where n-sin and n-cos are temporary integers

(in the METAFONT source, these were macros).
Finally, transplant n-sin-cos as well as the pro-

cedures it needs (pyth-add, make-fraction, and

take-fraction) from the METRFONT into the rn
source. This modification adds about 2K to the

TEX program.

Case Study 11: Bitmap Graphics

Inclusion

The problem. A casual study shows that about
10% of articles published in TUGboat deal with

graphics inclusion problems. This should not be

unexpected since W ' s design completely ignores

the existence of graphics. Graphics inclusion is

normally done in one of two ways: either rn
allocates space for a graphics box, sets the reference
point and passes the name of the graphics file via a

\special, or graphics are converted into . tfm/ . pk
pairs and TF-X treats them as characters. The

advantage here is that off-the-shelf drivers can be

made to print graphics; the disadvantage is the

extra conversion pass and, frequently, the need to
maintain two copies of the graphics file: in the

initial and in the pk format. Further problems arise

because of the m ' s limit on the number of fonts.

Finally, the . tfm/ .pk approach is not applicable to

vector graphics formats. The \special approach
requires a way to measure the dimensions of the

graphics images; it also assumes that the drivers

can read (and scale) graphics in several graphics

formats (PCX and TIF to start with).
A possible interface for T@ follows:

\newdimen\graphX \newdimen\graphY

\newbox\gbox % graphics box.
\def\scalegraph#l#2{%

\graphX=lin \divide\graphX by #I

\multiply\graphX by \graphx

\graphY=lin \divide\graphY by #2

\multiply\graphY by \graphy))

%Example :

% \makepicbox~300){300){test.pic)

where \graphx and \graphy hold the pixel
mensions, set by \sizegraph; \special{G.

communicates the name of the graphics file to

drivers. The parameters to \makepicbox are

di-

. . I
the

the

"natural" x- and y-resolutions of the picture; if

they match the resolutions of the device driver, no

scaling is needed.
From the TEX'S point of view, the only interest-

ing question is the implementation of \sizegraph.

There are several ways:
(1) Hardwire the dimensions inside the TEX source;

i.e.,

\def \scalegraph#l{\graphx640\graphy350)

444 TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Should TEX be Extended?

Read the dimensions from an \ input file. If the

graphics are stored in graph.pic , we assume

that there is a header file graph. t e x containing

\graphx640\graphy350. \scalegraph, there-

fore. will change the file extension to . t e x and

\ input the file. The problem with this solution

is the need for the user to create and maintain
the header files. As a minimum, one would

require an auxiliary utility for determining the

dimensions of graphics (call it SIZEGRAPH)
and a MAKE program for ensuring that all

header files are up-to-date.

Implement \sizegraph as an extension prim-
itive; make \graphx and \graphy dimen reg-

isters. This is the original approach used by

V m . On the positive side, it eliminates the
need for header files; on the negative, it bur-

dens the 7&X program with the need to know
different graphics formats. Another hidden

advantage over (2) is that accumulates

names of the \ input files in its string pool;

thus in (2) the string pool is likely to over-

flow on documents that include hundreds of

pictures.

A combination of (2) and (3). Keep a stand-

alone SIZEGRAPH program and make m
invoke it whenever it needs to get the dimen-

sions of a graphics image. This appears to be

the overall best solution, since SIZEGRAPH

can now be independently maintained and the

extension to is both very small and very

general.

The \exec Extension

V m extends TEX by adding the \exec primitive.
\exec is implemented as a message command

with code 2 (code 1 is \message and code 2 is
\errmessage). \exec takes two arguments: the

external program name and the argument string.

Whenever VTJ$ encounters \exec, it stops w i n g

and invokes the external program; it resumes the

execution once it retains the control. The return

code of the external program is reported in the
\errno integer register. \exec allows the followi'ng

implementation of \sizegraph:

\def\sizegraph#l{%

\execis izegraph. exe){#l > temp. tex)%
\ i f \errnoO\input temp.tex\else ??? \ f i

)

While \exec provides possibly the best way for
passing the graphics dimensions to TEX: it can also

be used, for instance, to implement \s incos outside

of 7&X. Font substitution extensions described

below can also be done by \exec1uting lookups into

auxiliary tables. In fact, the \exec command is the

ultimate extension: most other extensions discussed

in this paper can be implemented through \exec:

at the same time \exec does not seriously infringe

on TEX syntax. As will be seen below, \exec can

even be implemented without any modifications to

whatsoever.

The discussion will not be complete without
mentioning the \command variant of \exec. Under

MS-DOS, \command passes the command string to
the command processor, rather than executing the

program directly. Thus, \command can be used to

execute internal commands.

\def\command#lC\exec
{command.com){/C #I))

Case Study 111: Automatic Index

Generation

Another logical application of \exec would be an

automated index for ?]EX. The index macros defined
in the Appendix E of The m b o o k and actually

used in formatting the Computers & Typesetting

series provide excellent tools for generating indices.

Unfortunately, these tools cannot be fully used from

inside TEX since 7&X lacks sorting abilities. Adding
sort to TEX is an extension that the author would

hardly advocate; V w ' s index is constructed by
running an auxiliary IDXSRT program via \exec

and than merging the results into the document

(IDXSRT is capable of sorting and formatting
indices in many different ways; in particular, it can

remove multiple references to the same item that

appears on one page.). The index is constructed

by first using the \icopy and \ ipu t macros, where
\ ipu t writes the argument into the index file.

together with page and/or section number; \icopy

is simply

\def \icopy#l{#l\iput{#l)]

When it is time to insert the index. we use

\merge index:

\def\mergeindex{%

\immediate\closeout\@indexfile%

\command{idxsrt \indexparams\

\Qindexname eraseme.tex)%
\ input eraseme.tex

\command{erase eraseme.tex))

where \indexparams define the switches to be

passed to IDXSRT.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

Michael Vulis

Case Study IV: Font Substitution

In preparing a document, one often needs to change

the size (or the attributes) of the font, regardless

of the font used: it may be desirable to typeset

footnotes at eight points and titles at fourteen,

regardless of what font changes may appear in the

document. For instance, in preparation of this

article, the author was hoping to enter

However, the \head macro scaled the roman font to

12 points and left teletype at 10 points (see previous

page). The problem is unresolved in PLAIN m:
I4w 2.09 solves it by providing 800-line long table
of font substitutions (LFONTS.TEX) plus repeated
definitions of \ large, \huge, etc., all over the

style files. Urn's solution is only partial: it
does not support point sizes not explicitely listed
in LFONTS .TEX: neither do M w ' s tables support

non-cm fonts.

Most l&X users would find it greatly desirable
to have compact and portable definitions of \ large,

\small, etc., that will support all fonts. Since
the need to support all possible fonts precludes us-

age of I4m-s ty l e tables, the effect will be achieved

by extending m. We add new integer register

\f on tsca le . All the s e t f ont commands are pro-

cessed relatively to \ font sca le . For example, if
\ f on t s ca l e is set to 1200, \tt will invoke teletype

at 12. not at 10 points. We can now define

and so on. Notice that after setting \f ontscale we

need to reissue the last font command (\ the \ fon t)

to ensure that the current font changes.

Remark: The drawback of this definition of

\ s e t f ont s above is the loading of math fonts caused

by each font change switch regardless of whether

math fonts will be needed. An alternative is to
declare

which will eliminate unnecessary font loads but may

or may not conflict with other usage of \everymath.

Internals. \f on tsca le (and its companion \bold,

\smallcaps. \shadow, \ou t l ine , \ f i l l p a t t e r n ,
\slant, and \aspect) are simply additional integer

parameters. As mentioned above, these are added

by modifying the ini t -pr im and print-cmd-chr

routines. The standard values (set by I n i w) are

1000 for \f on tsca le and \aspect and 0 for others.
The tricky part is the modification of the

prefixed-command routine that handles font as-
signments. We start by replacing the standard

set-f ont :
define(cur-font-loc,data,cur-chr);

with

set-f ont :
define(cur-font-loc,data,

f subst (cur-chr)) ;

The f subs t procedure returns with unmodified

cur-chr if one of three events holds:

1) the program is run in Tm-compatibility mode,

where fonts cannot be substituted;
2) its argument is the nu l l fon t (cur-chr=O); or

3) all eight relevant integer registers (\ font s ca l e

through \aspect) hold default values.

If none of the above is true, f subs t retrieves

the parameters for the font-in-question, multiplies

the magnifications and the aspect ratios, adds

the slants, and applies the exclusive-or to the
remaining parameters. It next verifies that the

font with required parameters has not yet been

loaded and calls read-f ont-inf o to create it.
Finally, it returns the font number obtained from

read-font-info.

A similar change in the def -f amily subcase of
the pref ixed-command routine makes the \ t ex t -

fon t , \ s c r i p t f ont, and \ s c r i p t s c r i p t f ont rela-
tive.

Invisible fonts/color separation. An additional

benefit is the ability to implement color separation

via invisible fonts. Assuming that the \f i l l p a t -

t e rn0 is 1OOthat the \ f i l l p a t t e r n 1 is 0

446 TUGboat, Volume 12 (1991), No. 3-Procerdings of tlir 1991 Annual Meeting

Should be Extended?

\def\green{\dontprint)

\def\blue{\tprint))

to allow selective printing of color planes.

Math rules. This pattern and color selection

scheme needs a modification to be useful in math

mode, where symbols are often built from both

characters and rules. As given above, the \f i l l p

command affects only the character part, creating

misfits like

Currently, V7$@ solves the problem by defining

\def\fillp#l{\fillpattern=#l\setfonts

\special{F#l))

where \special{F#l) instructs the device drivers

to start shading rules.

Yet another difficulty is the possibility of shad-

ing that spans from one page to another. Unless the

\ spec i a l is re-issued on each page, a device driver

would not see it if it processes the second page

before the first. Solutions with different degrees of
generality are possible.

A Special Note to a Purist

Most of the extensions described in this paper can

be used without any changes to TEX program. For

instance, t o use \exec, without implementing it we

will write a loader program that traps screen and

keyboard I /O and loads TF$, waiting for infamous

! Undefined cont ro l sequence

<*> \exec

{wipef i l e l i * . log)

?

(make sure that \exec and its arguments are on a

line by itself, so they will be echoed on the next

line.) The loader now swaps TF$ out of memory,

performs the \exec, swaps TJ$ in, and inserts

d8 into the W ' s mouth to delete now-unneeded

tokens. While the author found this solution lacking

in performance, it has been tested and worked with

PC implementations of m.

A Late Note

After this paper has been presented at the TUG

conference, a couple of participants noticed yet

another usage for the \exec: as a security-breaching
vehicle. Indeed, it is possible to write a

program to write, for example, a C program. and

then \exec to compile, link and run it.

Conclusions

The author hopes that this paper will be helpful in

encouraging further development of TEX.

TUGboat, Volume 12 (1991), No. 3 - Proceedings of the 1991 Annual Meeting

July 27 to 30, 1992

uaI TEX Users roup Meetin

A Mark your calendars and join

us in Portland, the home of 20-

pound salmon and 20-story build-

ings. Ride light rail trains over cob-

blestone streets, ski Mt. Hood and

attend the symphony in the same

day-even in July. A friendly city,

Portland charms its visitors with a

variety of attractions including:

Windsurfing

A trip up the Columbia River on a

- sternwheeler

Tours of the wine region

The Metro Washington Park Zoo

Portland Center for the Performing

Arts

Oaks Amusement Park

Oregon Art Institute

Scenic Washington County

Oregon Museum of Science and

Industry

World Forestry Center

Mt. Hood

Portland Saturday Market for arts

and crafts

Of special interest to TUG Meeting

attendees may be the 1 l t h Annual

Mt. Hood Festival of Jazz to be held

August 1st and 2nd in Gresham,

Oregon, a suburb of Portland.

For a complete visitors' guide, The

Portland Book, call the Portland Visi-
tors' Center at (800) 345-32 14.

TEX in Context
Resources, Support Tools,
and Comparative Studies

A During four information-packed

days, we'll delve into front-ends for

TEX, inclusion of graphics within TEX

documents as well as exportation of

TEX output to other graphics pro-

grams, comparisons of implemen-

tations of TEX on microcomputers,

network access and resources, edu-

cational issues, and translation be-

tween TEX and word-processors.

Presentations

Workshops

Networking Luncheons

Exhibits

Panel discussions

Classes

A We'll meet and stay at the Ben-

son Hotel, Portland's premier hotel

recently restored to its grand stature

of the early 1900s. A registered his-

toric landmark, the Benson was built

by Oregon lumberman, Simon Ben-

son using elaborate craftsmanship

and imported wood interiors. Special

TUG rates: $89/night (available until

June 26 only.)

A Program coordinator:

Mimi Lafrenz

ETP Services Co.

Program committee:

Helen Gibson

Wellcome Institute

Doug Henderson

Blue Sky Research ,

Ron Whitney

TEX Users Group

A Watch your mail and future issues

of TUGboat and TEX & TUG News for

more details. In the meantime, if you

have questions, contact:

TEX Users Group

Phone: (401) 751 -7760

Fax: (401) 751 -1 071

e-mail: tugQmath, m s .corn

F! 0. Box 9506

Providence, RI 02940

TUGboat, Volume 1 2 (1991), No. 3

Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Macrosoft, Warsaw, Poland

Institutional
Members

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wiscon

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory,
Garchzng bei Munchen,
Federal Republic of Germany

Masaryk University,
Brno, Czechoslovakia

The Aerospace Corporation,
El Segundo, California

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio Fermi National Accelerator

Laboratory, Batavia, Illinois
American Mathematical Society,
Providence, Rhode Island Florida State University,

Supercomputer Computations
Research, Tallahassee, Florida

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany ArborText, Inc.,

Ann Arbor, Michigan
Fordham University,
Bronx, New York

McGill University,
Montre'al, Que'bec, Canada ASCII Corporation,

Tokyo, Japan
General Motors
Research Laboratories,
Warren, Michigan

Michigan State University,
Mathematics Department,
East Lansing, Michigan

Belgrade University,
Faculty of Mathematics,
Belgrade, Yugoslavia

Grinnell College,
Computer Services,
Grinnell, Iowa

XASA Goddard
Space Flight Center,
Greenbelt, Maryland

Brookhaven National Laboratory,
Upton, New York

CERN, Geneva, Switzerland G T E Laboratories,
Waltham, Massachusetts

National Institutes of Health,
Bethesda, Maryland Brown University,

Prouzdence, Rhode Island Hatfield Polytechnic,
Computer Centre,
Herts, England

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

California Institute of Technology,
Pasadena, California

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, California

Naval Postgraduate School,
Monterey, California

Calvin College,
Grand Rapids, Michigan

New York University,
Academic Computing Facility,
New York, New York

Carleton University,
Ottawa, Ontario, Canada Hungarian Academy of Sciences,

Computer and Automation
Institute, Budapest, Hungary Centre Inter-RCgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

IBM Corporation,
Scientific Center,
Palo Alto, California College of William & Mary,

Department of Computer Science,
Williamsburg, Virginia Institute for Advanced Study,

Princeton, New Jersey
Northrop Corporation,
Pales Verdes, California

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

The Open University,
Academic Computing Services,
Milton Keynes, England

Intevep S. A. , Caracas, Venezuela Construcciones Aeronauticas, S.A.,
CAE-Division de Proyectos,
Madrid, Spain

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Iowa State University,
Ames, Iowa

DECUS, Electronic Publishing
Special Interest Group,
Marlboro, Massachusetts

Personal TEX, Incorporated,
Mill Valley, California

The Library of Congress,
Washington D. C.

Princeton University,
Princeton, New Jersey

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Department of National Defence,
Ottawa, Ontario, Canada Purdue University,

West Lafayette, Indiana E. S. Ingenieres Industriales,
Sevilla, Spain

Louisiana State University,
Baton Rouge, Louisiana Queens College,

Flushing, New York

T U G b o a t , Volume 12 (1991), No. 3

Rice University,
Department of Computer Science,
Houston, Texas

Roanoke College,
Salem, VA

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republic of
Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban, Washington,
D. C.

Sandia National Laboratories,
Albuquerque, New Mexico

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Federal Republic of
Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Talaris Systems, Inc.,
San Diego, California

Texas A & M University,
Department of Computer Science,
College Station, Texas

UNI-C, Aarhus, Denmark

United States Military Academy,
West Point , New York

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre,
Vancovver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancovver, British Columbia,
Canada

University of Calgary,
Calgary, Alberta, Canada

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, California

University of Canterbury,
Christchurch, New Zealand

Universidade de Coimbra,
Coimbra, Portugal

University College,
Cork, Ireland

University of Crete,
Institute of Computer Science.
Heraklio, Crete, Greece

University of Delaware,
Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,
Computing Center Heidelberg,
Germany

University of Illinois a t Chicago,
Computer Center,
Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

Universitat Koblenz-Landau,
Koblenz, Federal Republic of
Germany

University of Maryland,
Department of Computer Science,
College Park, Maryland

University of Maryland
at College Park,
Computer Science Center,
College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Ottawa,
Ottawa, Ontario, Canada

University of Salford,
Salford, England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

Uppsala University,
Uppsala, Sweden

Vereinigte Aluminium-Werke AG,
Bonn, Federal Republic of Germany

Villanova University,
Villanova, Pennsylvania

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Widener University,
Computing Services,
Chester, Pennsylvania

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University,
Department of Computer Science,
New Haven, Connecticut

USERS
GROUP

Complete and return this form with
payment to:

Q X Users Group
Membership Department
P. 0. Box 594
Providence, RI 02901 USA

Telephone: (401) 751-7760
FAX: (401) 751-1071
Email: tug@Math . AMS . corn

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the 7j$t Users Group
and the TUG newsletter, EX and
TUG News. Members who join after
January 1 will receive all issues
published that calendar year.

For more information . . .

Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

Institutional membership
information

Course and meeting information

Advertising rates

Productslpublications catalogue

Public domain software
catalogue

More information on TEX

ership Applicati

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specih networks, as well)

I am also a member of the following other Q X organizations:

Specific applications or reasons for interest in TEX:

Hardware on which TEX is used:

Computer and operating system Output devicelprinter

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $50.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Amount enclosed for 1992 membership: $

(Prepayment i n US dollars drawn on a US bank is required)

Checldmoney order payable to Q X Users Group enclosed

Charge to MasterCardMSA

Card # Exp. date -

I Signature

Complete and return this form
with payment to:

TEX Users Group
Membership Department
l? 0. Box 594
Providence, RI 02901 USA

Bank transfers
TEX Users Group, #002-031375
Hospital Trust National Bank
One Hospital Trust Plaza
Providence, RI 02903
USA

Membership is effective from
January 1 to December 31. Members
who join after January 1 will receive
all issues of TUGboat published that
calendar year.

For more information .

Correspondence
TEX Users Group
653 North Main Street
l? 0. Box 9506
Providence, RI 02940
USA

Telephone: (401) 751-7760
(401) 751-1071

Email: t ug@mat h . ams . c om

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

Course and meeting information

Products/publications catalogue

Public domain software
catalogue

Institutional Membership Application

Institution or Organization

Principal contact

Address

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specify networks, as well)

Each Institutional Member is entitled to:

0 designate a number of individuals to have full status as TUG

individual members;

0 take advantage of reduced rates for TUG meetings and courses for

all staff members;

a be acknowledged in every issue of TUGboat published during the

membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ./non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 1 2 memberships) $ 815 / $ 915 $50 ea.
C (includes 30 memberships) $1710 / $1810 $40 ea.

Please indicate the type of membership for which you are applying:

Category - + - additional individual memberships

Amount enclosed for 1992 membership: $

ChecWmoney order payable to TEX Users Group enclosed

(payment is required i n US dollars drawn on a US bank)

Bank transfer bank

ref #

Charge to MasterCardNISA

Card # Exp, date -

Signature

Please attach a corresponding list of individuals whom you wish to

designate as TUG individual members. Minimally, we require names

and addresses so that TUG publications may be sent directly to these

individuals, but we would also appreciate receiving the supplemental

information regarding phone numbers, email addresses, TEX interests,

and hardware configurations as requested on the TUG Individual

Membership Application form. For this purpose, the latter application

form may be photocopied and mailed with this form.

December 1991 Q X Consulting and Production Services 453

T@ Consulting and Production Services

North America

AMERICAN MATHEMATICAL SOCIETY
P. 0. Box 6248, Providence, RI 02940; (401) 455-4060

Typesetting from DVI files on an Autologic APS Micro-5

or an Agfa Compugraphic 9600 (Postscript).

Times Roman and Computer Modern fonts.

Composition services for mathematical and technical books

and journal production.

ANAGNOSTOPOULOS, Paul C.
433 Rutland Street, Carlisle. MA 01741; (508) 371-2316

Composition and typesetting of high-quality books and

technical documents. Production using Computer Modern

or any available Postscript fonts. Assistance with book

design. I am a computer consultant with a Computer

Science education.

ARBORTEXT, Inc.
535 W. William, Suite 300, Ann Arbor, MI 48103;

(313) 996-3566

Typesetting from DVI files on an Autologic APS-5

Computer Modern and standard Autologic fonts.

w installation and applications support.

w - r e l a t e d software products.

ARCHETYPE PUBLISHING, Inc.,
Lori McWilliam Pickert

P. 0 . Box 6567; Champaign, IL 61821; (217) 359-8178

Experienced in producing and editing technical journals

with w; complete book production from manuscript to

camera-ready copy; TEX macro writing including complete

macro packages; consulting.

THE BARTLETT PRESS, Inc.,
Frederick H. Bartlett

Harrison Towers, 6F, 575 Easton Avenue,

Somerset, NJ 08873; (201) 745-9412

Vast experience: 100+ macro packages, over 30,000 pages

published with our macros; over a decade's experience in all

facets of publishing, both w and n o n - w ; all services

from copyediting and design to final mechanicals.

COWAN, Dr. Ray F.
141 Del Medio Ave. #134, Mountain View, CA 94040;

(415) 949-4911

Ten Years of Qj!X and Related Software Consulting

Books, Documentation, Journals, and Newsletters

TEX & I4m macropackages, graphics; Postscript language

applications; device drivers; fonts; systems.

of experience with w and other electronic tools have

brought us the expertise to work effectively with publishers.

editors, and authors. E T P supports the efforts of the w
Users Group and the world-wide w community in the

advancement of superior technical communications.

HOENIG, Alan
17 Bay '4venue. Huntington, NY 11743; (516) 385-0736

TJjX typesetting services including complete book

production; macro writing: individual and group

w instruction.

KUMAR, Romesh
1549 Ceals Court. Naperville, IL 60565; (708) 972-4342

Beginners and intermediate group/individual instruction

in m. Development of w macros for specific purposes

Using m with FORTRAN for custom-tailored software.

Flexible hours. including evenings and weekends.

MAGUS, Kevin W. Thompson
P. 0. Box 390965. Mountain View CA 94039-0965;

(800) 848-8037; (415) 940-1109: magusQcup . portal. corn
I P I w consulting from start to finish. Layout design

and implementation, macro writing, training, phone

support. and publishing. Can take I P I w files and return

camera ready copy. Knowledgeable about long document

preparation and mathematical formatting.

OGAWA, Arthur
920 Addison, Palo Alto. CA 94301: (415) 323-9624

Experienced in book production, macro packages,

programming. and consultation. Complete book production

from computer-readable copy to camera-ready copy.

QUIXOTE, Don Hosek
440F Grinnell, Claremont, CA 91711; (714) 625-0147

Complete line of w, IPW, and METAFONT services

including custom W w style files. complete book

production from manuscript to camera-ready copy:

custom font and logo design; installation of customized

w environments; phone consulting service; database

applications and more.

Call for a free estimate

RICHERT, Norman
1614 Loch Lake Drive, El Lago, T X 77586;

(713) 326-2583

QjX macro consulting.

W N O L O G Y , Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;

(617) 738-8029. , >

DOWNES, Michael macro writing (author of M a c r o w) ; custom macros
49 Weeks Street, North Smithfield, RI 02895; written to meet publisher's or designer's specifications;

(401) 762-3715 instruction.

Instruction in A M S - ~ , A M S - W w , plain W, and

advanced macro writing. Custom documentstyles.

Consulting: m advanced mathematical typesetting topics:

tuning mathematics fonts; getting the most out of w Outside North America
in a production environment. Troubleshooting.

ELECTRONIC TECHNICAL PUBLISHING
SERVICES CO.

2906 Northeast Glisan Street, Portland. Oregon 97232-3295;

(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial, design, illustration.

project management, composition and prepress. Our years

T Y P O W LTD.
Electronical Publishing, BattyAny u. 14. Budapest, Hungary

H-1015; (036) 11152 337

Editing and typesetting technical journals and books with

from manuscript to camera ready copy. Macro writing.

font designing, TE)C consulting and teaching.

461,465

467

Cover 3

466

456

455

454

457

458,459

454,460

465

462

464

463

468

Index of Advertisers

American Mathematical Society

ArborText

Blue Sky Research

Computer Composition

Electronic Technical Publishing Services

Yannis Haralambous

job ctl

K-Talk Communications

Kinch Computer Company

MicroPress, Inc.

Micro Programs, Inc.

Personal TEX Inc.

TCI Software

Type 2000

Y&Y

--
fa.xpak provides Group 3 facsimile

capabilities to networked STUNS and

XENIX 2.3.2 and compatible systems.

Supports SIERRA type modems such as

WORLDPORT'S 2496 and "Class Two" modems.

File Formats: Plain ASCII * R X and

UTE.Y1 POSTSCRIPT text and graphics STJN
raster a n d other bitmaps Easily extended to
any b i t m a p or file format.

Configuable Options: Multiple phone

lines View received faxes on screen Aliases,
distributions lists, batch jobs Complex per-

missions scheme or unrestricted access * De-

par tmenta l or system wide "cover pages" Page
numbering Pasting up of bitmaps Restriction

of transmissions to "off peak" rates "Pickup

Mode" to avoid resending confirmed pages after
errors Accounting.

faxppak comes with a site licence and costs

$360. plus $25 for shipping by AIR MAIL. . De-

tails from: job ctl, Klaus Schalfiorn, 28 Bel-

gravia St. , Penzance, Cornwall, TRlS 2BJ, UK.

FAX 4-44 736 330083, <faxinfo@cnix.uuxp>.

Finally, you can use
superior MicroPress
scalable typefaces
with your version of

Choose from 150+ quality typefaces

Generate PXL/PK files in seconds

Font effects: compressed/expanded fonts,

shading, outline, smallcaps, and more

Creates matching TFM files

As low as $10 per font

Contact MicroPress for pricing and
availability for your CPU.

MICROPRESS INC.
6 8 - 3 0 HARROW STREET, FOREST HILLS, N Y 1 1 3 7 5
TEL: 7 1 8 - 5 7 5 - 1 8 1 6 FAX: 7 1 8 - 5 7 5 - 8 0 3 8

'This ad has been faxed by f n r p a k .

S C H O L A R

Use the combined pow-er of TpY, Metafont and PostScriptB to create high quality documents providing classical and modem Arabic.

Persian, Ottoman Turkish, Pashto, Urdu, Malay. classical Hebrew, Ivrit, Yiddish, Syriac Estrangelo, Armenian, Greek, epigraphicai Greek

& Latin, Saxon, old German Fraktur and Schwabacher Cforthcoming: Glagolitic, old Church Cyrillic, Byzantine Greek, Coptic, old Irish.

Syriac Serto and Uiguric Mongolian). All fonts in pk. EPSF, PostScriptB Type 1 andTmeTypeTM Format User-defined transcription for

input and output of Semitic languages & virtual fonts used for accented Arabic characters Continuous support for improvements &

additions.
Indiu~duals: $200 (speclfy Mac~ntosh@-TexturesTM, Macintosh@-OzTex or PC) for the

sources (~ n Metafont. WEB and PostScnpt8) addir~onal $100, Institutions, Publishers

$500 (sources included) Orders and information from: Yannis Haralambous. 101/11 me
Breughel, 59650 Villeneuve d'Ascq, France, Fax (33) LO 91.05.64

SchaiarT~X ia a qlstrrrd rradrmark of Y a n n ~ Hdralarnboui

The solution is ETP.

Electronic Technical Publishing Services Company
2906 N.E. Glisan Street
Portland, Oregon 97232

503-234-5522 FAX: 503-234-5604
mimi@etp.com

lishing Corn anion@ translates

WordPerfect

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using TEX or bT with little or no F TEX knowledge. Your WordPerfect files are translated into TEX or bTEX fi es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES,
and much more!

. Retail Price $249.00
. Academic Discount Price $199.00

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(614)294-3535
FAX (614)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

N
ow YOL C A ~ run the TEX
typesetting system in the
powerful and convenie-

nient graphical environ-
ment of Microsott Windows, with the
new Windows-compatible TurboT~X
Release 3.1.

TurboTjX brings you the latest
TEX 3.1 and M ETAFONT 2.7 stan-

dards and certlfications: preloaded

plain TEX, LATEX, AMSTEX and ' 4 ~ 5 -
BTEX, M ETA FONT, preview for

EGA/VGA displays, Computer
Modern and LATEX fonts, and printer
drivers for HP LaserJet and DeskJet,

Postscript, and Epson LQ and FX
dot-matrix printers. This wealth of

software runs on your IBM PC (MS-
DOS, Windows, or 05/21, Uurx, or
VAX/VMS system.

Best-selling Value: TurboTEX sets
the standard for power and value
among TEX implementations: one

price buys a complete, con~mercially-
hardened typesetting system. Conl-
putcr magazine recommended ~t

as "the version of TEX to have,"

I E E E Softzclnrc called it "industrial
strength," and thousands of satisfied

users worldwide agree.

TurboT~X gets you started quickly,
installing itself automatically under

,MS-DOS o r Microsoft Windows, and
compiling itself automatically under
UNIX. The 90-page User's Guide in-

cludes generous examples and a full
index, and leads you step-by-step

through installing and using TEX and
M E T R F O N T .

Classic TEX for Windows. Even i f

you have never used Windows on
your PC, the speed and power of

TurboT~X will convince you of the
benefits. While the TEX command-

line options and T~Xt iook interaction
work the same, you also can control
TEX using triendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MS-DOS lim-
itations like DOS extenders, over-

lay swapping, and scarce memory

You can run long TEX formatting
or printing jobs in the background
while using other programs in the

foreground.

MS-DOS Power, Too: Tur-

boT~x stlll includes the plain MS-
DOS programs. Even ivithout ex-

- -

panded memory hardware, our vir-
tual memory simulation provides the
same sized TEX that runs on multi-

megabyte mainframes, with capac-
ity for large documents, complicated

formats, and demanding macro pack-
ages.

Source Code: The portable C

source to TurboT~X consists of over
100,000 lines of generously com-

mented TEX, TurboT~X, M E T A FONT,

previewer, and printer driver source
code, including: our WEB system in

C; FASChA;, our proprietary Pascai-
to-C translator; Windows menus

and text-mode interface library; and
preloading, virtual memory, and

graphics code, all meeting C porta-
bility standards like A.USI and K&R.

Availability & Requirements:

TurboT~X executables for IBM PC's
include the User's Guide and re-

quire 640K, hard disk, and MS-DOS
3.0 or later. Windows extensions re-
quire Microsoft Windows 3.0. Order

source code (includes Programmer's
Guide) for other machines. On the

PC, source conlpiles with Microsoft
C 5.0 or later (and Windows SDK

for Windows extensions), Watcom
C 8.0, or Borland C++ 2.0; other op-

erating systems need a 32-bit C com-
piler supporting U ~ i x standard I/O.
Media is 360K 5-1 /4" or 720K 3-1 /2"

PC floppy disks (please specify).

Upgrade at Low Cost. If you
have TurboTEX Release 3.0, upgrade

to the latest version for just 540 (ex-
ecutable~) or $80 (including source).

Or, get elther applicable upgrade free
when you buy the AP-TEX fonts (see

facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-

boQX for 10 days. If you are not sat-
isfied, return it for a 100% refund or
credit. (Offer applies to PC executa-

b l e ~ only.)

Free Buyer's Guide: Ask for the

free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics

editors, public domain TEX accessory

software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.

Terms: Check with order (free media
and ground shipping in US), VISA,

Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media

extra). Discounts available for quan-

tities or resale. International orders

gladly expedited via Air or Express
Mail.

The Kinch Computer Company

PLBLISHERS OF TIJRHOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222
FAX (607) 273-0484

AP-TF~X Fonts
=-compatible Bit-Mapped Fonts

Identical to

Adobe Postscript Typefaces

If you are hungry for new TEX fonts, here is a feast guar-
anteed t o satisfy the biggest appetite! The AP-TE)(fonts

serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-T# fonts consist of PK and TFM files which are ex-
act Tj$-compatible equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown
at the right. Since they are directly compatible with any
standard T@ implementation (including kerning and liga-
tures), you don't have to be a expert to install or use

them.

When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 KB 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5 , 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica., and Palatino, all

in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

The Kinch Computer Coinpany

PUBLISHERS OF Tumol)#

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222

FAX (607) 273-0484

Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorpc-
rated. T h e owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the A P - w fonts. Kinch Computer Com-
pany is the sole author of the AP-TEX fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the A P - r n font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

LaserJet a n d DeskJet are trademarks of Hewlett-Packard Corporation. T)$
is a trademark of the American Math Society. Turbo?$$ and AP-'&X are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1090.

Avant Garde
Avanf Garde %,ue

Avant Garde Demlbold

Bookman Demibold

C o u r i e r

C o u ri e r Oblique

Courier B O I ~

C o u r i e r %fque

Helvetica

Helvetica Obl~que

Helvetica Bold

He1 vefica F2fqUe

Helvetica Narrow
Helvetica Narrow Oblique

Helvetica Narrow B O ~

Helvetica Narrow %fque

Schoolbook "R,Cnentury

Schoolbook IP'ntury
Schoolbook ~2?"ury
Schoolbook

New Century
Bold Italic

Palatino Roman

Palafino Italic

Palatino Bold

Times Roman

Times ,tali,

Times F:g

.
Zapf Dingbats

Are you still
struggling with

Move on to scalable
fonts:
Save megabytes of storage-entire VTEX fits on

one floppy.

Instantly generate any font in any size and in any

variation from 5 to 100 points.

Standard font effects include compression, slant,

smallcaps. outline, shading 2nd shadow.
New: landscape. New: scalable graphics.

Discover the universe of MicroPress Font Library

professional typefaces: not available from any

other TEX vender.

List price $299

Includes the VTEX typesetter (auperset of TEX). 10 scalable

typefaces, WIEW (arbitrary magnification on EGA, CGA, VG.4.

Hercules, AT&T). VLASER (HP Laserjet). VPOST (PostScript).

VDOT (Epson. Panasonic, NEC, Toshiba. Proprinter, Star, Desklet)

anti manuals.

S i H a d d S j . CODaddSj .

WorciPerfect Interface add $100. Site licenses available.

Dealers' inquiries welcome. Professional typefaces

avaiiable for older irnplen~en~ations of TEX.

MICRO

MicroPress Inc.
68-30 Harrow Street, Forest Hills, NY 11375

u

PRESS Tel: (718) 575-1816 Fax: (718) 575-8038

VTEX IS a trademark 01 MlcrsPress ioc OiPer hodi lc ts mentioned are lraoemarks 01 [h e r respecwe c o m p a ~ e s

46 1

I

Software
American Mathematical Society

NEW SOFTWARE RELEASES

The new release of AMS-TEX 2.1,
AMS-LATEX 1.1, AMSFonts 2.1, and the

Metafont Sources for all AMSFonts are FREE

through the AMS electronic service e-MATH
or on diskettes at NEW REDUCED PRICES!

A,wS-TEX 2.1

A new file, amspptl.tex, has been added to provide

backward compatibility with documents written under

amsppt.sty version 1 but run with AMS-TEX 2.0 or later.

AMS-UTEX I .I

AMS-UTEX provides advanced mathematics typesetting

capabilities to a user familiar with the WTEX environment.
The complete MittelbachISchoepf font selection scheme in

the /ams/amslatex/fontsel area is now available.

AMSFonts 2.1

The 2.1 version of AMSFonts has several enhancements.

Euler and extra C M Fonts are now more bold and extended.

AMSFonts are available in the following resolutions: 11 8,
180, 240, 300, and 400 dpi.

CUSTOMER SUPPORT

TEX Archive on e-MATH

Technical Support Group
American Mathematical Society

201 Charles Street

P.O. Box 6248
Providence, R1 02940 USA

(800) 321 -4AMS (321 -4267) ext. 4080

(401) 455-4080
Internet: tech-support@math.ams.com

e-MATH Access

Internet: support@e-math.ams.com

O n Diskettes

The software files can be ordered from the AMS on Macin-
tosh or IBM high-density, 5.25" diskettes (3.5 or low-density

diskettes may be special-ordered).

Prices include shipping (first class domestic; airmail

overseas).

e-MATH Electronic transfer on Internet

AMS-developed TEX software files have been posted to

the TEX archives on the Internet node e-math.ams.com

(1 30.44.1.100) and are available for retrieval by anonymous

FTP (file transfer), by those users who are on Internet.

Metafont sources for all AMSFonts and guidelines for
preparing electronic manuscripts in AMS-TEX and in
AMS-MTEX are also on e-MATH.

All macro files and fonts in the e-MATH archive can be

used with any standard implementation of TEX, regardless of
the computer that TEX is running on (micros, workstations,

mainframes, etc.). [A special version of AMSFonts 2.1 for

use with textures on the Macintosh will be added to

e-MATH in the near future].

Announcements of future incremental or major upgrades
will be posted to the normal TEX discussion lists. For more

information contact support@e-math.ams.com.

ORDERING INFORMATION

Upgrade diskettes ~o~AMS-TEX and AMSFonts wil l be

available to users of version 2.0 free through February, with a
shipping charge o f $8.00.

I B M Diskettes, 5.25", High-density

AMS-TEX
AMSFonts, 1 18 dpi

AMSFonts for 180 dpi printers
AMSFonts for 240 dpi printers

AMSFonts for 300 dpi printers

MathSciT~X-Dialog records
(IBM Version)

MathSciT~X-CD-ROM records

(IBM Version)
AMS-MTEX

Metafont Sources for AMSFonts

Macintosh Diskettes

TEX/58 Standard AMSFonts (magsteps 0-1) $25

TEX/59 Extended AMSFonts (magsteps 0-5) $25

TEX/6O AMS-TEX $1 5
TEX/67 A.S-UTEX $1 5

Member

$1 3
$22

$22

$22
$22

$1 3

$1 3
$1 3

$1 3

$22
$22

$1 3

$1 3

Prepayment is required Prices include shipping (by first class, domestic; airmail overseas) Please add 7% GST to all orders

being shipped to Canada. For charge card orders: TeX Library, American Mathematical Society, P.O. Box 6248, Providence, Rl

02940, or call 800-321-4AMS or e-mail (Internet) cust-serv@math.ams.com Prepaid Orders: American Mathematical Society, P.0
Box 1571, Annex Station, Providence, RI 02901 -1 571

At One Lo

Announcin Systems!
You can now receive a new PCTEX System, which includes PCT~w386 plus a full set of printer drivers, complete

with everything you need to create the highest quality typeset documents possible using a PC, all at one low

price. We offer a 20% Discount to TUG Members. Here are your choices:

The PCTG System for Laser
Printers includes:
0 PC TEX

PcT~Xl386
0 PTI View
0 PTI LaserIHP

PTI LaserIPS
0 PTI Jet
o CM 300dpi Fonts
Retail: $599
TUG Members: $479

The Big PCT$ System for
Laser Printers Includes:
0 PC TEX
0 Big PcT~X1386
0 PTI View

PTI LaserIHP
e PTI LaserIPS

PTl Jet
0 CM 300dpi Fonts
Retail: $699
TUG Members: $559

The PCT$ System for Dot
Matrix Printers Includes:

PC TEX
PcT~X/386

0 PTI View
0 PTI Dot/FX

PTI DotILQ
CM 240dpi & 180dpi Fonts

Retail: $499
TUG Members: $399

Upgrade your Current Products
and Get a Full Set of Printer Drivers,

plus PCTEX/386, for only $195
For those of you who already own PC TEX, PTI View, and at least one PTI Printer Driver, special System Upgrades*

are available to you as follows:

One Stop Shopping from Personal T@, Inc.
PERSONAL

We offer you a full range of TEX products to meet your every need ...

including graphics programs, fonts, spell-checkers, text editors, and TEX

macros. Look for our new LAT$ book, I&,, for Everyone, coming

soon. For our free 1991 Product Catalog, demo diskette, or for further

information, call us today at (415) 388-8853.

Ts INC

12 Madrona Avenue 0 Mill Valley, CA 94941 Phone: (41 5) 388-8853 Fax: (41 5) 388-8865

In Europe: (31) 703237241 0 (49) 241 67001 0 (49) 8024801 1 0 (49) 731 26932 0 (44) 742351 489 (39) 290091 773
(33) 169073688 0 In Asia: (886) 353351 79 e In Australia: (61) 34599671

* You must provide proof of prior purchase of PCTEX, PTI View, and a PTI Printer Driver. Upgrades do not include CM Fonts.
PCTEX is a registered TM of Personal TEX, Inc. TEX is an American Mathematical Society TM. Site licenses available to qual~fied
organizations. Inquire about PTI distributorships. This ad was typeset using PCTEX and Bitstream Fonts.

Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM, and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEX@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500-t pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 4151388-8873.

T Y P E

In fact, it's created by the same
scientists who brought you T ~ T " ,
TCI Software Research Inc.

Scientific Word'" is the latest in PC
word processing for Windows 3.0.

The file storage format is TEX. It's a
full document editor, not a previewer.
You compose and edit directly on
the screen without being forced to
think in TEX.

Your input is mathematics, and your
output is TEX.

Discover the genius when you
combine the power of TEX with the
simplicity of Scientific W o r d ,

To b e a part of this exciting new
discovery, contact TCI Software
Research Inc. Call today, toll free
1-800-814-2383 for more information.

7790 FOSTER ROAD 7-800-874-2383
LAS CRUCES, NM TEL: (505) 522-4600
88007 FAX: (505) 522-0776

SOFTWARE RESEARCH, INC.

~3 and Suentific Word are trademarks of TCI Software Research Inc. TEX is a trademark of the American Mathematical Society

Widows is a trademark of MicrosoA.

The American Mathematical Society can offer you a basic TFX publishing service. You provide the
DVI file and we will produce typese; pages using an ~ u t o l o ~ i ; ~ ~ ~ ~ i c r o - phototypesettkr. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

Macro-Writing

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or ca11401-455-4060 or 800-321-4AMS in the
continental U.S.

I

/wand

VALUABLE ADDITIONS TO YOUR TJ$ TOOLBOX

CAPTURE
Capture graphics generated by
CAD, circuit design, data plot-
ters, and other application pro-
grams that support the LaserJet.
Make LaserJet images compati-
ble with TEX. Create pk files from
p c l or pcx files. $115.00

Keyboarding T# Problem Solving

Camera Work

t expic
With texpic graphics package,
you have the tools to integrate
simple graphics-boxes, circles,
ellipses, lines, arrows-into your
l$jX documents. Maintains out-
put device independence.

$79.00

Autologic Fonts
i I I I

Voyager
Macros to produce viewgraphs
quickly and easily using l$jX.
They provide format, indenta-
tion, font, and spacing control.
Macros included to produce ver-
tical and horizontal bar charts.

$25.00

Micro Programs Inc. 251 Jackson h e . Syosset, NY 11791 (516) 921-1351

w Services and Prices from
uter Composition Corporation

We are pleased to announce the installation of several
now available to TEX users:

1. High Resolution Laser Imaging (1200 dpi) from Postscript diskette
files created on either Mac- or PC-based systems.

2. High Resolution Laser Imaging (960 dpi) from DVlmagnetic tape or
diskette files using a variety of typefaces in addition to the Computer
Modern typeface family.

3. High quality laser page proofs a t 480 dpi.

4. NEW PRICING for high resolution laser imaging:

a. From Postscript text files in volumes over 400 pages $2.00 per page

b. From Postscript text files in volumes
between 100 & 400 pages . $2.25 per page

c. From Postscript text files in volumes below 100 pages . . $2.40 per page

d. From DVI files in volumes over 400 pages $2.1 5 per page

e. From DVI files in volumes between 100 & 400 pages $2.30 per page

f . From DYI files in volumes below 100 pages $2.45 per page

NOTE: DEDUCT $1.00 FROM THE ABOVE PRICES FOR HIGH QUALITY
LASER PAGE PROOFS.

5. All jobs shipped within 48 hours.

Call or write for page samples or send us your file and
we will image it on the output unit of your choice.

plete TEX solution t

new T@ 3. s, virtual fonts, an

Extended Font standard adopted at t e TUG

meeting in Cork.

ArborText put it all together. You don't have to!

ArborText's TEX 3.14 provides everything you need in a complete,
ready-to-use package:

Utilize the Extended TEX Font Encoding capability with pre-built virtual fonts

for Computer Modem and PostScript

Use the conversion utilities we supply to make your own extended fonts

from existing TEX 2.0 style fonts

Easily accent characters from your foreign language keyboard

Create multi-language documents

Choose from included hyphenation patterns for English, French, German, Dutch,

Spanish, Portuguese, or add your own

Use the extended version of Plain TEX and UTEX

We've provided access to the New Extended Fonts directly-

macro source included!

TEX 3.14 and support software is available for Sun, IBM RS6000

DEC/Risc-Ultrix, HP 9000, and IBM PCs,

ARBORTEXT INC 535 West William Street AnnArbor, MI 48103 k FAX (313) 996-3573 Phone (313) 996-3566

TM
The Windows based DVI previewer that

displays both Computer Modem (CM)

and non-CM fonts.

Now you can view documents calling for any outline font ...
Outline fonts can be scaled arbitrarily, not just to a small number of fixed sizes.

... and see inserted EPSF figures on screen,

DVIWindo supports the ten most popular figure insertion schemes.

with standard Windows interface convenience. ...
DVIWindo provides string search, printing of page viewed, and much more.

Dvlwindom comes with a number of convenient ufilities and now also Adobe Type ManagerTM

The DVI converter that produces

resolution-independent Postscript

output using outline fonts.

Now you can really exploit outline font technology in TEX ...
Outline font support enables use of fonts other than Computer Modern.

... without running out of printer memory,

Partial font downloding is used to conserve precious printer memory.

... while enjoying considerable cost savings.

Resolution-independent Postscript files can be imaged for $2-$3 per page.

DVIPSONE~ runs on IBM PCm compafibles and can use any Adobe Type InV' outline font.

The PC versions of the Blue Sky Research Computer Modern Type I outline fonts from Y&Y
now come with Adobe Type Manager. I&')$ + S L I w fonts are also available in outline

form. All of these fonts can, of course, be used by any Windows application. It is by means

of outline fonts that DVIPSONE and DVIWindo provide bitmap-free support f o r m !

