
t e x ~ i c - Design and Imdement ation
A

of a Picture ~ I a ~ h i c s Language
in & la pic

Eiselauer Weg 12
D-7901 Beimerstetten

West Germany

ABSTRACT

texpcpic is a ?]EX implementation of a graphics language similar to Kernighan's troff pre-

processor pic .

Many features of the original p ic are supported, including a variety of graphical objects

(boxes, circles, ellipses, lines, arrows and others), directions of motion, controlling sizes of
objects with variable and appropiate defaults, relative and absolute positioning of single

objects or whole pictures (labels and corners are allowed), and much more.

There are two significant enhancements. Objects adapt to the size of their contents;
that is, a circle may contain a table with mathematical equations, a box may contain the

circle, etc. texpcpic objects and Tji$ or UTEX commands may be combined at will.
The implementation consists of two parts, a set of elaborate w macros and a post-

processor for drawing (in the dvi file), written in C. It should be emphasized that texpic

is fully ort table, i.e., every 'l&X version, every preview and even every (correctly written)

printer driver will work together with texpic.

I. Preface
Some years ago I attended a lecture on text processing. At that time I had just discovered and

was filled with enthusiasm, but unfortunately the lecture dealt mainly with another system: the f rog

typesetting software, widely used under UNIX.
There ensued a friendly competition between the lecturer and me - with the goal being to typeset

things the other one couldn't do. One time he won, another time I made a point, so the race was
rather even.

With introducing pic one day, a powerful, but easy to use language for drawing pictures, imple-

mented as a pre-processor to &off, the tables turned. Because has little to retort, I began to

lose very often. To catch up, I decided to implement something similar in m, not knowing what

frustration (and fun) this would be!

2. Boxes - The Cornerstone of TjjX
Boxes are probably the only objects which are easy to implement in w. This is because also

uses a box concept which offers two possibilities. If we have specified width and height explicitly, we
obtain just a box with these dimensions. Otherwise the smallest box is chosen which fits around its

contents. For the frame of the box we need only horizontal and vertical lines - suitable commands
already exist. Consequently we require the following:

0 Boxes have a minimum size.

0 Between contents and frame there is a certain amount of free space.

0 Boxes adapt to the size of their contents.

Boxes are centered perpendicular to the current direction of movement.

0 Minimum size, free space and the thickness of the lines are locally or globally changeable.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 627

The resulting Tj$ macros are relatively straightforward. Producing a box with texpic, the complete
syntax of the corresponding command is:'

\tpbox [attributes] [parameters] [contents] ;

An attribute such as invis describes a quality and is typically one word, whereas a parameter such
as width 3cm influences the size of an object and consists of several words. Finally, the contents

begin behind the last parameter or attribute, stop at the next semicolon and are often ordinary text.
Subsequent sections will illustrate this.

2.1 "Growing" Boxes with Minimum Size

box \tpbox; a box

As we can see, the box is centered on an imaginary horizontal line.

a box a very long box - \tpbox a box;

\tpbox a very long box;

boxes

stretch \tpbox \vbox{

to the \hbox{boxes)
\hbox{also)

\hbox{stretch)

\hbox{to the)

\hbox{top)

1;

In the next example the current direction of movement is vertical which changes the centering of the
box:

2.2 Local a n d Global Changes
With parameters we can change various sizes of one object:

wide narrow

I narrower

\tpbox width 3cm wide;

\tpbox width lcm narrow;

\tpbox width Ocm height Ocm narrower;

\tpbox height Ocm width Ocm fill Ocm

very narrow;

Parameters which control the size of an object, control only the minimum size, i.e. if the contents don't

fit, the object will still grow. The space between frame and contents is changed through fill. The
thickness of the lines is also adjustable:

thick lines very thick lines no \tpbox thickness 4pt thick lines; \
\tpbox thickness 8pt very thick lines;

"tp" as a prefix for all names relating to tezpic and should avoid name conflicts.

628 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

To achieve global changes we can simply change corresponding variables. As usual, braces control the

\tpbox equal; \tpbox size;

scope:

normal El

all

\tpbox normal ;

\tpboxwd=~pt \tpboxht=Opt \tpboxfill=Opt

\tpbox all; \tpbox boxes; \tpbox have;

\tpbox minimal; \tpbox size;

1

\tpboxud=35pt \tpboxht=20pt
boxes

The first same is the attribute, the second is ordinary text! \tpphantom can be used, if the biggest

box is not the first one:

have

2.3 Sharing A t t r i bu t e s

With the attribute same we can make an object have the same size of the last one, provided that the

contents fit:

\tpboxwd=Oin \tpboxht=Oin

\tpphantom(\tpbox 1234 ; 3 ;
%
\tpbox same 1; \tpbox same 12;

\tpbox same 123; \tpbox same 1234;

With invis we can make an object invisible, i.e. we suppress the frame. This attribute will prove
useful later, when we want to position objects at different places:

1 invisible \tpbox an;
\tpbox invis invisible;

\tpbox box;

equal

\tpbox all boxes have;

\tpbox same the same;

2.4 Boxes A r o u n d O t h e r Objec ts

More complicated examples are possible - boxes are bona fide members of the TEX world:

a. first item \tpbox

\hbox to 3cm(\vbox<

\item(a.) first item

\item(b.) second item

>\hss3

size

\tpbox same size;

size
-

all boxes have

\centerline(

\tpbox centered;

3

the same

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Notice, that \item would use the entire line, therefore \hbox is used to limit line length. Similarly,
\centerline pushes the \tpbox to the middle.

\tpboxwd=Opt \tpboxht=Opt \tpboxfill=lpt

\tpbox{\tpbox{\tpbox{\tpbox{\tpbox(%

\tpboxC\tpbox{\tpbox;>; >;>;I;>; };I;

The last example shows a particularly valuable feature: nesting. Most UTEX macros also work with

iexpcpic boxes. So a box around a tabular or a box inside a tabular can be used. This is very useful
for positioning.

3. Circles - Do they have to be so special?
Now on to the circles which should provide exactly the same features as the boxes above. As we will

see, however, circles are much more complicated than boxes.

3.1 Two D e a d E n d s

To draw circles there are two approaches which will not work, at least not very well or with considerable
restrictions:

1. Drawing in 'I)$ is possible, but this is very slow and there are also limitations regarding the number

of circles, i.e., points, on the same page. See also the preface from the F'ICI'EX Manual.

2. Use of a printer language for drawing is possible with the \special command, though this means

a commitment to one printer and therefore a loss of portability.

The second solution would be sufficient at the moment, but as in the original pic, references to objects
should eventually be implemented. Because there is no way to get the current coordinates on the page
in TEX, we could have transfered this problem to the printer language as well. However, this would

certainly not improve any portability aspects.

3.2 A Post-Processor for Drawing

Looking for other ways to obtain the coordinates of an object we discover the dvi file which is absolutely

device independent. Reading this file (and some tfm files to get the widths of single characters) we are

able to track the current position.

The main point, however, is that we can draw in the dvi files. This is a bit subtle, since we must

pay attention to some pointers. With the use of the \special command and a post-processor written

in C, the same features as for boxes are possible:

a big circle 0 \tpcircle a big circle;

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Directions and Movements - Not quite the same
Changing the current direction of movement in pic is possible at any time - "north", "south", "west"

and "east" are allowed. Besides that, we can change the current point by a movement. Both features

can be implemented in TEX, however, with some restrictions.

4.1 Directions

Because we want to allow arbitrary objects, we require the following points:

0 All four points of the compass are allowed.
0 Macros \tp. . .begin and \tp. . .end enclose the objects of one "row".

0 Inside a "row" all arbitrary objects are possible.

0 Every single object must be surrounded by braces.

In the following examples the default sizes have been decreased a little:

\tplef tend

Directions can be combined with other objects as usual:

\tplef tbegin

{\tpbox I;)

{\tpupbegin

{\tpbox 1;) (\tpbox 2;) (\tpbox 3;)

\tpupend)

<\tpbox 3;)

\tplef t end

\tprightbegin

{From a) {\tpbox box;)

< to a 3 {\tpcircle circle. ;}

\tprightend

Especially for positioning objects these features are very useful.

4.2 Movements

An arbitrary change of the current position is not possible in 'QX, therefore the design of movements

is poor and rather restricted:

0 A single \tpmove changes the reference point for a default value in the current direction.

0 Specifying an optional direction moves only the next object.

0 All default values are changeable locally and globally.

The first example shows the "normal" use of \tpmove, the second moves only one object:

\tpbox two;

\tpmove width 5pt;

\tpbox horizontal;

\tprnove same;

\tpbox movements;

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

second +I \tpbox first ;
\tpmove up <\tpbox second; 3;
\tpbox third;

The \tpmove command in the last example does not change the reference point!

5. Arrows and Corners - Tying objects together
As said before, p i c supports a "link" mechanism:

. . . to 3rd last circle . .
Since the actual position on a page is not available, this feature cannot be implemented in TEX.
Because we are already using a post-processor for drawing circles, it is not very difficult to extend the

C program to store the positions of the objects. The communication is done again with the \special
command of TEX.

5.1 Arrows

To work not only with lines we implement arrows:

arrow t-l \tpbox an;

\tparrow ;

\tpbox arrow;

does not support slanted lines and UTEX does not permit arbitrary slopes. Therefore, the arrow-

head is drawn by the post-processor. There are two new p a r a m e t e r s and one new a t t r i b u t e relating to
the arrowheads:

\tparrow same headheight 0.3in; \tpbox heads ;

wide and

5.2 Links

Links to objects are much better than coordinates for connecting objects with lines or arrows. Because
the original syntax of p i c is not ideal for scanning, I changed the syntax slightly from line from 2nd

\tpbox a double-headed;
\tparrow double;

box to 3rd circle to \tpline

n

\tpbox arrow;

arrow a double-headed

long

from 2.box to 3.circle;:

4 >

\tpcircle; \par \hskip 3cm \tpcircle;

\tpline from 1.circle to 2.circle;

heads

Counting up ults in absolute links. Relative links are constructed by counting backwards: >

\tpbox vide and;

\tparrow headwidth 0.2in; \tpbox long;

\tpcircle; \ ~ a r \hskip 3cm \tpcircle;

\tparrow from 2.circle to 3.circle;

\tparrow from -2.circle to -1.circle;

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

If one link is missing the current position is used:

\tpbox; \par
A l i n k from a

\ t p l i n e from I

t e x t .

5.3 Corners

Links can even refer to eight compass points on the perimeter of an object:

\tpbox; \hskip 2cm \ tpc i r c l e ;

\par \vskip lcm

\noindent \ t p c i r c l e ; \hskip 2cm \tpbox;

\ t p l i n e from -1.box.n t o -2.box.s;

\ t p l i n e from -1.box.ne t o - 2 . b o x . s ~ ;

\ t p l i n e from -1 .c i rc le .n t o -2 . c i r c l e . s ;

\ t p l i n e from -1 .c i rc le .ne t o - 2 . c i r c l e . s ~ ;

As you can see, circles also have "corners". With these features fancy pictures become possible.
However, they require too much code to be shown here:

G Street H Street

4= 1 & = 2
\ 0

Which

is true?
/ 1

4 = 3 & = 4

6. Ellipses - Circles with a catch
Unfortunately, ellipses differ considerably from circles since there is not just one smallest suitable
ellipse around an object:

Because an ellipse has two major axes, it seems reasonable to require a fixed ratio for them:

\tpboxwd=30pt \tpboxht=i5pt

%
\ t p e l l i p s e C\tpbox inv i s ;) ;

\ t p e l l i p s e <\tpbox inv i s width 40pt;);

\ t p e l l i p s e <\tpbox inv i s height 30pt ;) ;

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

If width or height are specified, the shape of the ellipse will change:

\ tpelliwd=30pt \ t pe l l i h t=20p t \ t p e l l i f i l l = O p t

%
\ t p e l l i p s e width 40pt 4:2;

\ t p e l l i p s e width 60pt 6 : 2;

\ t p e l l i p s e height 40pt 3 : 4;

Within each ellipse the ratio of its axes is displayed.

7. Shifted Objects - With and without size
Sometimes it is useful to move whole objects. To do this, there are two new attributes: with and a t .

Unlike a t , from, and t o , with does not permit a link:

\tpbox;

\tpbox with .nw a t -1.box.se;

u
Again with the C post-processor, the implementation is simple: only one change in position has t o be

made. But there is a problem: objects which are to be moved must be set without any size; otherwise,

they will need some place on the page and after being moved this place would be empty! So the user
has to worry about the space.

The "corners" of lines and arrows are abbreviated with 's' for 'start' and 'e' for 'end':

\tpbox i n v i s ;

\ t p l i n e ;

\ t p c i r c l e with . e a t -1 . l i n e . s ;

\ t p c i r c l e with . w a t -1 . l i n e . e ;

Without the with attribute, the center of the desired object is used:

\tpbox;

\ t p c i r c l e a t -1.box;

\ t p e l l i p s e a t -1 .box;

Once again, more elaborated pictures are possible:

terminal

controllei

RAM

CPU

ROM

i
keyboard

controller floppy
controlle:

printer

controllei

""YPY - controlle:

hard disk floppy

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

this is a

man

A friend of mine, a mechanical engineer, supplied the following pictures, which I would never have
thought possible:

BL -
(I-

8. Conclusion

8.1 W h a t has been done

Using texpic simple pictures in the style of pic can be drawn within a TEX document. Graphical

objects have been implemented which may be used with several attributes and positioned in different
ways. pic syntax was modified slightly to accomodate conventions. Furthermore, there are two

significant enhancements:

0 Objects adapt to the size of their contents.

0 The contents may be almost anything.

This results in a very smooth integration of text and line drawings. Through a C program as a post-

processor operating on the dvi file, we achieved a very portable and absolutely device independent

solution. Some points of the original pic were not implemented:

0 pic itself serves as a target language for other pre-processors (grap, chem, etc.) New features in

texpic, however, will most likely have to be constructed within TEX as well.

0 In pic a picture can be scaled to near arbitrary dimensions. I see no way to do this in TEX.

8.2 What can be done

A few more features are probably practical:

0 Generalization of the corners, for example nnw or sssee. This requires only a little bit of mathe-

matics.

Arcs of a circle and splines. This is possible with some mathematics and the C program.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

References to the dimensions of an object, e.g.:

. . . -1.box.ht ...
Local scopes for objects. This requires an extension to the management of object stacks.
Labels for objects or whole pictures, as in:

\tpbox name ellipsoid;

\tpline from e1lipsoid.w ...
Coordinates with addition and subtraction. This is very simple, because we already have the
coordinates in the C program. The only thing to do is to build an interface t o ?]EX, e.g.:

\tpbox with .n at -1.box.s minus (12,15);

Interpolating a point, e.g.:

\tparrow from <1/3,-l.box.n,-2.box.s> ...
There is a syntactical problem: a link must consist of one word.

Projecting object coordinates, e.g.:

\tparrow from (1.b0x.s~-2.ellipse.n) . . .
Printing and positioning text. The ideal would be along the lines of "printf", because this is simple
to implement in C.

8.3 What might be done

I am afraid the following features would be rather difficult to implement:

Grids with automatic scaling. There is a question: what should a good grid look like?

Drawing arbitrary functions. This requires all sorts of mathematical and syntactical support.

Simple graphics in the style of grap, a pre-processor of pic.

Rotation of objects. This would result in substantial changes since then every object must be
drawn by the post-processor.

It is interesting to note that further refinement of features appears t o shift more and more responsibity
out of T@ and on to the post-processor. Is the ideal solution a graphical co-processor to ?]EX?

Bibliography

Adobe Systems Incorporated. Postscript Language - Tutorial and Cookbook. Reading, Mass.: Addi-
son-Wesley, 1985.

Adobe Systems Incorporated. Postscript Language - Reference Manual. Reading, Mass.: Addison-
Wesley, 1985.

Aho, Alfred V., Brian W. Kernighan, and Peter J . Weinberger. The AWK Programming Language.

Reading, Mass.: Addison-Wesley, 1988.

Appelt , Wolfgang. l)$f fur Fortgeschrittene . Bonn: Addison-Wesley, 1988.

Bentley, J.L. and Brian W. Kernighan. "grap - A Language for Typesetting Graphs." CACM. Au-

gust 1986.

Elan Computer Group. "pic - Reference Manual".

Foley, J.D. and A. Van Dam. Fundamentals of Interactive Computer Graphics. Reading, Mass.: Addi-
son-Wesley, 1982.

Hearn, D. and M.P. Baker. Computer Graphics. Reading, Mass.: Addison-Wesley, 1986.

Jordan, B.W., W.J. Lennon and B.D. Holm. "An Improved Algorithm for the Generation of Nonpa-
rametric Curves." IEEE Transactions on Computers. December 1973.

Kernighan, Brian W. "pic - A Language for Typesetting Graphics." Software - Practice and Expe-

rience. January 1982.

Knuth, Donald E. The W b o o k . Reading, Mass.: Addison-Wesley, 1986.

Knuth, Donald E. 7&f: The Program. Reading, Mass.: Addison-Wesley, 1986.

636 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Kopka, Helmut. BTEX - Eine Einfuhrung. Bonn: Addison-Wesley, 1988.

Lamport, Leslie. BTEX - User's Guide & Reference Manual. Reading, Mass.: Addison-Wesley, 1986.

Schreiner, Axel T. "Lecture on Text Processing." Given at the University of Ulm, Dept. of Compu-
ter Science, 1987188.

Schwarz, Norbert. Einfihrung in QX. Bonn: Addison-Wesley, 1988.

Wichura, Michael J . The P m Manual. Providence, Rhode Island: T@ Users Group, 1986.

Wonneberger, Reinhard. Kompaktfihrer BTEX . Bonn: Addison-Wesley, 1987.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

AMS-lQX82 Users Course and Users Group Meeting
Stanford University, July 11-15, 1983

Terrnan Engineering Center Auditorium

