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Abstract—Parallel coverage-guided greybox fuzzing is the most
common setup for vulnerability discovery at scale. However, so
far it has received little attention from the research community
compared to single-mode fuzzing, leaving open several problems
particularly in its task allocation strategies. Current approaches
focus on managing micro tasks, at the seed input level, and
their task division algorithms are either ad-hoc or static. In
this paper, we leverage research on graph partitioning and
search algorithms to propose a systematic and dynamic task
allocation solution that works at the macro-task level. First,
we design an attributed graph to capture both the program
structures (e.g., program call graph) and fuzzing information
(e.g., branch hit counts, bug discovery probability). Second,
our graph partitioning algorithm divides the global program
search space into sub-search-spaces. Finally our search algorithm
prioritizes these sub-search-spaces (i.e., tasks) and explores them
to maximize code coverage and number of bugs found. The results
are collected to update the graph and guide further iterations of
partitioning and exploration. We implemented a prototype tool
called AFLTeam. In our preliminary experiments on well-tested
benchmarks, AFLTeam achieved higher code coverage (up to
16.4% branch coverage improvement) compared to the default
parallel mode of AFL and discovered 2 zero-day bugs in FFmpeg
and JasPer toolkits.

Index Terms—Vulnerability Discovery, Parallel Fuzzing

I. INTRODUCTION

Coverage-based Greybox Fuzzing (CGF) is a well-
established automated testing technique. Given a set of sample
inputs (a.k.a seed corpus), CGF slightly mutates them, feeds
newly generated inputs to an instrumented version of the
program under test, and leverages the code coverage feedback
(e.g., branch coverage) from the instrumented program to
evolutionarily enlarge the seed corpus and discover bugs. This
technique is implemented in popular fuzzers like American
Fuzzy Lop (AFL) [1] and libFuzzer [2], which are effective in
bug finding [3]–[6]. Different approaches have been proposed
to improve the effectiveness and efficiency of CGF [7]–[18]
and expand its reach to more challenging target programs like
network protocols [19] and smart contracts [20]. However,
existing works mainly focus on single-mode fuzzing and rely
on off-the-shelf and ineffective parallel fuzzing setups (e.g.,
AFL’s default parallel mode) to run the fuzzers at scale on
multiple cores in a single computer or over interconnected
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Figure 1. AFL’s default collaborative parallel fuzzing setup.

computers [21]. Research on improving parallel fuzzing tech-
niques surprisingly enjoys much less attention.

Based on the interaction between fuzzing instances, we
categorize parallel fuzzing setups into non-collaborative and
collaborative fuzzing. In a non-collaborative setup, fuzzing in-
stances explore the same target program independently so they
may end up trying to cover the same branch(es). This setup
might lead to resource and time inefficiency. For instance, we
ran five instances of AFL in this non-collaborative setup in
4 hours to fuzz the LibPNG [22] library and our analysis
shows that the overlapping ratio of the branch coverage is
approximately 95%. It would be better for the fuzzing in-
stances to share results with each other. This is the idea behind
the collaborative setup implemented in AFL and libFuzzer,
as depicted in Figure 1. More specifically, AFL supports
collaborative parallel fuzzing via a shared corpus directory
so that any new interesting inputs (a.k.a seeds) found by
one fuzzing instance will be available to the other instances.
However, this setup also has two major problems.

Missing fuzzing information. Valuable dynamic information
(e.g., path frequency, branch hit counts) that supports single-
mode optimizations [7], [12] is not simultaneously synchro-
nized among fuzzing instances in this parallel mode. Instead,
such information is periodically collected and used by each
instance. This leads to the underperformance of optimized
single-mode fuzzers like AFLFast and FairFuzz, compared to
AFL, in parallel fuzzing [23].

Task conflicts. AFL has no explicit task allocation strategies
that divide tasks and assign them to the fuzzing instances.



It relies on the stochastic nature of fuzzing to do implicit
task scheduling. However, given the same (synchronized)
seed corpus and the same algorithm (e.g., seed selection and
mutations), different fuzzing instances would still select the
same seeds and produce similar test cases.

Several works have recently been completed to address
the aforementioned problems (PAFL [23], P-Fuzz [24], Uni-
Fuzz [25]). These works share a similar idea of adding new
hierarchical data structures [23] and/or building a centralized
database [24], [25] to synchronize dynamic fuzzing informa-
tion and construct a global seed corpus. The benefit of this
solution is twofold. First, each fuzzing instance has a local
view as well as a global view of the fuzzing information
to support its optimized algorithms [7], [12]. Second, seeds
are selected from the global corpus before being dispatched
to fuzzing instances statically in batches [23] or dynamically
upon requests [24], [25]. It could ensure one seed is fuzzed by
only one instance (at a time) and hence reduce task conflicts.

However, by considering a single seed input as a task,
these approaches only work at the micro-task level which is
not ideal for task management. Moreover, their algorithms to
divide tasks might be ineffective since they do not consider
structural information (e.g., module dependency graph, call
graph, control flow graph) of the input program. We argue that
collaborative parallel fuzzing should also have a systematic
task allocation approach that works at the macro level and
supports fuzzing instances to control the micro tasks. To the
best of our knowledge, there are no such available solutions.

In this paper, we leverage research on graph partitioning
and search algorithms to propose a systematic and dynamic
task allocation solution. First, we design an attributed graph to
capture both the program structures (e.g., program call graph)
and fuzzing information (e.g., branch hit counts, bug discovery
probability). Second, our partitioning algorithm divides the
global program search space into sub-search-spaces. Finally
our search algorithm prioritizes these sub-search-spaces (i.e.,
tasks) and explores them to maximize code coverage and num-
ber of bugs found. The results are collected to update the graph
and guide further iterations of partitioning and exploration.
Specifically, our paper makes the following contributions:
– Systematic and Dynamic Task Allocation. We propose

a novel graph partitioning-based task allocation approach.
The approach works in a self-reinforcing manner to evolve
and reach optimal state.

– Extendable Framework. We design an extendable frame-
work that provides an interface for plugging in other task
allocation algorithms. This framework allows us to leverage
state-of-the-art research in task scheduling [26] and graph
partitioning [27]. Moreover, specific challenges in fuzzing
may also pose interesting research questions for researchers
working on these topics.

– Tool. We implemented a prototype called AFLTeam (https:
//github.com/MelbourneFuzzingHub/aflteam). Compared to
AFL, AFLTeam achieved higher branch coverage (up to
16.4%) in our preliminary experiments.

II. BACKGROUND AND RELATED WORK

To fuzz-test a target program using AFL, the program
needs to be instrumented with additional instructions to collect
the code coverage information at run-time. To that end, the
AFL lightweight instrumentation pass injects the piece of
code in Figure 2 at each branch point in the program. The
variable cur_loc identifies the current basic block. The array
bit_map[] is a shared memory region, which is accessible
by both the fuzzer and the instrumented program. Each byte
in the array stores the hit count for a particular branch of the
program so it tells AFL how many times the branch has been
taken by the current input. If the hit count is zero, it means
the input does not cover that branch. Given two basic blocks
A and B, the bitwise shift operation in line 3 preserves the
directionality [(A, B) versus (B, A)].

1: cur_loc = < COMPILE_TIME_RANDOM >;
2: bit_map[cur_loc ˆ prev_loc]++;
3: prev_loc = cur_loc >> 1;

Figure 2. AFL’s instrumentation

As shown in Algorithm 1, AFL takes the instrumented
program P and a seed corpus S to start its fuzzing process.
In each iteration of the main fuzzing loop (lines 1–13), AFL
chooses an input from the seed corpus (line 2) and calculates
fuzzing energy for that input (line 3). The fuzzing energy [7]
decides how many new inputs a fuzzer should produce from
the selected seed. AFL uses different mutation operators (e.g.,
bit flipping, block deletion/insertion) to modify a given input
(line 5). It then executes the program P with each newly
generated input and monitors the program behaviors (lines
6–10). If P crashes, the crash-triggering input will be saved
for further analysis (lines 7–8). Moreover, AFL analyzes the
shared coverage bitmap to check if this input can uncover
interesting program behaviors (e.g., new branches have been
taken). If so, the input is retained for further rounds of fuzzing
(lines 9–10). Otherwise, AFL just discards it.

Input: Instrumented Program P , Seed Corpus S
Output: Crashing Inputs S7

1: repeat
2: s = CHOOSE NEXT(S)
3: p = ASSIGN ENERGY(s)
4: for i from 1 to p do
5: s′ = MUTATE INPUT(s)
6: EXECUTE(P, s′)
7: if s′ crashes then
8: add s′ to S7

9: else if IS INTERESTING(s′) then
10: add s′ to S
11: if in parallel mode then
12: SYNC FUZZERS(S)
13: until timeout reached or abort-signal

Algorithm 1. Main Fuzzing Loop of AFL/AFLTeam. The
original algorithm is from the AFLFast paper [7]

https://github.com/MelbourneFuzzingHub/aflteam
https://github.com/MelbourneFuzzingHub/aflteam


In AFL’s default collaborative parallel fuzzing mode (AFL-
P), each AFL fuzzing instance periodically checks the shared
corpus directory for any new interesting inputs found by other
fuzzing instances and copies them to its own seed corpus
(lines 11–12). Task conflicts happen because different fuzzing
instances might work on the same seeds, explore the same
program search spaces, and produce similar test cases.

P-Fuzz and UniFuzz [24], [25] change the CHOOSE NEXT
function in Algorithm 1 so that each fuzzing instance can
request the central node/database for the next task i.e., the
next seed input. On the other hand, PAFL [23] aims to increase
the diversity among fuzzing instances and drive them towards
different areas in the program space. To achieve that goal,
PAFL divides the coverage bitmap into continuous equal-
size regions and statically assigns one bitmap region to each
fuzzing instance as a task. The CHOOSE NEXT function is
modified so that each fuzzing instance focuses on mutating
the inputs related to its assigned task. However, this solution
appears to be problematic. First, since the indices of bytes in
the bitmap array are randomly decided at instrumentation time
(Figure 2), adjacent bytes in the bitmap might not correspond
to connected branches on the control flow graph. Hence, each
of PAFL’s task is normally a collection of likely unrelated
micro tasks. Second, because it employs a static allocation
strategy, PAFL is unlikely to always achieve optimal results.

III. OUR APPROACH

Our approach shares an observation with PAFL – we also
aim to drive fuzzing instances towards different areas (i.e.,
sub-search-spaces) in the program space. However, unlike
PAFL’s ad-hoc implementation, our solution is systematic and
dynamic. We build and dynamically update an attributed call
graph of the program under test, partition it into sub-graphs,
and consider each sub-graph as a task for a fuzzing instance.

A. Framework Overview
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Figure 3. AFLTeam’s workflow.

We design a modular framework for collaborative fuzzing
called AFLTeam (Figure 3). Given an input program,
AFLTeam instruments it and extracts a call graph from its
LLVM Bitcode [28], [29]. The call graph is updated by the
Graph Augmentor component with the function-call profiling
information of the seed corpus (see Section III-B). Note that,
since the seed corpus is continuously enlarged during fuzzing,
the call graph is also getting more complete.

The Task Division component takes the most updated call
graph and generates tasks in the form of sub graphs (see
Section III-B). Figure 4 shows a sample partitioned call graph
of a program that captures the main logic of media processing
libraries like LibPNG [22]. The program takes a filename as
input, reads the file, checks its validity (e.g., correct signature
and checksums), extracts specific data chunks (e.g., chunk A
and chunk B), and processes those chunks (e.g., data decod-
ing). Our approach could partition the given call graph into
four tasks based on different criteria (e.g., potential coverage
improvement). While the first task focuses on fuzzing the logic
of reading file and checking the file header, the second task
checks if the data chunk parsing code is working correctly. The
third and the fourth tasks stress test the data chunk processing
code (e.g., data decoding).
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Figure 4. A sample partitioned callgraph.

As described in structure-aware fuzzing papers [10], [15],
[30], program inputs can be highly structured and our approach
would let fuzzing instances focus on specific parts of the
file inputs (e.g., Task 1 focuses on the file header, Task 2
works on chunks’ fields, and Task 3&4 mutate chunks’ data).
Our task allocation takes into account the fuzzing progress to
update the tasks accordingly. For instance, after some time, if
almost all branches of functions in Task 1 have been covered,
our algorithm could merge them into another task. We could
also divide a complicated task into sub tasks if necessary.

The Task Dispatcher instantiates new fuzzing instances and
dispatches the tasks. The fuzzing instances should be task-
aware so that they can guide the search towards functions in
the assigned tasks (see Section III-C). The Monitor component
collects results and statistical information from all fuzzing
instances, makes the decision when to stop those instances,
and asks Task Division to decide on a new set of tasks.

B. Systematic and Dynamic Task Allocation

Attributed call graph construction. Given a target program
P, we build an attributed call graph 〈V,E〉 where each vertex
in V represents a function of P and each edge (f, g) in E
indicates a function call from f to g. Then, we attach the
attributes (e.g., weights, discovery probability [31]) to all the
vertices and edges to help our partitioning algorithm decide
their importance. Those attributes are initialized at the begin-
ning and periodically updated during a fuzzing campaign using
the information collected from fuzzing instances. Specifically,
we set the initial weight for each function/vertex based on its



number of basic blocks which measures the potential of code
coverage improvement if that function is targeted.

Graph partitioning. After constructing the attributed call
graph, we partition it into sub-graphs such that (i) the total
vertex weight sum is distributed evenly over sub-graphs to bal-
ance workload and (ii) the weight sum of edges connecting all
different partitions is minimized to decrease parallel overhead.
Graph partitioning is known to be a challenging problem, and
different approaches have been proposed to solve it, such as
the Kernighan-Lin and spectral partitioning algorithms [32],
[33]. When being applied to fuzz-test real-world programs,
the candidate graph partitioning algorithm must be scalable
to handle large call graphs (e.g., the extracted call graph of
FFmpeg library has 20,000+ vertices and 50,000+ edges). In
our prototype, we supports Lukes’ algorithm [34], [35], which
is time and space efficient. In the future, we will integrate more
advanced algorithms into our extendable framework.

Function call profiling. The completeness of the call graph
is vital to the effectiveness of our partitioning algorithm.
However, when we statically extract a call graph of a target
program, the graph could miss many edges due to indirect
calls, such as the use of function pointers. To tackle the
issue, we modify AFL’s instrumentation pass to enable a light-
weight function-call profiling feature. Given a set of inputs,
this feature produces a list of function calls collected during
program executions which can be used to update the call graph.

C. Task-Aware Fuzzing

We update AFL’s fuzzing algorithm (Algorithm 1) to take
a task T (i.e., a set of functions) and guide the search towards
those functions. Specifically, we keep the algorithm of the
main fuzzing loop but make changes to core functions such
as CHOOSE NEXT, MUTATE INPUT, IS INTERESTING, and
SYNC FUZZERS. The changes will enable the capabilities to
do (i) task-aware seed filtering, and (ii) task-aware mutation.
AFLTeam’s fuzzing instances use seed filtering to choose
only seeds that reach the target functions from the seed
corpus and discard others (function CHOOSE NEXT). Seed
filtering is also necessary to retain or import inputs that are
interesting with respect to the task (functions IS INTERESTING
and SYNC FUZZER). A task-aware mutation algorithm only
modifies the parts of the seed inputs that might increase
code coverage or trigger bugs in the target functions (function
MUTATE INPUT) and keeps the remaining parts unchanged.

Task-aware seed filtering. To enable this capability, we
extend the AFL’s instrumentation pass (Figure 2) so that
the fuzzer can collect the function coverage information in
addition to the supported code coverage. Given an input, its
function coverage information lets the fuzzer know if that input
has executed the target functions.

Task-aware mutation. Taint-based directed fuzzing [36] and
information flow analysis [37] are two viable options to enable
this capability. However, we are concerned about the high
overhead of the former and the imprecision of the latter. We
leave this problem for our immediate future work.

IV. PRELIMINARY EVALUATION

We developed a prototype of AFLTeam, which consists of
approximate 900 lines of code (LoCs) in Python and 200 LoCs
in C & C++, and evaluated its effectiveness in comparison
with the default collaborative fuzzing mode of AFL (AFL-P).
We could not report the performance of PAFL, P-Fuzz, and
UniFuzz because these tools were not publicly available at
the time of our experiments. Regarding subject programs, we
selected the newest versions of four well-tested open source
libraries: LibPNG [22], LibJPEG-turbo [38], FFmpeg [39],
and JasPer [40] which are widely used in systems like Web
browsers, and media processing/streaming services. These sub-
jects have also been used in evaluating previous work [10] and
are continuously tested on the Google OSS-Fuzz project [41].

In our experiments, we allocated AFLTeam and AFL-P the
same resources on a Google Compute Engine with 32 virtual
CPUs and 32GB of RAM. Specifically, for each subject we ran
the fuzzers on 10 cores (one fuzzing instance per core) for 10
hours. The fuzzers were run with the same arguments and the
same seed corpora as reported in the AFLSmart paper [10].

Fuzz target Metric AFL-P AFLTeam Improvement

pngimage #lines 5112 5165 1.04%
#branches 3007 3043 1.20%

djpeg #lines 2577 2807 8.93%
#branches 1493 1738 16.41%

jasper #lines 5560 5609 0.88%
#branches 2837 2897 2.11%

ffmpeg #lines 14490 17557 21.17%
#branches 9036 10505 16.26%

Table I. Preliminary results: pngimage (LibPNG), djpeg
(LibJPEG-turbo), jasper (JasPer), and ffmpeg (FFmpeg)

Table I shows the code coverage achieved by AFLTeam
and AFL-P. AFLTeam outperformed AFL-P in all subjects.
Notably in LibJPEG-turbo and FFmpeg, AFLTeam’s im-
provements over AFL-P on branch coverage are 16.41%
and 16.26%, respectively. AFLTeam also discovered 2 crash-
triggering bugs in FFmpeg and JasPer. We reported these bugs
to the developers and both have been fixed.

Due to the page constraint, we provide more analyses (e.g.,
code coverage improvement over time) and the instructions
to run experiments on AFLTeam’s GitHub repository at https:
//github.com/MelbourneFuzzingHub/aflteam.

V. CONCLUSION AND FUTURE DIRECTIONS

We have presented promising empirical evidence that lever-
aging graph partitioning and search can improve the ef-
fectiveness of collaborative parallel fuzzing. Our immediate
future work is to complete the task-aware mutation algorithm,
improve the graph partitioning algorithm, and run experiments
at a larger scale. Since our solution works at the function call
graph level, which is close to human understanding of input
programs, we also plan to investigate the possibilities of in-
volving humans in the loop. For instance, humans can monitor
the task allocation and leverage their domain knowledge to
guide the algorithm towards better decisions.

https://github.com/MelbourneFuzzingHub/aflteam
https://github.com/MelbourneFuzzingHub/aflteam
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“Detecting information flow by mutating input data,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2017, pp. 263–273.

[38] Website, “Libjpeg-turbo,” https://libjpeg-turbo.org/, accessed: 2021-06-
18.

[39] ——, “Ffmpeg,” https://www.ffmpeg.org/, accessed: 2021-06-18.
[40] ——, “Jasper image processing/coding tool kit,” https://github.com/

jasper-software/jasper, accessed: 2021-06-18.
[41] ——, “Oss-fuzz: Continuous fuzzing for open source software,” https:

//github.com/google/oss-fuzz, accessed: 2021-06-18.

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://google.github.io/clusterfuzz/
https://github.com/microsoft/onefuzz
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/richo/roving
http://www.libpng.org/pub/png/libpng.html
https://llvm.org/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://networkx.org/
https://libjpeg-turbo.org/
https://www.ffmpeg.org/
https://github.com/jasper-software/jasper
https://github.com/jasper-software/jasper
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

	Introduction
	Background and Related Work
	Our Approach
	Framework Overview
	Systematic and Dynamic Task Allocation
	Task-Aware Fuzzing

	Preliminary Evaluation
	Conclusion and Future Directions
	References

