
AFLNET: A Greybox Fuzzer for Network Protocols
Van-Thuan Pham
Monash University

thuan.pham@monash.edu

Marcel Böhme
Monash University

marcel.boehme@monash.edu

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

Abstract—Server fuzzing is difficult. Unlike simple command-
line tools, servers feature a massive state space that can be
traversed effectively only with well-defined sequences of input
messages. Valid sequences are specified in a protocol. In this
paper, we present AFLNET, the first greybox fuzzer for protocol
implementations. Unlike existing protocol fuzzers, AFLNET takes
a mutational approach and uses state-feedback to guide the
fuzzing process. AFLNET is seeded with a corpus of recorded
message exchanges between the server and an actual client.
No protocol specification or message grammars are required.
AFLNET acts as a client and replays variations of the original se-
quence of messages sent to the server and retains those variations
that were effective at increasing the coverage of the code or state
space. To identify the server states that are exercised by a message
sequence, AFLNET uses the server’s response codes. From this
feedback, AFLNET identifies progressive regions in the state
space, and systematically steers towards such regions. The case
studies with AFLNET on two popular protocol implementations
demonstrate a substantial performance boost over the state-of-
the-art. AFLNET discovered two new CVEs which are classified
as critical (CVSS score CRITICAL 9.8).

I. INTRODUCTION

It is critical to find security flaws in protocol implementa-
tions. Protocols are used by internet-facing servers to talk to
each other or to clients in an effective and reliable manner. A
protocol specifies the exact sequence and structure of messages
that can be exchanged between two or more online parties.
However, this ability to talk to a server from anywhere in the
world provides ample opportunities for remote code execution
attacks. An attacker does not even require physical access to
the machine. For instance, the famous Heartbleed vulnerability
is a security flaw in OpenSSL, an implementation of the
SSL/TLS protocol which promises secure communication.1

However, finding vulnerabilities in protocol implementa-
tions is also difficult. There are several challenges for state-
of-the-art fuzzing approaches, like coverage-based greybox
fuzzing (CGF) [1], [2] and stateful blackbox fuzzing (SBF) [3],
[4]. First, a server is stateful and message-driven. It takes a
sequence of messages (a.k.a requests) from a client, handles
the messages and sends appropriate responses. Yet, the imple-
mented protocol may not entirely correspond to the specified
protocol. Second, the servers’ response depends on both, the
current message and the current internal server state which
is controlled by earlier messages. Meanwhile, vanilla CGF
fuzzers like AFL and its extensions [5]–[7] neither know
the server state information nor the required structure or
order of the messages to be sent. These CGF fuzzers were

1See http://heartbleed.com/

“One of the things that I struggle with is the limitation AFL
seems to have, in that it only performs fuzzing with one
input (a file). For many systems such as network protocols,
it would be useful if fuzzing could be done on a sequence
of inputs. This sequence of inputs might be for example
messages necessary to complete a handshake in TLS/TCP.”

— Paul (a member of the AFL’s user group) [8]

“I’m interested in doing something fairly non-traditional
and definitely not currently supported by AFL. I would like
to perform fuzzing of a large and complex external server
that cannot easily be stripped down into small test cases.”
— Tim Newsham (a member of the AFL’s user group) [8]

Fig. 1. Requests from AFL’s users asking for stateful fuzzing support

mainly designed to test stateless programs (e.g., file processing
programs) which produce output for the current input, where
no internal state is maintained or taken into account.

Developers only have workaround solutions to fuzz protocol
implementations using current CGF approaches. They would
need to write test harnesses for unit testing of specific program
states of the server under test (SUT) [2] or to concatenate
message sequences into files and use them as seeds to do
normal mutational file fuzzing [1]. These two approaches have
several drawbacks. While unit testing is effective at some
specific program states, it may not be able to thoroughly
test the interactions/transitions between several program states.
Moreover, it normally requires a substantial effort to write a
new test harness to maintain correct program states and avoid
false positives. Importantly, it is not applicable for end-to-end
fuzzing to test the whole server whose source code may not
be available.

Working on concatenated files leads to inefficiency and
ineffectiveness in bug finding. First, for each fuzzing iteration,
the whole selected seed file needs to be mutated. Given a
file f which is constructed by concatenating a sequence of
messages from m1 to mn, CGF mutates the whole file f
and treats all messages equally. Suppose a message mi is
the most interesting one (e.g., exploring it leads to higher
code coverage and potential bugs), CGF repeats mutating
uninteresting messages m1 to mi-1 before working on mi

and it has no knowledge to focus on mi. Second, lacking

http://heartbleed.com/


state transition information, CGF could produce many invalid
sequences of messages which are likely to be rejected by
the SUT. Indeed, the users of AFL are well aware of these
limitations so they have sent several requests and questions to
its developers’ group [8]. Figure 1 show two requests from
AFL’s users asking for stateful fuzzing support.

Due to the aforementioned limitations of CGF on stateful
server fuzzing, the most popular technique is still stateful
blackbox fuzzing (SBF). Several SBF tools have been devel-
oped in both academia (e.g., Sulley, BooFuzz [4], [9]), and in
the industry (e.g., Peach, beSTORM [3], [10]). These tools tra-
verse a given protocol model, in form of a finite state machine
or a graph, and leverage data models/grammars of messages
accepted at the states to generate (syntactically valid) message
sequences and stress test the SUT. However, their effectiveness
heavily depends on the completeness of the given state model
and data model which are normally written manually based
on the developers’ understanding of the protocol specification
and the sample captured network traffic between the client
and the server. These manually provided models may not
capture correctly the protocols implemented inside the SUT.
Protocol specifications contain hundreds of pages of prose-
form text. Developers of implementations may misinterpret
existing or add new states or transitions. Moreover, like other
blackbox approaches, SBF does not retain interesting test cases
for further fuzzing. More specifically, even though SBF could
produce test cases leading to new interesting states, which have
not been defined in its state model, SBF does not retain such
valuable test cases for further explorations. It also does not
update the state model at run-time.

In this work, we introduce AFLNET– the first stateful
CGF (SCGF) tool to address the aforementioned limitations
of current CGF and SBF approaches. AFLNET makes auto-
mated state model inferencing and coverage guided fuzzing
work hand in hand; fuzzing helps to generate new message
sequences to cover new states and make the state model grad-
ually more complete. Meanwhile, the dynamically constructed
state model helps to drive the fuzzing towards more important
code parts by using both the state coverage and code coverage
information of the retained message sequences. We evaluated
AFLNET on implementations of two well-known protocols:
the File Transfer Protocol (FTP) and the Real Time Streaming
Protocol (RTSP). Our preliminary results show that AFLNET
substantially outperforms the state-of-the-art in terms of code
coverage, the coverage of the state space, and bug finding
ability. AFLNET exposed two previously unknown security
flaws (CVEs assigned) in an RTSP implementation.

We are planning to release the source code of AFLNET at
https://github.com/aflnet/aflnet.

II. EXAMPLE: FILE TRANSFER PROTOCOL

We begin with an informal introduction of the main concepts
behind server communication and the terminology we are
using in this paper. A server is a software system that can be
accessed remotely, e.g., via the internet. A client is a software
system that uses the services which are provided by a server.

In our setting, the fuzzer acts as a client while the server acts
as the fuzz target.

In order to exchange information, both network participants
send messages. A message is a distinct data packet. A message
sequence is a vector of messages. A valid order of messages
is governed by a protocol. A message from the client is
also called request while a message from the server is called
response. Each request may advance the server state, e.g., from
initial state to authenticated. The server state is a specific
status of the server in the communication with the client.

Listing 1 shows an exchange of messages according to the
File Transfer Protocol (FTP) between a client and LightFTP
[11], a server which implements FTP and is one of the subjects
in our evaluation. The message sequence sent from the client is
highlighted in red. FTP specifies that a client must first authen-
ticate itself at the server. Only after successful authentication
can the client issue other commands (i.e., transfer parameter
commands and service commands). For each request message
from the client, the FTP server replies with a response message
containing a status code (e.g., 230 [login successful] or 430
[invalid user/pass]). The status code in the response ensures
that client requests are acknowledged and informs the client
about the current server state.

1 220 LightFTP server v2.0a ready
2 USER foo
3 331 User foo OK. Password required
4 PASS foo
5 230 User logged in, proceed.
6 MKD demo
7 257 Directory created.
8 CWD demo
9 250 Requested file action okay, completed.

10 STOR test.txt
11 150 File status okay
12 226 Transfer complete
13 LIST
14 150 File status okay
15 226 Transfer complete
16 QUIT
17 221 Goodbye!

Listing 1. Message exchange between an FTP client (red) and the LightFTP
server (black) on the control channel.

III. TOOL DESIGN AND IMPLEMENTATION

We implemented our tool AFLNET as an extension of the
popular and successful greybox fuzzer AFL [1], [12]. The
architecture of AFLNET is shown in Figure 2. To facilitate
communication with the server, we first enabled network
communication over sockets, which is not supported by the
vanilla AFL. AFLNET supports two channels, one to send
and one to receive messages/responses from the Server Under
Test. The response-receiving channel forms the state feedback
channel in addition to the code coverage feedback channel as
implemented in all CGF approaches. AFLNET uses standard
C Socket APIs (i.e., connect, poll, send, and recv)2 to imple-
ment this feature. To ensure proper synchronization between

2http://man7.org/linux/man-pages/man2/socket.2.html

https://github.com/aflnet/aflnet
http://man7.org/linux/man-pages/man2/socket.2.html


State Machine
Learning

Target State Selector

Sequence Selector Sequence 
Mutators Server Under Test

(mutated) client requests
S1 ...

Request 
Sequences 

Parser
.pcap files

Captured network
traffic 

...
S2 Sn

Sequences 
Corpus

server 
responses
(e.g., “200 OK”, 
“400 ERR”)

Message Pool

Fig. 2. Architecture and Implementation of Stateful Greybox Fuzzing into AFLNET

AFLNET and the server under test, we added delays between
requests. Otherwise, several server implementations drop the
connection if a new message is received before the response
is sent and acknowledged.

The input for AFLNET are the pcap files containing the
captured network traffic (e.g., requests and responses between
the FTP client and the FTP server as shown in Listing 1). To
record a realistic message exchange between client and server
in a pcap file, a network sniffer (e.g., tcpdump3) can be
used. The relevant message exchange can be extracted using
a packet analyzer. For instance, we used the packet analyzer
Wireshark4 to automatically extract the sequence of FTP
requests.

USER foo PASS foo MKD demo QUIT

220, 331 220, 331, 230 220, 331, 230, 257 220, 331, …, 221

...

Fig. 3. An annotated FTP message sequence processed for mutational fuzzing
(from the sniffer trace in Listing 1)

AFLNET uses its Request Sequence Parser component
to produce the initial corpus of message sequences. AFLNET
uses protocol-specific information of the message structure to
extract individual requests, in correct order, from the captured
network traffic. It first filters out the responses from the pcap
files to get the traces of client requests. Then, it parses the
filtered traces to identify the start and end of every messages
in the trace. We implemented a lightweight method that finds
header and terminator of a message as specified in the given
protocol. For instance, each FTP message starts with a valid
FTP command (e.g., USER, PASS) and is terminated with
a carriage return followed by a line feed character (i.e.,
0x0D0A). Moreover, SCGF associates with each message in
the sequence the corresponding server state transitions (cf.
Figure 3). This is done by sending the messages and parsing
the responses one by one.

The State Machine Learner takes the server responses
and augments the implemented protocol state machine (IPSM)
with newly observed states and transitions. AFLNET reads the
server response into a byte buffer, extracts the status code as
specified in the protocol, and determines the executed states

3https://www.tcpdump.org/pcap.html
4https://www.wireshark.org/

(transitions). A new graph node, which represents a new state,
is added if there is a new status code in the server response.

The Target State Selector takes information from the IPSM
to select that state which AFLNET should focus on next. AFL-
NET uses several heuristics that can be computed from the
statistical data available in the learned IPSM to help Target
State Selector select the next state. For example, to identify
fuzzer blind spots, i.e., rarely exercised states, it chooses a
state s with a probability that is inversely proportional to the
proportion of mutated message sequences that have exercised s
(#fuzz). In order to maximize the probability of discovering
new state transitions, AFLNET chooses a state s with higher
priority that has been particularly successful in contributing to
an increased code or state coverage when they were previously
selected (#paths). It is worth noting that AFLNET only starts
applying these heuristics once the fuzzing process has been
working for long-enough time to accumulate statistical data.
At the beginning, the Target State Selector randomly selects
target states.

Once a target state s has been selected, the Sequence
Selector selects a message sequence (i.e., a seed input),
which can reach the state s, from the sequence corpus.
AFL/AFLNET implements the seed corpus (here, containing
message sequences) as a linked list of queue entries. A queue
entry is the data structure containing pertinent information
about the seed input. In addition, AFLNET maintains a state
corpus which consists of (i) a list of state entries, i.e., a
data structure containing pertinent state information, and (ii) a
hashmap which maps a state identifier to a list of queue entries
exercising the state corresponding to the state identifier. The
Sequence Selector leverages the hashmap to randomly select
a sequence, as represented in a queue entry, to exercise the
state s.

The Sequence Mutator augments AFL’s fuzz_one
method with protocol-aware mutation operators. AFLNET
is a mutation-based fuzzing approach, i.e., a seed message
sequence is chosen from a corpus and mutated to generate
new sequences. There are several advantages over existing
generation-based approaches which generate new message
sequences from scratch. First, a mutation-based approach can
leverage a valid trace of real network traffic to generate new
sequences that are likely valid—albeit entirely without a proto-

https://www.tcpdump.org/pcap.html
https://www.wireshark.org/


col specification. In contrast, a generation-based approach [4],
[9], [13] requires a detailed protocol specification, including
concrete message templates and the protocol state machine.
Second, a mutation-based approach allows to evolve a cor-
pus of particularly interesting message sequences. Generated
sequences that have led to the discovery of new states, state
transitions, or program branches are added to the corpus for
further fuzzing. This evolutionary approach is the secret sauce
of the tremendous success of coverage-based greybox fuzzing.

Given a state s and a message sequence M , AFLNET
generates a new sequence M ′ by mutation. In order to ensure
that the mutated sequence M ′ still exercises the chosen state
s, AFLNET splits the original sequence M into three parts:
1) the prefix M1 is required to reach the selected state s,
2) the candidate subsequence M2 contains all messages that
can be executed after M1 while still remaining in s, and
3) the suffix M3 is simply the left-over subsequence such
that 〈M1,M2,M3〉 = M . The mutated message sequence
M ′ = 〈M1,mutate(M2),M3〉. By maintaining the original
subsequence M1, M ′ will still reach the state s which is the
state that the fuzzer is currently focusing on. The mutated
candidate subsequence mutate(M2) produces an alternative
sequence of messages upon the choosen state s. In our initial
experiments, we observed that the alternative requests may not
be observable “now”, but propagate to later responses. Hence,
AFLNET continues with the execution of the suffix M3.

AFLNET offers several protocol-aware mutation operators
to modify the candidate subsequence. From the corpus of
message sequences C, AFLNET produces a pool of messages.
The Message Pool is a collection of actual messages from
network sniffer traces (plus generated messages) that can be
added or substituted into existing message sequences M ∈ C.
In order to mutate the candidate sequence M2, AFLNET
supports the replacement, insertion, duplication, and deletion
of messages. In addition to these protocol-aware mutation
operators, AFLNET uses the common byte-level operators that
are known from greybox fuzzing, such as bit flipping, and
the substitution, insertion, or deletion of blocks of bytes. The
mutations are stacked, i.e., several protocol-aware and byte-
level mutation operators are applied to generate the mutated
candidate sequence.

Generated message sequences M ′ that are considered as
“interesting” are added to the corpus C. A sequence is con-
sidered as interesting if the server response contains new states
or state transitions that have not previously been observed (i.e.,
they are not recorded in the IPSM S); a sequence is interesting
also if it covers new branches in the server’s source code.

220 331 230 221257 250 150 226

530 Not logged in

PASS bar
QUIT

Fig. 4. IPSM learning example

USER foo PASS bar MKD demo QUIT

220, 331 220, 331, 530 220, 331, 530 220, 331, …, 221

...

Fig. 5. A sample mutated sequence if the state 331 (User OK) and the
message sequence in Figure 3 have been chosen

Now we illustrate how all these components of AFLNET
work together to fuzz the LightFTP server. Suppose AFL-
NET starts with only one pcap file containing the network
traffic as shown in Listing 1. First, Request Sequence Parser
parses the pcap file to generate a single sequence (as visualized
in Figure 3) and save it into the corpus C. At the same
time, State Machine Learning constructs the initial IPSM
based on the response codes; this initial IPSM contains black
nodes and transitions in Figure 4. Suppose that Target State
Selector selects state 331 (USER foo OK) as the target state,
Sequence Selector will then randomly select a sequence from
the sequence corpus C, which contains only one sequence at
this moment. Afterwards, Sequence Mutators identifies the
sequence prefix (“USER foo” request), the candidate subse-
quence (“PASS foo” request), and the remaining subsequence
as the suffix. By mutating the candidate subsequence using
stacked mutators, Sequence Mutators may generate a wrong
password request (“PASS bar”) leading to an error state (530
Not logged in). Following this wrong password, it replays the
suffix (e.g., “MKD demo”, “CWD demo”) leading to a loop
in the state 530 because all these commands are not allowed
before a successful authentication. Finally, the “QUIT” request
is sent and and the server exits. Since the generated test
sequence (as visualized in Figure 5) covers new state and state
transitions (as highlighted in red in Figure 4), it is added into
the corpus C and the IPSM.

IV. CASE STUDIES

We evaluated the effectiveness of AFLNET in compar-
isons with two baseline approaches, a stateful blackbox
fuzzer (BOOFUZZ) and a stateless coverage-guided fuzzer
(AFLNWE), our network-enabled extension of AFL5. Specif-
ically we compared the average branch coverage, state cov-
erage, and number of bugs exposed in 24-hour fuzzing cam-
paigns on two protocol implementations as shown in Figure 6.
These two protocols are popular. While FTP has been widely
used for file transfer, RTSP is the most common protocol
for real-time video streaming which has been implemented
in large real-world frameworks like YouTube. Live555, the
selected RTSP server in our experiments, has been installed
on privacy and security-critical devices like IP Cameras6.

While AFLNET and AFLNWE are started with an initial
seed corpus of recorded message sequences for most common
usage scenarios (e.g., upload a file, start streaming a media
source), BOOFUZZ is started with a detailed model of the
protocol, including the message templates and the state ma-
chine.

5To enable network communication, we ported the
custom_net_fuzzer component from WinAFL [14] to Linux.

6D-Link Camera: http://files.dlink.com.au/products/D-ViewCam/REV A/
Manuals/Manual v3.51/D-ViewCam DCS-100 B1 Manual v3.51(WW).pdf

http://files.dlink.com.au/products/D-ViewCam/REV_A/Manuals/Manual_v3.51/D-ViewCam_DCS-100_B1_Manual_v3.51(WW).pdf
http://files.dlink.com.au/products/D-ViewCam/REV_A/Manuals/Manual_v3.51/D-ViewCam_DCS-100_B1_Manual_v3.51(WW).pdf


Subject Size Protocol Description
LightFTP [11] 4.7K FTP Lightweight FTP server.
Live555 [15] 55.6K RTSP RTSP-based streaming server.

Fig. 6. Subjects’ description and size in kilo of lines of code (KLOC).

Experiment repetition. To mitigate the impact of random-
ness, for each subject we ran 20 isolated instances of each of
BOOFUZZ, AFLNET, and AFLNWE.

A. Code coverage and state coverage

Figure 7 shows that AFLNET outperforms the state-of-the-
art stateful greybox fuzzer BOOFUZZ with a large effect size
(Vargha-Delaney Â12 > 0.71) on all measures of effectiveness.
The average increase in branch coverage, statement coverage,
and state coverage is 60%, 56% and 67%, respectively. We
explain this performance increase with AFLNET’s ability to
mutate real message sequences and to evolve a corpus of
message sequences that have been observed to increase the
coverage of the server code.

AFLNET also clearly outperforms AFLNWE, especially in
LightFTP. The increase in branch coverage, statement cover-
age, and state coverage is 121%, 79% and 85%, respectively.
To understand why AFLNWE and AFLNET are on par for
Live555, we have to look at the implemented protocol state
machine (IPSM). Firstly, the Live555 IPSM has a smaller
depth than the LightFTP IPSM, i.e. the number of messages
in a valid sequence is smaller. Secondly, the number of
functional states is smaller, i.e, most states (which are not
already discovered by the initial sequences) are error states.

B. Vulnerability discovery

Figure 8 shows results on the bug finding capabilities
of AFLNET, BOOFUZZ and AFLNWE. For all fuzzers, we
counted the numbers of vulnerabilities found and measured
the time they took to expose these vulnerabilities. AFLNET
outperforms both fuzzers on all errors. In total, AFLNET
discovered four vulnerabilities in which two of them (CVE-
2018-4013 and CVE-2019-7733) are known and the remaining
two vulnerabilities (CVE-2019-7314 and CVE-2019-15232)
are zero-day. Both CVE-2019-7314 and CVE-2019-15232
received the CVSS score CRITICAL 9.8. Given the sever-
ity level of these vulnerabilities, the maintainer of Live555
quickly applied patches and acknowledged our findings only
two days after the bug reports had been sent. Neither BOO-
FUZZ nor AFLNWE was able to discover CVE-2019-7314.

We further analyzed the root cause of CVE-2019-7314 and
found that there exists an unspecified shortcut between the
INIT and PLAY state (shown in red in Figure 9) when the
Setup message contains a RANGE value7. While the shortcut
itself is harmless, it enables a vulnerability that was found
only by our technique. AFLNET generated a random message
sequence that discovered this transition, retained the sequence,
and systematically evolved it to find a zero-day vulnerability.

7Actual comment in the Live555 code file
liveMedia/RTSPServer.cpp at line 1373: “This isn’t legal, but
some clients do this to combine SETUP and PLAY [messages]”.

To exploit the vulnerability, an attacker would need to send a
sequence of two messages. The first is a SETUP message with
a RANGE value. The second is an arbitrary message of length
greater than 20,000 bytes. The attacker can read up to 8 bytes
of free’d memory. As the transition is not documented in the
standard RTSP specification8, BooFuzz [4] cannot exercise the
unspecified shortcut in Live555.

V. RELATED WORK

A. Coverage-based Greybox Fuzzing

There exist several boosting strategies for greybox fuzzing.
By generating more inputs from certain “interesting” seed
inputs, a greybox fuzzer can be steered, e.g., towards danger-
ous [6] or uncovered program statements [5]. Most recently,
the community explored the opportunities of making greybox
fuzzing aware of the input structure [7], [16]–[18]. In contrast,
we suggest to make greybox fuzzing aware of the state space
of a stateful program, such as a protocol implementation.

B. Network-Enabled Fuzzing

Many network-enabled fuzzers have been developed, both in
academia [9], [13] and industry [3], [4], [10]. Most network-
enabled fuzzers take a blackbox fuzzing approach, i.e., new
message sequences are generated from scratch based on
manually constructed protocol specifications. Most network-
enabled fuzzers also take a generation-based approach, i.e.,
new message sequences are generated from scratch, using
pre-specified message templates. In contrast, SCGF takes a
mutation-based approach where new message sequences are
generated by mutating existing (recorded) message sequences.
C. Fuzzing Protocol Implementations
without Protocol Specifications

Manually constructing a model of the protocol is tedious
and error-prone. A better approach is to automatically reverse
engineer the protocol either for or during fuzzing. We can
distinguish blackbox approaches [19], [20] that learn the
message structure from a given corpus of messages and white-
box approaches [21], [22] that actively explore the protocol
implementation to uncover message structure. For instance,
Polyglot [21] uses dynamic analysis techniques, such as taint-
ing and symbolic execution to extract the message format
from the protocol implementation. In terms of state machine
inferencing, we can distinguish passive learning approaches
[23], [24] that learn the protocol state machine from a corpus
of message sequences and active learning approaches [25]–
[27] that leverage Angluin’s L∗ algorithm to actively query the
protocol implementations with generated message sequences.

In contrast, to these existing approaches, we take a
lightweight mutational approach. SCGF requires neither manu-
ally constructed message templates nor any message templates
inferred. Instead of using message templates to generate new
messages, we fuzz actual, real messages. Similarly, in contrast
to existing techniques, SCGF does not use the inferred protocol
state machine to generate new message sequences. Instead,

8RTSP is specified at https://tools.ietf.org/html/rfc7826

https://github.com/rgaufman/live555/blob/ef01f0a7/liveMedia/RTSPServer.cpp#L1373
https://tools.ietf.org/html/rfc7826


Branch Coverage Statement Coverage State Coverage
%Increase Â12 p-value %Increase Â12 p-value %Increase Â12 p-value

AFLNET vs AFLNWE
lightftp 121.06 % 1.000 < 0.001 79.45 % 1.000 < 0.001 85.00 % 1.000 < 0.001
live555 3.49 % 0.335 0.076 2.44 % 0.228 0.003 8.58 % 0.392 0.230

AFLNET vs BOOFUZZ
lightftp 57.73 % 1.000 0.026 49.72 % 1.000 0.026 37.00 % 1.000 0.020
live555 64.13 % 1.000 0.026 62.09 % 1.000 0.026 100.00 % 1.000 0.019

Fig. 7. Effectiveness. Mean coverage increase (%Increase), effect size (Â12), and statistical significance (p-value) when comparing AFLNET to BOOFUZZ
and AFLNWE, respectively. A Vargha-Delaney Â12 measure above 0.71 indicates a large effect size in favor of AFLNET. Statistical significance is computed
using the Mann-Whitney U test.

Time to Error
Bug ID BOOFUZZ AFLNWE AFLNET
CVE-2018-4013 >24h 1h 21m 37s 1h 18m 10s
CVE-2019-7733 >24h 2h 29m 36s 1h 45m 42s
CVE-2019-7314 >24h >24h 00m 00s 1h 38m 16s
CVE-2019-15232 >24h 0h 34m 21s 0h 21m 26s

Fig. 8. Bugs found and average time to error comparison.

INIT

READY

PLAY

SETUP request PLAY request

TEARDOWN 
request

TEARDOWN

SETUP with a “range” parameter

PLAY requestOther requests

SETUP request

Fig. 9. Root cause analysis for CVE-2019-7314.

existing message sequences within a systematically evolved
seed corpus are mutated in a state-centric manner to generate
new message sequences.

VI. FUTURE WORK

In future work, we plan to conduct more experiments on
other popular and critical protocols (e.g., Secure Shell (SSH)
and Simple Mail Transfer Protocol (SMTP)) to evaluate the
effectiveness and efficiency of AFLNET. Moreover, we also
plan to expand the applicability of AFLNET by enhancing its
state machine-learning algorithm to support protocol imple-
mentations that do not produce response codes.

VII. ACKNOWLEDGEMENT

This research was partially funded by the Australian Gov-
ernment through an Australian Research Council (ARC) Dis-
covery Early Career Researcher Award (DE190100046).

REFERENCES

[1] Website, “American fuzzy lop (afl) fuzzer,” http://lcamtuf.coredump.cx/
afl/technical details.txt, 2017, accessed: 2017-05-13.

[2] ——, “Libfuzzer: A library for coverage-guided fuzz testing,” http://
llvm.org/docs/LibFuzzer.html, 2017, accessed: 2017-05-13.

[3] ——, “Peach Fuzzer Platform,” http://www.peachfuzzer.com/products/
peach-platform/, 2017, accessed: 2017-05-13.

[4] ——, “Boofuzz: A fork and successor of the sulley fuzzing framework.”
https://github.com/jtpereyda/boofuzz, 2017, accessed: 2019-08-12.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16,
2016.

[6] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17, 2017.

[7] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, 2019.

[8] Website, “Afl user group,” https://groups.google.com/forum/#!forum/
afl-users, 2019, accessed: 2019-08-15.

[9] ——, “Sulley: A pure-python fully automated and unattended fuzzing
framework.” https://github.com/OpenRCE/sulley, 2017, accessed: 2019-
08-12.

[10] ——, “beSTORM Black Box Testing,” https://www.beyondsecurity.com/
bestorm.html, 2017, accessed: 2017-05-13.

[11] ——, “Lightftp server,” https://github.com/hfiref0x/LightFTP, 2019, ac-
cessed: 2019-08-15.

[12] ——, “Afl vulnerability trophy case,” http://lcamtuf.coredump.cx/afl/
#bugs, 2017, accessed: 2017-05-13.

[13] ——, “SPIKE Fuzzer Platform,” http://www.immunitysec.com, 2017,
accessed: 2019-08-12.

[14] I. Fratric, “Winafl: A fork of afl for fuzzing windows binaries,” https://
github.com/googleprojectzero/winafl#note, 2019, accessed: 2019-08-15.

[15] R. Finlayson, “Live555 media server.” http://www.live555.com/
mediaServer/, 2006, accessed: 2019-08-15.

[16] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars,” ser.
NDSS ’19, 2019.

[17] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” ser. ICSE ’19, 2019.

[18] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo,
S. Wörner, and T. Holz, “GRIMOIRE: Synthesizing structure while
fuzzing,” in 28th USENIX Security Symposium (USENIX Security 19),
2019.

[19] J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Tech. Rep., 2016.

[20] R. Fan and Y. Chang, “Machine learning for black-box fuzzing of net-
work protocols,” in Information and Communications Security, S. Qing,
C. Mitchell, L. Chen, and D. Liu, Eds., 2018.

[21] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,”
in Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’07, 2007.

[22] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in Proceedings of the
15th ACM Conference on Computer and Communications Security, ser.
CCS ’08, 2008.

[23] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,” in
Security and Privacy in Communication Networks, B. Thuraisingham,
X. Wang, and V. Yegneswaran, Eds., 2015.

[24] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network pro-
tocol fuzzing framework,” vol. 10, August 2010.

[25] J. De Ruiter and E. Poll, “Protocol state fuzzing of tls implementations,”
in 24th USENIX Security Symposium, ser. USENIX Security ’15, 2015.

[26] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song,
“Mace: Model-inference-assisted concolic exploration for protocol and
vulnerability discovery.” in USENIX Security Symposium, vol. 139, 2011.

[27] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in 30th IEEE Symposium on Security
and Privacy, ser. S&P ’09, 2009.

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
https://github.com/jtpereyda/boofuzz
https://groups.google.com/forum/#!forum/afl-users
https://groups.google.com/forum/#!forum/afl-users
https://github.com/OpenRCE/sulley
https://www.beyondsecurity.com/bestorm.html
https://www.beyondsecurity.com/bestorm.html
https://github.com/hfiref0x/LightFTP
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
http://www.immunitysec.com
https://github.com/googleprojectzero/winafl#note
https://github.com/googleprojectzero/winafl#note
http://www.live555.com/mediaServer/
http://www.live555.com/mediaServer/

