
Quick and Dirty Databases with Nice Output:

AWK and
-

Erich Neuwirth
Institute for Statistics and Computer Science. University of Vienna
UniversitatsstraBe 5-9, A-1010 Vienna; Austria
Bitnet: a4422dabQawiunill

Abstract

This paper will describe an easy-to-use set of tools which enables
moderately to well experienced m - u s e r s to produce formatted
output from flat data files. Usually all you need is AWK, m,
and a sort program.

A First Example

Let us assume we have a text file containing
addresses in more or less random order. Let us
further assume that the main purpose of the file is to
produce a printed address list and directory, possible
in different versions sorted according to different
criteria. Let us further assume that the data file
has a very simple structure, namely a number of
lines for each address and different addresses being
separated by blank lines. Additionally, we assume
that the items to be used in sorting occur on the
same line in every address block, e.g. the surname
is always on the first line, the city on the third line,
and so on.

Now we would like to format this material into
a two-column format for an address book to be
typeset by B m . For the first step, let us assume
that the data already are sorted in the sequence we
need for the printed version. Then the following
little AWK program does the trick:
BEGIN {

RS=ll U

FS="\n"

printf "\\documentstyle [twocolumn] "
printf "{article)\nl'
printf "\\begin{document)\n\n"

1
C
for(i=l;i<=NF-l;i++)

printf "%s \ \ \ \ \n", $i
printf "%s \n\nN, $NF
3

END {

print "I1
printf "\% %d records transferred \n\nl'

, NR
print "\\end{document)"

1

If you keep the program in a file address. awk
and execute the following command,

auk -f address.awk address.dat>address.tex

then the file address . t e x will contain a I P W file
which prints the address book.

The command line will work with a UNIX or
an MS-DOS system, if you have AWK. We will talk
about the availability of AWK later.

Let us look at this program. It consists of three
parts.

The first part, starting with BEGIN. is executed

before any data is read from the input file. So,
this is the place to put the I4w preamble and
any definitions you need for page layouts, (like page
sizes, \parskip, etc.).

The middle part of our program. the one with
the f o r loop, is executed for each record read in
from the data file. This is where we can reformat
the unformatted records from our primary data file.

The third part of the program, beginning with
END, is executed after all input data was read, so
this is the place for any final housekeeping activities
and for \end{document).

Here we are using the fact that AWK has an
implicit loop running through all records in the data
file. It also has easy-to-use tools for structuring the
records into fields. "$i" in our program refers to
the ith field of each record, so AWK by itself breaks
the records into fields which are exactly the units
we want to deal with for the TEX output.

In this program we use p r i n t and p r in t f the
same way it is used in C; the p r i n t command uses
default printing formats; p r i n t f explicitly needs a
formatting string.

The program by itself should be understandable
to anybody with a little knowledge of C. The only
additional knowledge is about the implicit loop over
records.

Proceedings of m 9 O

Erich Neuwirth

If we want to inhibit page or column breaks
for each entry in our address book, we simply add
the AWK commands to make a "minipage" for each
entry, so the middle part should look like this:

C
print "\\begin{minipage){\\textwidth)"
for(i=l;i<=NF-l;i++)

printf "%s \ \ \ \ \nn, $i
printf "%s \nu, $NF
print "\\endCminipage)"
printf "\n"

1

The double backslashes are needed because in AWK,

like in many C-like languages, the backslash is the
escape character, so a double backslash is needed to
produce a single backslash in the output file. If we
want the first entry to be printed in boldface, only
a slight change in our program is needed:

C
print "\\begin(minipage}(\\textwidth)"
printf "{\\bf %s I" , $1
for(i=2;i<=NF-l;i++)

printf "%s \ \ \ \ \nI4, $i
printf "%s \nu, $NF
print "\\endCminipage}"
printf "\n"

3

Of course this model can be generalized; we can
extract any field from the record and add special
formatting commands to the field. Using this little
program as a skeleton, we already are able to
reformat a simple text file with addresses to get a
booklet with typeset quality.

Extending the Example

Besides the implicit loop, AWK has a strong pattern
matcher directly built into the language. It uses
the regular expression syntax of UNIX (like grep
and other text-oriented tools in UNIX) and allows
selection of records according to certain patterns.
If, in our example, we wanted to print the address
book for the inhabitants of Cork only, we would
only have t o change the middle part of the program
very slightly:

/Cork/ C
for(i=l;i<=NF-l;i++)

printf "%s \ \ \ \ \nW, $i
printf "%s \n\n", $NF

3

So we only added the /Cork/ expression which tells
AWK to perform the printing actions only to records
containing the string Cork.

In this case, the command printing the number
of records into the file would print the number
of records in the input file and not the number of

addresses formatted. To correct this we have to
modify our program again; we simply add a variable
which counts the number or records transferred to
the output file,

/Cork/ C
nof out++
for(i=l;iC=NF-l;i++)

printf "%s \ \ \ \ \n", $i
printf "%s \n\nM, $NF
3

and we change the print command for NR in the end
part of our program to:

printf "\% Xd records transferred \n\n"
, nof out

AWK initializes variables with zero, so the counting
works correctly. We will not explain the pattern-
matching mechanism of AWK in this paper, that
would go beyond both the scope and the space
limits of the paper. We only wanted to demonstrate
that selection of records is already built into AWK,

so we do not need a special tool for that.

Sorting the Data

AWK by itself does not offer built-in capabilities
for sorting data. It would be possible to write a
sorting program in AWK, but since AWK is interpreted,
performance would be low. It also would be a waste
of energy for the programmer. since any reasonable
operating system has a sort utility. The only
task we have to perform is to write a small AWK

program which reformats the input file in such a
way that the sort program can sort it according
to our criteria. We might have to write another
small program which transforms the sorted data
back into the original form. We need a little bit of
additional information. In the example program in
the beginning, we had the following code:

RS=ll ll

FS="\n"

The variable RS defines the record separator; the
variable FS defines the field separator. These two
separators refer to the input file. The corresponding
two variables, ORS and OFS, refer to the output file.
Using these variables, we can transform multiline
records into oneline records which can be better
dealt with by sort programs. Consider the following
program:

BEGIN (
RS=ll I1

FS="\n"

ORS="\n"
OFS="\tU

1

Proceedings of m9O

AWK and

pr in t f "%10s ", $3
p r i n t $1,$2,$3,$4,$5
1

The BEGIN part defines the record and field sep-
arators, the main loop writes the third variable
to a fixed length field at the beginning of each
output record and then writes all variables with
the new output separator (a tab character) into the
output file. So the output file contains one line
per record. Now we simply use a sort program to
sort the intermediate file into the order we need.
Then we have to write a similar small AWK program
which cuts off the first field of our new records
and copies the remaining fields restoring the old
multiline structure by using,

ORS="\n\nM
OFS="\n"

(ORS="" does not work). We now have the sorted
data in the original format and can print the address
book in the order we need.

General Considerations

The examples in the previous sections show that
it is very easy to use AWK as a front end between
data files and m. It is very easy to write short
AWK programs which perform the simple formatting
tasks needed for preparing data for T&X output.
We even might state that we have a tool modeled
after WEAVE, which is used in preparing T)jX itself
and which transforms "raw" input in the form of

program parts and comments into a format which
allows T# to typeset itself and other programs
with TEX typographical standard. In our case, we

use AWK to transform "raw" data into TEX input.
We do not have the full power of database

management systems, but if the data file only
functions as a central repository of the data and
the main final output is printed material, it is
worthwhile to consider AWK as a solution.

Availability of AWK

AWK is part of UNIX in all its varieties, so it is
widely available already.

The Free Software Foundation and its GNU
project have produced a version called GAWK which
is completely free and available on many file repos-
itories on electronic networks. It also has been
ported to many different operating systems, and it
is available for MS-DOS.

The literature needed to handle projects like
the ones described is: TEX related books, which the
author is not going to cite just to be different from
almost any other paper in these proceedings. and
The AWK Programming Language.

Bibliography

Aho, A,, Kernighan, B., and Weinberger, P. The
AWK Programming Language, Addison-Wesley
1988.

Proceedings of m 9 0

