
TUGboat, Volume 10 (1989), No. 2

Another Dingbat Idea
b 1 take pen in hand to describe the design and

coding of a simple dingbat. I hope that this will

inspire all you would-be METAFONTers to try your

hands, heads and keyboards at creating entries for the

Dingbat Competition, announced in the last issue of

TUGboat.

I started with a sketch of a left hand holding a quill
pen (left, because I had to draw with my right) and

marked what I figured would be the necessary points

to describe the figure with METAFONT. Of necessity,

the figure is simplistic, somewhat cartoonish; remem-

ber that all the details that you lovingly describe on

your initial large sketch (mine was approximately 180

points high and 480 points wide) must survive down

to 10 points!

The next step was to lay out a grid and orient

the figure on it relative to the baseline and width.

Since I do not want any of the character to lie under

the line of text next to which it occurs, I oriented

the bottom of the hand and the cuff exactly on the

baseline. However, I did add a wee bit of descender

for the reverse video case. And there's no need for

any tricky machinations in terms of part of the figure

lying to the left of the line x=O or to the right of

x=charwidth; the apparent width of the character

is the real width we want T@ to know about.

My next step was to divide the total width and
height into some reasonable number of units. One

caveat here: don't make the grid too fine, or you'll

tend to overdo the number of points you select as
key points and over-analyze the character. Think

of the design process as a collaborative effort with

METRFONT, rather than as an attempt to control it.

As Don Knuth has said, some of the most fruitful
parts of design can occur when you let METAFONT

"have its own head".

Now, I selected my key points. I cannot stress too

much the need to be a little freewheeling from now

on. The fact that I believed a point was key at this

early stage of the design process ought not to force me

to keep that point in later on. In a bit, you'll see the

code for the figure, where I have left the numbering

of the points as I originally did them to illustrate

this. You'll notice some gaps between 230 and 241.

FIGURE 1 : Proofmode drawing of character.

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2 167

My original sketch involved a much fancier feather
on the quill, which just didn't work at a design size of

10 points. I opted for a plainer feather, and removed a

number of points. Figure 1 shows a proof mode of the

characters as finally produced, with the numbering

of the points as shown in the code.

I was now ready to start writing stuff that resembles

METAFONT code; and this is it:

% define points for hand
xi=10.75/16w; y1=3/8h;

x2=8.5/16w; y2=2.35/8h;

x3=x9=10/16w;

y3=1.75/8h; y9=0.35/8h;

x4=11.75/16w; y4=2/8h;

x5=12.65/16~; y5=2/8h;

x6=12.95/16w; y6=2.25/8h;

x7=12.125/16w; y7=1/8h;

x8=11/16w; y8=0.65/8h;

x10=8.125/16~; yi0=0.25/8h;

x20=9.25/16w; y20=2.95/8h;

x13=8.5/16w; y13=4.35/8h;

x14=11/16w; y14=4/8h;

% two points on the wrist that touch
% the cuff, and the cuff
xIi=x12=~15=~18=5.35/16~;

yll=0.5/8h; y12=3/8h;

yi5=0; yi8=3.25/8h;

x16=x17=3/16w; y16=yi5; y17=y18;

% define the button
xl9=x23=good.x 4.25/16w;

yl9=good.y 0.25/8h;

y23=yi9+0.5/8h;

x19=1/2 [x21 ,x22] ;

x21=x22-(y23-y19);

y21=y22=1/2 Cy19 ,y231 ;

x25=15.5/16w; y25=0;

x26=14.5/16w; y26=0.25/8h;

penpos27(quillWidth150);

penpos28(quillWidth,50);

penpos29(quillWidth,50);

penpos4l(quillWidth,50);

z28=z4; x29=x20;

x27=13.5/16w;

z29=whatever [z25,z281 ;

z27=whatever CzX, 2281 ;

x30=0.5/16w; y30=h;

x39=4/16w; y39=3.75/8h;

x4l=7. 75/I6w; z41=whatever [z29,z27] ;

You'll guess that my grid was 8 units high and 16

units wide. You'll note, too, that the leftmost point

is just a bit greater than 0, and the right a bit less

than w; this will account for sidebearings at either

side of the character. Most all these points are stated

in terms of the grid, rather than in terms of relation

to one another; but remember to use such relation-

ships whenever they are pertinent to the design. For

example, the last two lines above define where x41

and y41 lie; but what is important is not the precise

location of y41 on the grid, but the fact that the

point lies somewhere on the line between 229 and

227. Needless to say, don't be shy about articulating
the precise nature of these relationships in comments

in your code.

Once I had established the location of all the key

points on the character, I was reminded of one of my

favorite Monty Python sketches: a Shakespearean

actor elucidates on his craft thus: "It's not just a

question of the number of words. You have to get
them all in the right order." This is pretty much the

next step in our design process: I have established

a reasonable number of points, and now have to get

them all in the right order, by writing the code to

connect them in pleasing ways. This is the code I

came up with:

% draw the hand
pickup pencircle scaled penwidth;

draw zl---z20<left)..z2..tensionl.6..z3..z4

tz4Cleft). .tension I .6. .zi;

draw z12..tension 1.6..~13..

tension 1.8. .z14..

tension 1.6..~6..~5..<left)z4;

draw z4<right)..z7..~8..tension 1.3..z9..

tension 1.4..ziO..tension 1.4..<up)zil;

draw z5<(I,-I))..<(-I,I))z7;

draw z8<down)..<up)z9;

% draw the cuff
draw 218--217--216--215--cycle;

% draw the button
draw z19..~21..~23..~22..cycle;

% draw the quill
filldraw z27r--225

&z25<z28r-z27r>

..tension 2..((-1,-1))z26

tz26..<~281-z271)z271

tz271--cycle;

penstroke z29e--z27e;

fill z29r---z4ir..z30

&z30<z29-z30)..z39..tensionl.4..z291

tz291--cycle;

Niceties like amount of tension between points or

direction desired entering or leaving points are (at

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2

least in my experience) only rarely coded correctly

first time out. This is where you and METAFONT get

to work closely together. Draft some code, see what

METAFONT does with it, and then tune on the basis

of what you see. Often, you'll be pleasantly surprised

with improvements that sneak into the design as you

work.

But, of course, the code above is not yet ready for

a collaborative effort with METAFONT. We have to

attend to some housekeeping first. If you start the

lines above with

and conclude them with endchar; and preface them

with some code that specifies font size, width, pens

and so on:

%% Pen and character box info.
%% Set mode for device to print on
\mode=localfont;

mode-setup ;

f ont-size 60pt#;

em#:=60pt#; cap#:=.95em#;

desc#:=.025em#; w#:=16/7em#;

overshoot#:=.025em#;

penWidth#:=em#/60; quillWidth#:=em#/20;

define-pixels(em,cap,desc,w,overshoot);

def he-blacker-pixels (penwidth) ;

define-blacker-pixels(quil1Width);

and since you'll probably at some point want to see a

proofmode character printed out with all the points

numbered, include the lines:

However, with the mode set above, you won't get

a proofmode character, but a character suitable for

printing on your local device, namely:

So far, so good. But, I knew I wanted a right hand

version as well (in fact, all I really wanted was the

right hand version!) I did not even briefly consider

recalculating the positions of all the points to flip the

character. I could have simply copied all the code

for the character above, given it a new code number

and concluded it with a rotatedabout; but it seemed

much tidier to make the code for the dingbat proper

a macro. So, start the lines of code describing the

dingbat not with beginchar but with

def Handwithquill=

and conclude them, not with an endchar but with

enddef

The code for the character with code " A shown

above is then condensed to

beginchar("A",w#,cap#,desc#);

HandWithQuill;

endchar ;

and a mirror image version (the sought-after right

hand dingbat) is coded as

beginchar("~",w#,cap#,desc#);

HandWithQuill ;

currentpicture:=currentpicture

ref lectedabout ((0,O) , (0, h))
shifted (w , 0) ;

endchar ;

Since it is so easy to manipulate the currentpic-

ture, we might as well produce a reverse video of the

original left hand dingbat, with this code:

beginchar("C",w#,cap#,desc#);

HandWithQuill;

cullit ;

picture savecurrent ;

savecurrent=currentpicture;

clearit;

% blacken the whole character box
fill (0,-desc)--(w,-desc)--

(w, cap+overshoot)--(O, cap+overshoot)

--cycle;

currentpicture:=

currentpicture-savecurrent;

endchar ;

(Note well the cullit and clearit!) and produce

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2

and code a right-handed version like so:

beginchar("DU ,w#, cap#,desc#) ;

Handwithquill;

% Flip the image first

currentpicture:=currentpicture

reflectedabout ((0,0), (0,h))

shifted (w,O);

cullit ;

% Save the flipped image

picture savecurrent;

savecurrent=currentpicture;

clearit;

% Blacken the character box
fill (0,-desc)--(w,-desc)--

endchar ;

for the result

I hope that this description of the design and cod-

ing of a simple dingbat will encourage the reader to

attempt one, or better yet, several. While the de-

sign of a complete font with METAFONT is a difficult

and sometimes tedious process, the creation of a sim-

ple dingbat and some handy variations on it is not.

It provides an enjoyable introduction to the use of
METRFONT, and might just produce a dingbat that

the reader can use to enhance and to personalize

T a e d documents. A&

ERRATUM: "A Handy Little Font", Font Forum, TUGboat, Volume 10, No. 1

I regret that, inadvertently, I did something un-

derhanded in my last Font Forum - to wit, I neglected

to make the left and right braces visible in the code.

My apologies to all who heeded the largish admo-
nition at the end to "TRY IT", who were rewarded

only with surly messages from METAFONT.

The macro for the whole handpointing character

should read like this:

%Hand pointing right

def handpointing=

% define points for thumb and cuff
xi=x3=1/2 [OD 1/15w] ;

x2=~5=~4=x23=4/16w;

yi=y2=iO/l5 [-desc,cap] ;

y3=y4=2/15[-desc, cap1 ;

y5=6/7 Cy4, y21; y23=i/7 Cy4, y21;

x6=9.75/16w; y6=y2;

x7=11.25/16w; y7=4/5 Cy23, y51;

x8=8.75/16w; y8=1/4[y7, y61;

xi7=14.5/16w;

y17=9.25/15 [-desc ,cap] ;

% find a point at a certain height on
% the curve from 26 to 27
path dummycurve; path dummyline;

x.dummy=l/2[x8,x7]; y.dummy=yi7;

x9=7/16w; y9=y8;

x10=6/16w; yiO=2/5Cy23,y51;

% find another point on the
% curve from 26 to 27
x.dummy2=x5;

y.dummy2=yi6;

x.dummy3:=1/2[~8,~71 ;

y.dummy3=y.dummy2;

dummyLine:=z.dummy3--2.dummy2;

z12=dummyCurve intersectionpoint dummyline;

% define points for curled fingers
x15=~14=~19=~22=1/3 [x18,x17] ;

x13=x20=x21=x12;

yi5=yi6;

yi3=y14=y15-(y17-y16);

y2O=y19=y13-(yi7-yi6);

y21=y22=y2O-(yi7-y16);

% pick up pen and draw whole image
pickup pencircle scaled thinline;

draw zi--22--24--23--cycle;

draw z5((iD1))..tension 1.5..z6

%z6~z5-~2)...z7..tension 1.4..z8

&z8(down)..tension3..z9

&zg..tension 1.8..(left)zl0;

draw z18--zi7Cright~..zI6--~7;

draw z7--zi5(right)..zl4--zi3(left)..zl2;

dummyCurve:=z6Cz5-z2)..~7..tensionI.4..z8; draw zl4Crightl..zl9--z20Cleft)..z13;

dummyLine:=z.dummy--217; draw z19(right)..z22--z21<left)..z20;

zl8=dummyCurve intersectionpoint dummyline; draw z21((-1,-i))..tensioni.5..223;

x16=x17; yi6=y7; enddef ;

This document originally printed at 300 dpi.

