
TUGboat, Volume 10 (1989), No. 2

T h e autodoc-Option*

B Hamilton Kelly

Abst rac t

This style option is used as an adjunct to the doc style option, and facilitates the

documentation of style and other files, by making it unnecessary to have a separate

driver file for each file being documented.

Contents

Introduction

Description of t h e Macros

2.1 Reading in additional style options .
2.1.1 Recognizing parts of a file specification

2.2 Scanning the file names in \docnames

Processing t h e specified files

3.1 Processing the file itself .
3.2 Handling toc files, etc .

Reading in t h e doc Style Opt ion

Introduction

Frank Mittelbach's [I] excellent doc style option has one slight drawback: it is nec-

essary to write a small MQjX "driver" file for each file being documented. The

\documentstyle used for this will always be a r t i c l e , and the last style option on the

command will always be doc. However, because the documentation of a style option

file should obviously include examples of the use of the commands which it provides,

it is necessary also to include as a further option the name of the style option being

documented, in order that its commands may be available as the documentation is

generated.

The style option presented here removes the necessity for writing a separate driver

file; it works by prompting the user for the name(s) of the file(s) being documented,

then (optionally) reading in those files and the doc style file, so that the driver file,

which may be common to all style options, just has to issue a single command to cause

all the referenced style files to be processed. As each file is processed, this style file

opens and closes various auxiliary files1 appropriate to the file being documented; the

names of these files are taken from \docname, which gets redefined as necessary, and,

in fact, these macros also redefine \jobname as the documenting process progresses.

Unfortunately, autodoc is unable to do anything about the fact that the .dvi and log

files will have already been opened with the name of the driver file. For this it will be

necessary to use the operating system's facilities for renaming files.

This is the only macro that the user needs to know about; the driver file for use with

the autodoc option should look something like this:

\documentstyle [autodoc] {article)

* This is version v2.lf dated 30-Apr-1989

' aux, idx, ind, toc, etc.

TUGboat, Volume 10 (1989), No. 2

All the work and interaction with the user is performed when the autodoc option is

first read in. At present, it firstly asks the user the question:

What f i l e (s) are you documenting?

to which the user should respond with the name(s) of the file(s) to be documented.

If there is more than one such file, the names should be separated by commas, not

spaces.

If any of the files are . s t y files, which are not doc. s t y or autodoc. s ty , then the user

is further prompted for each file to specify whether the file shall be read as an option,

with:

Does the description of Cfilename) use i t s macros?

The user should answer yes2 or no. If an affirmative answer is given, the user is

further prompted:

Can reading of (filename) be deferred u n t i l it i s processed?

It will be found that most style option files don't actually use any commands which

may only be executed in the preamble, so stack save space can be conserved by post-

poning the reading of the file until just before it is processed. However, style options

which do utilize such commands must be read now, before doc. s t y is input.

For producing a summary of all style files, etc., available at a site, the user may want

to typeset just the descriptions of the files. Therefore, he is prompted:

Should (filename) be f u l l y documented?

A negative response will lead to that file being processed by doc with \OnlyDescription

in force.

Once a file has been fully cross-referenced, it's pointless to keep on processing it with

\Enablecrossrefs in effect, so the user is given the option of suppressing this for

each file; the user is prompted with:

Should (filename) be cross referenced?

Having decided what files are to be documented, and how, the user is given the

option of reading in additional style options before the doc option is read; this permits

inclusion of such options as german. sty. The user prompt is:

Give the names of any fur ther options (WITHOUT . s ty) :

If the user doesn't wish to use any such additional options, a response of just pressing

the RETURN key will terminate user interaction; otherwise, the specified options will

all be read.

After user interaction is completed, the specified files will be read and their docu-

mentation produced. Each file will generate its own auxiliary files (. idx, .toc, etc.),

including an . aux file; it will be necessary to make the customary two or three passes

through the files to complete all cross-references, indices, etc. The recommended

sequence is:

1. LATEX, to generate the first .idx and . toc files.

2. makeindex, to generate an . ind file (which will have the wrong page numbers,

since the . toc file has yet to be read).

In fact, any response starting with the letter 'Y' or 'y' is interpreted as 'yes, and

anything else as 'no.'

TUGboat, Volume 10 (1989), No. 2

\docnames

\style@ption

\docapt ion

\cross@ption

\if @yes

LATEX, to regenerate the auxiliary files, this time with correct page references in

them.

makeindex, to generate a correct . ind file.

LATEX, which hopefully will have correct page numbers throughout.

2 Description of the Macros

As with all style options, we commence by identifying ourselves on the terminal and

in the log file:

\typeout{Style-Option: 'autodoc' \fileversion\space\space

\f iledate\space (BHK) 1

This style file is to be used (in conjunction with the doc style option) for document-

ing style option files (including itself), (main) style files, and even any other I4W
document.

Our first action, therefore, is to prompt the user for the name(s) of the f?le(s) being

documented.

\typein[\docnamesl(What style file(s) are you documenting?)

Let's allow the user the luxury of not having to remember to type in the correct case.. .

2.1 Reading in additional style options

When we come to document each of the files in \docnames, style option files need

to be treated specially, because the description of such a file is likely to want to give

examples of the facilities which it defines, so we ask the user if it needs to be read as

an option before the documentation pass through the file. It's more convenient for the

user to answer all such questions at the beginning, so we build, in this macro, a token

list which contains the letters 'y' or 'n', in order corresponding with the file names,

with 'y' indicating that the file does need to be read. Therefore, this macro needs to

be initialized to \@empty.

\let\style@ption=\@empty

This macro similarly records whether the file is being fully documented, or whether

the \OnlyDescription command should be invoked.

And this one records whether cross-referencing shall be enabled during the processing

of the document.

This is a pseudo-if, which takes one argument, a command into which a user response

has been read by \typein. It behaves like \ i f t r u e only if the response commences

with the letter 'y', in either lower- or upper-case.

Our first action, therefore, is to force all the characters of the response to be lower-case.

Now we strip the response down to just its first character, so that we can make the

comparison correctly.

TUGboat, Volume 10 (1989), No. 2

We finish up by making the comparison,

\if #ly}

\firstch@r These macros yield, respectively, the first (or only) character, and the remaining

\otherchars characters, in the token string provided as argument. This list has to be terminated

by the token \p@ramend.

2.1.1 Recognizing parts of a file specification

As mentioned above, it is necessary to be able to recognize files whose file type is given

as ' . sty'; aut odoc adopts a very simplistic approach to this, attempting to recognize

the characters which follow the first period in the \docname, so cannot handle, for

example, complicated VAX/VMS directory specifications. At the expense of making

this style file operating system specific, it would be possible to extend this code to

be able to strip off parts of the file specification which precede the file name itself,

but it is recommended instead that all the files being documented should either be in

the current directory or in the directory where T)$ expects to find standard inputs

(TeXinputs :), so that an explicit directory or path does not need to be given.

\filetype This macro yields (in \ext) the characters (if any) which follow the first period in its

argument; the latter has to be terminated by \p@ramend.

\def \f iletype#l . #2\p@ramend{\def \ext{#2))

\filenhe This macro yields whatever precedes the first period in its argument, which again is

terminated by the token \p@ramend.

\def \f ilenhe #l . #2\p@ramend{#l)

\@if extsty This macro firstly tests to see if its argument includes the characters ' .sty' at its end.

If so, it interacts with the user to determine whether this is a style option which needs

to be read (to establish its macros) before it may be documented. If this is the case,

the macro sets \@tempswatrue.

We start by assuming that the given argument doesn't have any file extension. The

macro \ext will be set to the string of characters which follow the f ist period in

\docname, and if there is no such period, to 'tex'.

\def \@if extsty#l{%

\expandafter\f iletype #l . tex\p@ramend
If there is an explicit file extension, then \ext will not be 'tex'. This next bit gets

any such actual extension into \ext.

\ifx\ext\ext@is@tex

\else

\expand& ter\f iletype #l\p@ramend

\f i

We can now set \@tempswatrue if those last three characters are 'sty'.

If the file type is ' .s ty7, we ask the user whether the file should be read as a style

option. This has to be done by a separate macro, because the pseudo-if \ifQyes will
not be correctly matched with its \f i if the file type isn't .sty.

278 TUGboat, Volume 10 (1989), No. 2

\testifaption This macro is invoked if \fulldocname has been found to end in . s ty . It asks the

user whether it needs to be read as a style option.

\def \testif Option{%

\typein [\isBoption] {Does the description of \fulldocname\space

use its macros?)

Now we use \ i fQyes to determine whether \isQoption was an affirmative response.

If a negative response was given, we cancel \@tempswatrue.

\ifayes \is@option \else

\@tempswaf alse

\f i3

\extcOis@tex These macros expand to the strings ' tex' and 'sty', respectively, and are used in

\ext@is@sty recognizing these strings if they form part of the current argument of \@if extsty.

\def\extQisBtex{tex)

\def\ext@isQsty<sty)

\SaveAnsver This macro takes two arguments; the first is whatever the user has typed in as a

response to a \ typein command, whilst the second gives the name of a command

which is to have the letter 'y' or 'n' appended, depending upon whether the first

argument is an affirmative answer.

\def \SaveAnswer#1#2{%

We use \ i fQyes to extract from the response its first character, converted to lower-

case, and to compare this with 'y'.

\ifayes #1

If this response is affirmative, we append a 'y' to the second argument.

\edef #2{#2y)%

Alternatively, we append an 'n'.

\Checkaption Again, this pseudo-if test has to be placed inside a separate macro if is not to

become confused when skipping conditional text.

\def\CheckBption{%

\typein [\is@option] {Can reading of \fulldocname\space be deferred

until it is processed? 3
\ifayes \isQoption

\else

\input \fulldocname\relax

\f i)

2.2 Scanning the file names in \docnames

\thisdoc Now we are ready to cycle through all the file names in \docnames, during which

\thedoc we shall establish whether the file name ends in . s ty , and if so, whether the user

wants it to be read as a style option. However, we know that the files doc.sty and

autodoc. s t y should not be read in as options, so we establish here two macros which

expand to those names, so that they may be used in \ i f x tests.

\def\thisdoc{autodoc.sty}

\def\thedoc{doc.sty)

\fulldocname At last we start to cycle through the filenames and get the user's responses.

TUGboat, Volume 10 (1989), No. 2

We assume initially that the file shouldn't be read as an option.. .
\@tempswaf alse

Now we don't want to read this file again (otherwise we'll recurse and annoy the user

by repeatedly asking for the name of the option to be documented)! Therefore we

avoid that here. . .

Nor do we want to read the doc style option yet, because we're going to read it in at

the end of this file.

Otherwise, we use \@i fex t s ty to establish whether it is a file with s f i . s ty , and,

if so, whether it should be read as an option.

At this point, we know whether the file should be read in later as a style option: we

put the appropriate character into \s tyleQption.

\if@tempsua

\Checkapt ion

\else

\def \is@optionCn)

\fi

\SaveAnswer{\is@option}{\style@ption}

Now we ask whether the file is to be fully documented.

\typein [\is@fulll {Should \fulldocname\space

be fully documented? 1%
\SaveAnsuer{\is@full}{\doc@ption)

For our final question regarding each file being documented, we ask if full cross-

referencing is required. Processing is much faster without this.

\typein [\is@cross] {Should \fulldocname\space

be cross referenced? 1%
\SaveAns~er{\is@cross)(\cross@ption)

And that completes the preliminary processing of the names in \docnames.

1

\options The user is asked one final question before the doc option is read in: whether additional
options are required.

\typein[\options] {Give the names of any further

options (WITHOUT .sty) :)%

If a non-null reply is given, each such option is read in. . .
\if \options \endlinechar

\else

\@f or\f ulldocname : =\options\do~\input\fulldocname . sty\relax}%
Otherwise, there's nothing more to be done.

280 TUGboat, Volume 10 (1989), No. 2

3 Processing the specified files

\processdocs This is the macro which, when invoked as the body of the document, will cause all the

files to be input and documented.

We commence by cycling through each of the files to be processed. Any preliminary

material (for instance, a description of the files being described) will use a setting of

zero for T@Cs \count1 register. Before we do this, however, we must remember the

. toc file for the complete document, so that entries may be directed to it at the end

of processing each document.

\def \processdocs{\count 1=0

\let\SavedTOC=\tf Btoc

\Bfor\fulldocname:=\docnames\do{~

\docname We then parse the filename to extract just the name into \docname, and generate an

\Docname uppercase version of it for use in page numbering.

At this point, we start a new group for each file being documented, in order that any

changes to macros defined in doc remain local to each processed file. We also ensure

that any writes to a . toc file are discarded unless the individual document has opened

one.

Now we look at the first character of \style@pt ion to determine whether the file shall

be read as a style option.. .

\expandafter\expandaf ter\expandaf ter \if

\expandafter\firstchBr \style@ption\p@ramend y

If it is to be read, we suspend doc's ignorance of % whilst it is read, and treat O as a

letter, so that we are reproducing the conditions that pertain when style options are

ordinarily read.

Throw away that first character of \styleQption, which will therefore now commence

with the user's response relating to the next file to be processed.

\xdef \styleBption{\expandafter \otherchars \styleBption\pBramend)%

3.1 Processing the file itself

We start by changing the \jobname appropriately, in order that the correct .toc,

. ind, etc., files can be read. We also ensure that the next printed page will be recto,

since it's nicer to start a new document on a right-hand page.

\edef\jobname~\docname)\clearpage

\if odd\countO\else

\vspace*{\fill)%

\centerline{\small This page is left intentionally blank)%

\vspace*{\f ill)\clearpage

\fi

Pages are numbered individually within each separate document, so reset the counter

and redefine \Ooddf oot to include the document name in the page numbers. We also

TUGboat, Volume 10 (1989), No. 2 281

use QX's \count1 register to give us different page numbers, to facilitate the use of

D V I processing programs. Note that we do not do this through \thepage, because

that would also affect the table of contents and index entries.

\setcounter(page)-[1)\global\advance\countIbyl\relax

\def\cOoddfooti\hfil\Docname--\thepage\hfil)%

\let\~evenfoot=\@oddfoot

At this point, we perform most of the actions that would be undertaken by \include;

the latter cannot be used for this task, because it is only capable of reading files with

type .%ex.

A command is put into the main document's auxiliary file to read the . aux file for the

document being processed; when the main . aux file is being read, we prevent entries

being written to the main document's table of contents, etc, which actually relate to

the tables of the included file(s).

\if (Pf ilesu

\immediate\urite\BmainauxC\string\let\string\tf@toc

=\string\relax)%

\immediate\write\@mainaux(\string\@input{\docname. aux))%

\immediate\urite\Bmainauxi\string\let\string\tf8toc=

\string\SavedTOC)%

We arrange for output to an auxiliary file to go to the appropriate file:

\irnmediate\openout\@partaux \docname. aux

\let\@auxout=\@partaux

We need to start that off tidily. . .
\immediate\write\@partauxC\relax)\fi

Now we examine \crossQption to decide whether cross-referencing shall be enabled.. .

\expandafter\expandafter\expandafter

\if \expandafter \firstchar \cross@ption \paramend y

\Enablecrossrefs

\else

\Disablecrossrefs

\fi

\xdef \cross@ption{\expandaf ter\otherch~rs\cross~ption\p@ramend~%

And \docQption determines whether the entire document is to be processed, or

whether \OnlyDescription is required.

\expandafter\expandaf ter\expandaf ter

\if \expandafter \firstchar \docaption \paramend y

\else

\OnlyDescription

\fi

\xdef \doc@ption{\expandafter\otherch@rs\doc~tion\p@ramend)%

We activate the recording of modification records and of an index. Now we are in

a position to read the next file being documented. Afterwards, we revert to single-

column setting again (in case an index has been printed).

\RecordChanges

\HakeIndex

\input~\fulldocname)\clearpage \onecolumn

By reverting to the original auxiliary file and reading back that just written, we

complete the toc entries, etc. When performing this read, we do it under the same

conditions as for an \end{document), which redefines a number of commands; how-

ever, we're already inside a group that is about to be ended, so there's no need to

start another.

\let\@auxout=\@mainaux

TUGboat, Volume 10 (1989), No. 2

After this, we'd better close any .toc files, etc. We close the group first, because these

changes should apply "globally" to each file being documented.

We also close any glossary and index files that may be open, because 7@X can only

manage a limited number of simultaneously open files.

\ifOfilesw \immediate\closeout\Oglossaryfile
\immediate\closeout\aindexf ile \f i

Now p w ' s \makeindex and doc's \Recordchanges commands both allocate the

files' "handles" through the \newwrite command, and it would be wasteful to keep

on allocating new files through this mechanism. So we redefine \makeindex and

\Recordchanges to open new files, appropriate to the file being processed, but re-

using the same "handle" (providing we are actually generating auxiliary files).

We are now able to write (to the driver file's . aux file, and thence to its .toc file) an

entry for the complete document's table of contents. We use I 4 w ' s \addtocontents

for this, but being impatient sorts, we need the \write to take place \immediately

(actually, we're not really impatient; without this the contents for the last document

processed would be stuck in a "whatsit", and never written to the file, because \output

will not be called again). Therefore, we make local redeclarations for \write.

Finally, before reading any further files, we'd better reset the section counters, and

cancel the effect of any \appendix command. We zero the footnote counter as well,

in case a subsequent \title has a \thanks on it.

And that's all there is to it!!!! As our parting shot, we ensure that any \Qwritef ile

commands that may be read from the .aux files will be directed to the correct toc

file.

\let\tf Otoc=\SavedTOC
)% end of the \do

3

3.2 Handling toc files, etc

\@closetoc We need to be able to close toc files, etc., for each file being documented. Files are

only closed if they exist, and have been used for the current document!

TUGboat, Volume 10 (1989), No. 2 283

Since it is not possible to cancel the effect of the \newwrite which allocated the toc

file, we merely make Urn's internal reference to the file be \relax.

\extensions Here is the list of possible file extensions used for table of contents files, etc.

\@writefile Because toc files, etc., are allocated by \newwrite, which defines the "name" globally,

we need a modified \Qwritef i l e that suppresses output if the "name" has been

"undefined" (by letting it be \relax). This can happen

if no file has ever been opened; or

0 if the file has been closed, and not; re-opened.

\savedtitle When documenting a number of files, it's pleasant to be able to put a table of contents

before all the documented files, listing the titles of the files documented. Therefore,

we need to save each document's title until after it has been processed. It is saved in

this macro, which is here given a default definition.

\def\savedtitle{\hbox{}3

\@maketitle We give it a value when \ h a k e t i t l e is called3, so we save here the original definition
\orig@maketitle of that macro, and define a new one which makes the necessary save operation inside

a group: when doing that, we want to discard any \thanks that might be in the user's

\ t i t l e command.

\let\orig@maketitle=\@maketitle

\def\@maketitle~{\def\protect{\noexpand\protect\noexpand)%

\let\thanks=\@gobble

\xdef \savedtitle{\@title))%

\orig@maket itle)

\LaterMakeIndex Here are the redefinitions for \makeindex and \RecordChanges. They are similar to
\LaterRecordChanges the ordinary \makeindex, but re-use the same file "handle" (providing we are actually

generating auxiliary files). Note that we have to make the appropriate definitions for

\index and glossary

\def\LaterMakeIndex{\if@filesw

\immediate\openout\@indexfile=\docname.idx\relax

\def \index{\@bsphack\begingroup

\def\protect####1{\string####l\space~\@sanitize

\Burindex\Bindexfile)\typeout

{Writing index file \docname.idx)%

\f i3%

\def \LaterRecordChanges{\if @f ilesw

\immediate\openout\@glossaryfile=\docname.glo\relax

\def \glossary~\@bsphack\begingroup\@sanitize

\@wrindex\@glossaryf ile)\typeout

{Writing glossary file \docname.glo)%

\f il%

It would have been cleaner to have redefined \maketitle to have done the work,

but that gets redefined in doc, which we haven't yet read!

TUGboat, Volume 10 (1989), No. 2

4 Reading in the doc Style Option

Finally, as our parting shot, we read in the doc style option, which will set up ev-

erything for creating the documentation. Before we do so, however, we "remember"

the \makeindex command (because ordinarily that may be issued only in the pream-

ble), and define \DocstylePamus to do nothing; this will prevent the doc style from

invoking \makeindex unnecessarily for the root file.

We now read in doc. sty; that will leave the % character ignorable, so we'll set it back

to it's usual state before tidying up this file, which ends, (you'll have to take my word

for it!) with a call of \MakePercentIgnore so that documentation can proceed in the

usual way.

\inputCdoc. sty)

\MakePercentComment

References

[I] F. MITTELBACH The doc-Option. (see page 245 of this issue of TUGboat.).

Index

The italic numbers denote the pages where the corresponding entry is described, num-

bers underlined point to the definition, all others indicate the places where it is used.

Symbols
. \@closetoc - 282

\@ifextsty 277
. \@maketitle - 283

\@writefile 283

F
\f iledate 276

\filen@me - 277
\f iletype - 277

\fileversion 276

\f irstchQr - 277
\fulldocname - 278

o B Hamilton Kelly
Royal Military College of Science

Shrivenham

SWINDON

SN6 8LA
United Kingdom
Janet: tex@uk.ac.cranfield.rmcs

