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1 Introduction

This is the documentation of the C++ library HyPro dedicated to provide im-
plementations for state set representations for the reachability analysis of hybrid
systems.

This documentation will be updated for major releases of the library, an on-
line version with a comprehensive API documentation which reflects the current
state can be found at https://hypro.github.io/hypro/html/.

The source code to the library can be found at https://github.com/hypro/
hypro.

2 Getting started

In this section we provide all information to allow for a quick installation of
the library and present the first steps towards an own implementation of a
reachability analysis algorithm using the library. The library is created as a
CMake (version ≥ 3.0) project and can be configured (see Section 2.2.1) using
the graphical interface (install cmake-curses-gui).

2.1 Dependencies

In a minimal setup, HyPro depends on the following third-party libraries:

• CArL (https://github.com/smtrat/carl),

Note that CArL itself requires and ships Eigen3 (http://eigen.tuxfamily.
org),gmp, and boost, which is also used in HyPro but once installed by
CArL can be used transitively. HyPro itself downloads glpk, so a network
connection is required.

Optional third-party libraries and tools are

• SMT-RAT (https://github.com/smtrat/smtrat), a library for SMT-
solving, which allows to use exact (rational) linear optimization.

• Z3 (https://github.com/Z3Prover/z3), a SMT-solver, which also al-
lows for exact linear optimization.

• SoPlex (http://soplex.zib.de/), an advanced implementation of the
primal and dual simplex algorithm, which also allows for exact linear op-
timization.

• PPL (http://bugseng.com/products/ppl), an external implementation
of convex polytopes, which is wrapped by HyPro.

Note that SMT-RAT, SoPlex and Z3 can only be used in a mutually exclusive
way.

2.2 Installation

Here we describe the basic configuration of the library and the required steps
for successfully building the library. The library should be built out of source,
e.g. in a separate build folder. For the following we assume that the folder
hypro/build has been created.
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2.2.1 Configuration

To allow creating the required files for the CMake build system, please run

cmake ..

from the created build folder. The configuration of the build files for the library
can be accessed and modified using the graphical user interface for CMake
from the created build folder via the command

ccmake ..

Among other, CMake specific options, HyPro provides the following configu-
ration options:

• HYPRO_LOGGING allows to enable/disable logging.

• HYPRO_LOG_LEVEL allows to set the log level. Note: This has only an
effect, when HYPRO_LOGGING is enabled. Possible log levels are TRACE,
DEBUG, INFO, WARN, FATAL (sorted in decreasing order according to the
verbosity).

• HYPRO_USE_OPENMP enables support of OpenMP for Eigen3.

• HYPRO_USE_PPL enables the provided PPL wrapper class for the user.
Note: This requires PPL to be installed.

• HYPRO_USE_SMTRAT enables SMT-RAT as an additional exact linear opti-
mizing framework. Note: This requires SMT-RAT to be installed. Can-
not be used in combination with SoPlex or Z3.

• HYPRO_USE_SOPLEX enables SoPlex as an additional exact linear optimiz-
ing framework. Note: This requires SoPlex to be installed. Cannot be
used in combination with SMT-RAT or Z3.

• HYPRO_USE_Z3 enables Z3 as an additional exact linear optimizing frame-
work. Note: This requires Z3 to be installed. Cannot be used in combi-
nation with SMT-RAT or SoPlex.

After having configured the build system, the library can be build.

2.2.2 Building

To build the library after successful configuration, we require to build shipped
resources (currently GTest) first via

make resources

from the created build folder. After having built the shipped resources we are
ready to build the library using

make

The provided test can be run using

make test

Additional information regarding installation of the current release is pro-
vided at https://hypro.github.io/hypro/html/.
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3 Tutorial

Here we give a short tutorial on how to start off using the library. We assume
the reader is familiar with basic C++.

3.1 Matrices, Vectors

HyPro uses basic Eigen3 matrix and vector types as underlying datastruc-
tures. Typetraits have been extended such that matrices and vectors can be
used with the types mpq_class and cl_RA as well. For convenience, we intro-
duce the templated typedefs matrix_t and vector_t which can be used in the
same way as Eigen3 types:

1 using namespace hypro;
2 using Number = mpq_class;
3
4 matrix_t <Number > A = matrix_t <Number >(2 ,2);
5 A << 1,2,3,4;

The above example allows to create a 2×2-matrix filled with the values 1, 2, 3, 4
(row-wise). The same matrix can be obtained using cell-wise assignment:

1 using namespace hypro;
2 using Number = mpq_class;
3
4 matrix_t <Number > A = matrix_t <Number >(2 ,2);
5 A(0,0) = 1;
6 A(0,1) = 2;
7 A(1,0) = 3;
8 A(1,1) = 4;

The same holds for the type vector_t, which is implicitly a n×1-matrix. The in-
troduced typedefs hypro::matrix_t<Number> and hypro::vector_t<Number>

thereby alias the Eigen3 types Eigen::Matrix<Number, Eigen::Dynamic,

Eigen::Dynamic> and Eigen::Matrix<Number, Eigen::Dynamic, 1> respec-
tively. This allows for using all Eigen3 functions on the matrix and vector
types.

3.2 Points, Halfspaces

Using the previously presented matrix and vector types, we can introduce the
class of a point (hypro::Point<Number>) and a half-space (hypro::Halfspace
<Number>), which build the foundation for our representations.

1 // vector_t and Point can be converted into each other
and used for construction.

2 Point <Number > p1 = Point <Number >({1 ,2});
3 vector_t <Number > coordinates1 = p1.rawCoordinates ();
4
5 vector_t <Number > coordinates2 = vector_t <Number >(2);
6 coordinates2 << 1,2;
7 Point <Number > p2 = Point <Number >( coordinates2);

A half-space in HyPro is defined by a normal vector ~n ∈ Rd and a scalar
type c defining the plane offset and corresponds to a constraint ~nT · x ≤ c. We
can construct half-spaces using the vector type or initializer lists directly:
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1 // initializer lists for construction
2 Halfspace <Number > hsp1 = Halfspace <Number >({1 ,2} ,3);
3
4 // using vector_t for construction
5 vector_t <Number > normal = vector_t <Number >(2);
6 normal << 1,2;
7 Halfspace <Number > hsp2 = Halfspace <Number >(normal , 3);

Halfspaces can be used to construct geometric objects such as H-polytopes
or they can be used for intersection (see next section).

3.3 Geometric objects

Geometric objects build the core of our library. In its current state HyPro pro-
vides implementations for boxes, convex polytopes (H- and V-representation),
orthogonal polyhedra, zonotopes and support functions. A unified interface
(file: GeometricObject.h) is defined consisting of the following functions:

• std::size_t dimension() returns the space dimension of the object.

• std::pair<bool, DerivedShape> satisfiesHalfspace( const

Halfspace<Number>& rhs ) computes the intersection of the current
object and a given halfspace. The returned pair consists of the Boolean
stating that the result object is empty and the resulting object.

• std::pair<bool, DerivedShape> satisfiesHalfspaces( const

matrix_t<Number>& _mat, const vector_t<Number>& _vec ) works
similar to satisfiesHalfspace, except that the input is a set/con-
junction of half-spaces collected in a matrix which defines the set
P = {x| mat · x ≤ vec}.

• DerivedShape project(const std::vector<unsigned>& dimensions

) projects the current object on the passed dimensions. Each dimension
can be identified by its index starting from 0.

• DerivedShape linearTransformation( const matrix_t<Number>& A

) returns the resulting object of a linear transformation of the current
object with a provided linear map A.

• DerivedShape affineTransformation( const matrix_t<Number>&

A, const vector_t<Number>& b ) returns the resulting object of an
affine transformation of the current object an a linear map A and an
additional offset vector b.

• DerivedShape minkowskiSum( const DerivedShape& rhs ) computes
Minkowskis’ sum of the current and the passed object.

• DerivedShape intersectHalfspace( const Halfspace<Number>&

rhs ) computes the intersection of the current object and the passed
halfspace.

• DerivedShape intersectHalfspaces( const matrix_t<Number>&

_mat, const vector_t<Number>& _vec ) computes the intersection of
the current object and a set of halfspaces given as a matrix _mat and a
vector _vec.
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• bool contains( const Point<Number>& point ) tests if the passed
point is contained inside the current object.

• DerivedShape unite( const DerivedShape& rhs ) computes the
union of the current object and the passed object. The result is the
smallest convex shape of the same type containing the exact result which
ensures closure of this operation.

We will show the usage of the interface on boxes in a short example:

1 #include ” r ep r e s en t a t i on s /GeometricObject . h”
2 #include ” da ta s t ru c tu r e s /Hal f space . h”
3 #include ” u t i l / P l o t t e r . h”
4
5 int main ( )
6 {
7 using namespace hypro ;
8
9 // use r a t i o n a l a r i thmet i c .

10 typedef mpq class Number ;
11
12 // get p l o t t e r r e f e r e n c e .
13 Plot te r<Number>& p l o t t e r = Plot te r<Number> : : g e t In s tance ( ) ;
14
15 // c r ea t e some trans fo rmat ion matrix .
16 matr ix t<Number> A = matr ix t<Number> : : Zero (3 , 3 ) ;
17 A(0 ,0 ) = 1 ;
18 A(1 ,1 ) = c a r l : : convert<double , Number>( c a r l : : cos (45) ) ;
19 A(1 ,2 ) = c a r l : : convert<double , Number>(−c a r l : : s i n (45) ) ;
20 A(2 ,1 ) = c a r l : : convert<double , Number>( c a r l : : s i n (45) ) ;
21 A(2 ,2 ) = c a r l : : convert<double , Number>( c a r l : : cos (45) ) ;
22
23 // c r ea t e some t r a n s l a t i o n vec tor .
24 vec to r t<Number> b = vec to r t<Number> : : Zero (3 ) ;
25
26 // c r ea t e a box out o f two given l im i t po in t s .
27 Box<Number> te s tbox ( std : : make pair ( Point<Number>({−2,2 ,−4}) , Point<

Number>({2 ,4 ,−2}) ) ) ;
28
29 // compute a l l v e r t i c e s o f the box and output them .
30 std : : vector<Point<Number>> t v e r t i c e s = tes tbox . v e r t i c e s ( ) ;
31 for ( const auto& vertex : t v e r t i c e s )
32 std : : cout << ver tex << std : : endl ;
33
34 // transform the i n i t i a l box with the c reated matrix and vector (

a f f i n e t rans fo rmat ion ) .
35 Box<Number> r e s = tes tbox . a f f i n eTrans fo rmat i on (A, b) ;
36
37 std : : vector<Point<Number>> v e r t i c e s = r e s . v e r t i c e s ( ) ;
38 for ( const auto& vertex : v e r t i c e s )
39 std : : cout << ver tex << std : : endl ;
40
41 // c r ea t e a second box which i s two dimens iona l .
42 Box<Number> tes tbox2 ( std : : make pair ( Point<Number>({−2,−2}) , Point<

Number>({2 ,2}) ) ) ;
43
44 // c r ea t e a ha l f s pa c e ( cu t t e r ) from a normal vec to r and an o f f s e t .
45 matr ix t<Number> normal = matr ix t<Number>(1 ,2) ;
46 vec to r t<Number> o f f s e t = vec to r t<Number>(1) ;
47 normal << 1 , 1 ;
48 o f f s e t << c a r l : : r a t i o n a l i z e<Number>(−0.5) ;
49 vec to r t<Number> hsNormal = vec to r t<Number>(2) ;
50 hsNormal << 1 , 1 ;
51 Hal fspace<Number> cu t t e r = Halfspace<Number>(hsNormal , c a r l : :

r a t i o n a l i z e<Number>(−0.5) ) ;
52
53 // we can a l s o p lo t ha l f s p a c e s
54 p l o t t e r . addObject ( cu t t e r ) ;
55 unsigned o r i g i n a l = p l o t t e r . addObject ( tes tbox2 . v e r t i c e s ( ) ) ;
56
57 // add the i n t e r s e c t i o n o f the second box and the c reated ha l f s pa c e to

the p l o t t e r i n s tance .
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58 // Note : s a t i s f i e s H a l f s p a c e s r e tu rn s a pa i r <bool , Representat ion >.
59 unsigned cutted = p l o t t e r . addObject ( tes tbox2 . s a t i s f i e s H a l f s p a c e s (

normal , o f f s e t ) . second . v e r t i c e s ( ) ) ;
60
61 // s e t c o l o r s and p lo t ( gnuplot ) .
62 p l o t t e r . s e tObjectCo lor ( o r i g i n a l , hypro : : p l o t t i n g : : c o l o r s [ hypro : :

p l o t t i n g : : green ] ) ;
63 p l o t t e r . s e tObjectCo lor ( cutted , hypro : : p l o t t i n g : : c o l o r s [ hypro : : p l o t t i n g

: : red ] ) ;
64 p l o t t e r . p lot2d ( ) ;
65
66 return 0 ;
67 }

In this example, after initialization, a box (hypro::Box<Number>) is created
(Line 27) from its limit points (see Section 4). We collect all vertices of the
created box and use the outstream operator to print their string representation
to std::cout (Lines 30-32). Note that the outstream operator is defined for
most objects in HyPro. Afterwards an affine transformation is applied (Line
35). As boxes are not closed under this operation, the result is the smallest
box containing the resulting set (the interval hull of the result). After creation
of a second box and a halfspace, the second box is intersected with the half-
space and the result is tested for emptiness (Line 59). Note that the function
satisfiesHalfspace(..) returns a pair of a Boolean value and a geometric
object. The Boolean value holds the result of the emptiness check and the
geometric object is the resulting object.

3.4 Utility functions

Among the previously presented geometric objects, the HyPro library also
holds utility functions to simplify the development of reachability analysis algo-
rithms.

3.4.1 Linear optimization and solving

Some representations such as support functions require linear optimization to
be implemented. For HyPro we provide a wrapping class Optimizer<Number>,
which provides a unified interface for linear optimization and solving. It makes
use of a two-level approach utilizing glpk and possible secondary solvers such as
SMT-RAT, SoPlex or Z3. The central idea is to use glpk as a fast presolver
and improve the result by exact optimization backends. Note that the use of
the second stage solving is optional and can be selected via the configuration of
the library (see Section 2). The optimizer provides the functions

• void setMatrix (const matrix_t<Number>& _matrix) and void

setVector (const vector_t<Number>& _vector) which are used to set
up the system of linear equations matrix · ~x ≤ vector.

• EvaluationResult<Number> evaluate (const vector_t<Number>&

_direction) calls for a linear optimization (maximize) of a previously
provided system of linear constraints using the cost function _direction.
The returned object contains the optimal solution value, a point which is
optimal and an error code stating if the problem is unbounded, satisfiable
or unsatisfiable.
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• bool checkConsistency() checks, if there exists a solution to the previ-
ously defined set of constraints, i.e. if the set defined by the conjunction
of linear constraints is empty, and returns true, if the set is not empty.

• bool checkPoint(const Point<Number>& _point) checks, if the passed
point is a solution to the set of constraints.

• EvaluationResult<Number> getInternalPoint() is an extension to
checkConsistency(), as it also returns a valid solution, in case there
is one.

• std::vector<std::size_t> redundantConstraints() checks the set of
passed constraints for redundancy. A constraint is redundant, whenever
the constraint does not constrain the solution space, i.e. its removal does
not add solutions to the problem.

3.4.2 Output

For most types, the outstream operator (operator<<(..)) is overloaded allow-
ing to obtain a simple string representation of an object. Furthermore, geometric
shapes can be output to a gnuplot file for a visualization using the provided
singleton plotter class (hypro::Plotter<Number>):

1 #include ” u t i l / P l o t t e r . h”
2 #include ” r ep r e s en t a t i on s /GeometricObject . h”
3
4 int main ( ) {
5 using namespace hypro ;
6
7 // get a r e f e r e n c e to the s i n g l e t on P lo t t e r .
8 Plot te r<double>& p l t = Plot te r<double> : : g e t In s tance ( ) ;
9

10 // c r ea t e some object , in t h i s case a box .
11 // we use c a r l : : I n t e r v a l to c r ea t e our box here .
12 std : : vector<c a r l : : I n t e rva l<double>> box In t e rva l s ;
13 box In t e rva l s . push back ( c a r l : : I n t e rva l<double>(2 ,3) ) ;
14 box In t e rva l s . push back ( c a r l : : I n t e rva l<double>(1 ,2) ) ;
15 Box<double> box = Box( box In t e rva l s ) ;
16
17 // now we can use the p l o t t e r to p l o t our box . The p l o t t e r r e tu rn s
18 // a unique id to r e f e r e n c e the ob j e c t .
19 unsigned boxId = p l t . addObject ( box . v e r t i c e s ( ) ) ;
20
21 // we can use the id to change the c o l o r :
22 p l t . s e tObjectCo lor ( boxId , p l o t t i n g : : c o l o r s [ p l o t t i n g : : red ] ) ;
23
24 // when invoking the plot2d ( ) method , the p l o t t e r c r e a t e s a
25 // gnuplot output f i l e which p l o t s the f i r s t two dimensions
26 // ( t h i s can be changed in the s e t t i n g s o f the p l o t t e r ) .
27 p l t . p lot2d ( ) ;
28
29 return 0 ;
30 }

In its current state, the plotter creates gnuplot output files via the function
plot2d() of the passed objects. The method plotTex() also creates a gnuplot
output file, but with the LATEX terminal enabled (standalone mode), such that
the result will be a TEX file. In general the gnuplot files (*.plt) can be processed
by passing them to gnuplot, i.e.

gnuplot out.plt
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Figure 1: Box representation.

4 State set representations

To implement a reachability analysis algorithm, we need datatypes for the rep-
resentation of state sets, and certain (over-approximative) operations (union, in-
tersection, linear transformation, Minkowski sum etc.) on them. Most flowpipe-
construction-based reachability analysis approaches rely on geometric represen-
tations (e.g., boxes/hyperrectangles, oriented rectangular hulls, convex polyhe-
dra, template polyhedra, orthogonal polyhedra, zonotopes, ellipsoids) or other
symbolic representations (e.g., support functions or Taylor models) for state
sets.

The variety of representations is rooted in the general problem of deciding
between computational effort and precision. Generally, faster computations
often come at the cost of precision loss and vice versa, more precise computations
need higher computational effort. The representations might differ in their
size, i.e., the required memory consumption, which has a further influence on
the computational costs for operations on these representations. While some
representations are able to perform certain operations very efficiently, other
operations on the same representation, which are also needed for the analysis,
can be computationally expensive.

In the following we describe some of the most popular state set representa-
tions also implemented in HyPro. Let I be the set of all intervals [a, b], [a,∞),
(−∞, b], (−∞,+∞) ⊆ R with a, b ∈ R; for simplicity, we call cross-products of
intervals from I also intervals. An interval is bounded if both of its bounds are
finite.

Boxes A box is defined by the cross product of intervals, one for each dimen-
sion of the state space (see Figure 1(a)).

Definition 1 (Box). A set B ⊆ Rd is a box if there exist intervals I1, . . . , Id ∈ I
such that

B = I0 × . . .× Id .

A box can be represented by the sequence (I1, . . . , Id) of the intervals defin-
ing it. Alternatively, we can represent a box by its minimal and its maximal
point (see Figure 1(b)). Boxes are well-suited for fast computations in flowpipe
construction, however, they often lead to large over-approximations. Boxes are
widely used also in other fields such as in interval constraint propagation (ICP),
which itself is used for SMT-solving-based reachability analysis of hybrid sys-
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Figure 2: Convex polytope representation.

tems [FHR+07]. Implementations of boxes are also contained in most polytope
libraries.

Convex polytopes A convex polyhedron can be defined by the intersection
of finitely many halfspaces.

Definition 2 (Convex polyhedron). A set P ⊆ Rd is a convex polyhedron if
there are n ∈ N and ci ∈ Rn, di ∈ R, i = 1, . . . , n such that

P =

n⋂
i=1

hi where hi = {x ∈ Rd | cTi · x ≤ di} .

In the following we restrict ourselves to closed convex polyhedra called convex
polytopes, which have two widely used representations. An H-representation
(C, d) consists of a n×d matrix C with ci being its ith row and an n-dimensional
vector d with di being its ith components, and specifies the polytope P =⋂n

i=1{x | cTi ·x ≤ di} (see Figure 2(a)). Alternatively, a V-representation consists
of a finite set V of d-dimensional points and specifies a polytope as the convex
hull P = conv(V ) of those points (see Figure 2(b)).

Polytopes are a more complex representation as for instance boxes but al-
low for a more precise description of a set. The two presented representations
are complementary in the complexity of the required operations for reachabil-
ity analysis. Computing the convex hull of union requires little computational
effort in the V-representation but is hard in the H-representation, whereas in-
tersection can easily be performed with the H-representation of a polytope but
it is hard in the V-representation. Unfortunately, conversion between the two
representation requires either facet enumeration of a set of vertices or vertex
enumeration of a set of hyperplanes, which are both computationally difficult.
There are libraries already providing implementations of convex polytopes such
as [BHZ08] [GJ00], but as they are intended to provide general purpose im-
plementations, functionality required for hybrid systems reachability analysis
is not fully optimized (e.g. PPL does currently not provide Minkowski sum
implementations).

Zonotopes Zonotopes, sometimes also referred to as parallelotopes, are point-
symmetric sets that can be defined as the Minkowski sum of a finite set of line
segments shifted to a given centre point (see Figure 3).
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Definition 3 (Zonotope). A set Z ⊆ R is a zonotope if there is a center c ∈ Rn

and a finite set G = {g1, . . . , gn} of generators gi ∈ Rd such that

Z =

{
x

∣∣∣∣ x = c+

n∑
i

λi · gi, −1 ≤ λi ≤ 1

}
.

Zonotopes can be represented by their defining vectors (c, g1, . . . , gn), i.e., by
their center and the generators. Zonotopes are and due to their structure allow
for a fast computation of the operations union and Minkowski sum. However,
intersections with halfspaces or other zonotopes are hard to compute. Zonotopes
are often used due to their reduced storage requirement in comparison to for
example convex polytopes. Zonotope implementations are contained in the C++

library polymake as well as in the Matlab tool collection Cora.

Support functions Support functions are, in contrast to the above presented
representations, a symbolic representation, which allows queries for specific di-
rections and will return a support value (see Figure 4).

Definition 4 (Support function). A support function is a function σ : Rd → R
defining a set

S =
{
x ∈ Rd

∣∣ r · x ≤ σ(r) for all r ∈ Rd
}
,

where σ(r) ∈ R is called the support value for the given direction r ∈ Rd.

The definition of support functions allows for an implementation, which re-
duces computation time during reachability analysis significantly. This is due
to the fact that while other representations always maintain the explicit ob-
ject, support functions only need to store the operation and its parameters.
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Figure 5: Taylor model approximations of different degrees.

Whenever the support value of a given direction is queried, the stored oper-
ations are applied reversed on the direction vector instead of applying them
to the whole object. This implies that only directions are computed which
are of interest instead of the full resulting object. The disadvantage of this
representation is, that unless infinitely many directions are queried, the exact
shape of the set is hidden. Support functions are used for example in the tool
SpaceEx, which successfully makes use of algorithms optimized for support
functions (LGG [LGG10, FGD+11], STC [FKL13, Fre15]).

Taylor models are a state set representation, which can be used for the
reachability analysis of non-linear hybrid systems. The basic idea is to over-
approximate the given dynamics by a polynomial of fixed degree k bloated by a
suitable interval I, such that for a fixed initial set and a fixed time interval, all
solutions of the ODE are contained in the area spanned by the Minkowski sum
of the polynomial and the interval (see Figure 5).

Formally, assume a bounded domain D ∈ Id. A given polynomial p is a
k-order Taylor approximation of a function f : D → R iff

1. all partial derivatives of f up to order k exist and are continuous, denoted
by f ∈ Ck, and

2. f(c) = p(c) for the centre point c of D and for each 0 < m ≤ k, all of the
order m partial derivatives of f and p coincide at c.

For any f, g : D → R, f, g ∈ Ck and k ≥ 0, we write f ≡k g iff there is a
polynomial p which is a k-order approximation of both f and g. Taylor models
are based on the equivalence relation ≡k.

Definition 5 (Taylor Model). A Taylor model of order k > 0 over a bounded
domain D ∈ Id is a pair (p, I) of a polynomial p of degree at most k over d
variables x and a remainder interval I ∈ I. We say that (p, I) is a k-order
over-approximation of a function f : D → R, written f ∈ (p, I), iff (i) p ≡k f
and (ii) ∀x ∈ D. f(x) ∈ p(x) + I := {p(x) + y | y ∈ I}.

12



4.1 Operations on state set representations

Flowpipe-construction-based reachability analysis algorithms need to apply cer-
tain operations on sets, whose complexity depends on the state set represen-
tation used. These operations include the (convex hull of) union, intersection,
Minkowski sum, linear transformation as well as tests for emptiness and mem-
bership. Assume a domain D, and subsets A,B, S ⊆ D.

• conv(·
⋃
·) (union): As convex sets are not closed under the operation

union, for convex state set representations the convex hull of the union is
computed; nevertheless, we often refer to this operation just as union:

A
⋃
B = conv

{
x
∣∣ x ∈ A or x ∈ B

}
.

The convex hull of the union of two sets is required for the computation
of the first segment of a flowpipe and in case aggregation of segments is
used. Note that some state set representations are not closed under the
operation convex hull either (e.g. boxes). In that case, when referring to
a convex hull we mean the smallest set in that representation containing
the convex hull.

• ·
⋂
· (intersection): The intersection of two sets is defined as

A
⋂
B =

{
x
∣∣ x ∈ A and x ∈ B

}
.

Intersection of two sets is required whenever a flowpipe segment is
checked against the invariant of the current location, for checking
whether a guard condition holds, for checking the reachability of
bad states, and for fixed-point detection. Note that all mentioned
checks also imply a test for emptiness of the result of the inter-
section, which is why we provide a direct method performing both
steps in one call for halfspaces, which are usually used to repre-
sent guards and invariants (std::pair<bool,Representation<Number>>
satisfiesHalfspace( const Halfspace <Number>& hsp)).

• ·⊕ · (Minkowski sum): The Minkowski sum is the set-theoretic equivalent
of addition:

A⊕B =
{
x
∣∣ x = a+ b, a ∈ A, b ∈ B

}
.

In case of an autonomous system, Minkowski sum is only required for the
computation of the first flowpipe segments (bloating). In case of a non-
autonomous system, additional bloating for each segment is added via the
application of the Minkowski sum.

• A(·) (affine transformation): The affine transformation of a given set S is
defined as

A(S) =
{
x
∣∣ x = A · y + b, y ∈ S

}
,

with A a d× d-dimensional transformation matrix and b ∈ Rn specifies a
translation. The application of an affine transformation does not increase
the representation size. In flowpipe construction, the recurrence relation

13



·
⋃
· ·

⋂
· · ⊕ · A(·)

Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

Table 1: State set operations and their complexity

allows to compute the next flowpipe segment from the current one by
applying an affine transformation, which makes the affine transformation
in general a frequently used operation.

• Test for emptiness is a predicate checking whether a set is empty, i.e.,
whether S = ∅ holds.

• Test for membership is a further predicate which checks whether a given
value is contained in the set, i.e., whether x ∈ S for some input value
x ∈ D.

These (and possibly further) operations must be defined and implemented for
all state set representations used in the reachability analysis algorithm. We do
not describe the single implementations here, but emphasize that the complexity
of these operations might strongly differ for different representations.

To find the right balance between efficiency and precision, the choice of the
state set representation as well as different kinds of optimisations play a crucial
role in flowpipe-construction-based methods. Unfortunately, there is no opti-
mal representation for which all necessary operations can be easily computed
(see Table 1). While support functions seem to be optimal in most operations,
they usually require more storage and require a lot of linear optimization calls
in general. We also can observe that representations based on points, such as
V-polytopes or boxes, perform good on operations such as union, linear trans-
formation or Minkowski sum. Representations that are based on constraints,
such as H-polytopes, naturally perform good on intersection computations.

Besides the complexity of the single operations, one has to keep in mind that
not all operations are used in the same frequency. Based on the hybrid system
model we want to analyse and on the approach we utilise for reachability analy-
sis, the usage of operations varies. For example for linear autonomous systems,
the operations Minkowski sum and union are performed only once per flowpipe,
whereas a similar but non-autonomous system requires a more frequent applica-
tion of the Minkowski sum. When enhancing standard algorithms for reduction
techniques, the operation union is used more frequent, otherwise it is used again
only once for each flowpipe computation (main loop iteration). The operation
intersection is generally used on every computed flowpipe segment, but when
the flowpipes are holding only a small number of segments and there are more
locations, its significance for computation time might be reduced. There are
also some results on reducing the frequency of applications for problematic op-
erations, see e.g. [AK12] for avoiding intersection computations.
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As the complexity of some operations is representation-dependent, to im-
prove efficiency, most algorithms change the representation for certain compu-
tations using over-approximative transformations. Another efficiency-relevant
issue is the reduction of the number of state sets for which successors need to
be computed by clustering and aggregation: several state sets in a flowpipe or
several successors for a jump can be over-approximated by a single set. Last but
not least, the representation size is often reduced on the cost of an additional
over-approximation error.
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