
Opleiding Informatica

Efficiently generating the Mandelbrot and Julia sets

Luc de Jonckheere

Supervisors:

Rudy van Vliet

Kristian Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 29/08/2019

www.liacs.leidenuniv.nl

Abstract

The Mandelbrot and Julia sets are very famous fractals. They became widespread because of the visually

appealing images they generate. Generating images of these sets is computationally very expensive, especially

the more appealing images. This prevents users from interactively exploring these fractals. In this thesis, we

research methods to generate fractals efficiently and try to build a user friendly application to explore fractals.

This application and its code should also serve as a tool for people interested in learning about developing

and optimizing fractal viewers.

There are two main methods of optimizing the computation of fractals. One tries to prevent calculating

some pixels using mathematical properties of the fractals. In this thesis we describe symmetry pasting, shape

checking and border tracing. The other method utilizes the fact that pixels can be calculated in parallel. The

speed-up of these optimizations depends on the part of the fractal which is generated. Experiments show

speed-ups of almost 10 to 100 times when using all optimizations with 8 cores compared to a single core brute

force implementation.

1

Contents

Abstract 1

1 Introduction 4

1.1 History of the Mandelbrot and Julia fractals . 5

1.2 Motivation . 5

1.3 Related work . 6

1.3.1 Current publications and articles . 6

1.3.2 Current software . 7

1.4 Our contributions . 8

1.5 Thesis overview . 9

2 Preliminaries 10

2.1 Complex mathematics . 11

2.2 Mandelbrot set . 11

2.3 Julia sets . 12

2.4 Self-similarity . 13

3 Implementation 15

3.1 Escape time algorithm . 16

3.1.1 Calculating escape iteration . 16

3.1.2 Coloring . 16

3.2 Exterior distance estimation coloring . 18

3.3 Scaling and translation . 19

3.3.1 Translation . 19

3.3.2 Scaling . 21

3.4 Arbitrary precision floats . 21

3.5 Julia window . 23

3.6 Orbit plotting . 24

3.7 Design choices and program architecture . 24

2

4 Optimizations 27

4.1 Parallelization . 27

4.2 Pixel reuse . 28

4.3 Symmetry . 29

4.4 Shape checking . 30

4.5 Border tracing . 31

4.5.1 Implementation . 33

4.5.2 Multi-threading . 34

5 Experiments and discussion 36

5.1 Brute force . 36

5.2 Symmetry . 37

5.3 Shape checking . 38

5.4 Border tracing . 39

5.5 Multi-threading . 40

5.6 Combining all optimizations . 43

5.7 GMP . 44

6 Conclusions 47

7 Future work 49

7.1 Symmetry/shape check improvement . 49

7.2 Explicit SIMD . 49

7.3 Handwritten assembly . 50

7.4 GPU acceleration . 50

7.5 Deepen . 50

7.6 Perturbation theory . 51

7.7 Scaling . 51

7.8 Successive refinement . 52

Appendix A Experiment domains and parameters 54

Appendix B Future Fraccert features and improvements 56

B.1 Coloring improvements . 56

B.2 Precise translation and scaling . 57

B.3 Symmetry pasting in back-end . 57

Appendix C Border trace implementation 58

Bibliography 61

3

Chapter 1

Introduction

This thesis describes methods to generate the Mandelbrot and Julia sets efficiently. In this chapter, we first

give an overview of the history behind the sets followed by the motivation for this work. Then, we take a look

at current software for generating the Mandelbrot fractal. Finally, we give an overview of this thesis. Figure 1.1

shows some examples of the Mandelbrot fractal.

Figure 1.1: Some examples of the Mandelbrot fractal.

4

1.1 History of the Mandelbrot and Julia fractals

The study of the Mandelbrot and Julia sets is a part of complex dynamics. This is a field of mathematics which

studies the behavior of iterative functions in the complex plane. Complex dynamics was pioneered by Pierre

Fatou and Gaston Julia around 1920. Fatou was the first to study the function which defines the Mandelbrot

set. Unfortunately for him, computers and computer graphics were not advanced enough to visualize his

works for another 60 years [BM09]. Julia first described the Julia sets and his publication on this became very

famous [Jul18]. Hubert Cremer made the first drawing of a Julia set based on this work [Cre25], see Figure 1.2.

Even though Julia became famous, his works were mostly forgotten until much later.

In the 1980s, fractals became popular again through the work of Benoit Mandelbrot in the years 1975–1980. In

1978, the Mandelbrot set was first defined and drawn [Mat78], see Figure 1.3. Note that in this publication, the

word fractal was not yet used. Later, the set was named after Benoit Mandelbrot in honor of his work in fractal

geometry. Computers became more powerful and computer graphics more advanced. The Mandelbrot set was

often used as a graphics demonstration and an increasing number of people learned about it. Even people

who were not mathematicians got interested because fractals are visually appealing. Since the Mandelbrot set

is one of the first fractals to become popular, it is the most researched fractal.

Figure 1.2: First drawing of a Julia set by Hubert Cremer,
1925.

Figure 1.3: First visualization of the Mandelbrot set by
Robert W. Brooks and Peter Matelski, 1978.

1.2 Motivation

Current software for generating fractals is still very slow. It can easily take seconds to generate a computa-

tionally cheap image. This prevents users from viewing fractals interactively. One possible way to achieve

interactivity is by precalculating a specific area. However, it is difficult to guess where interesting or visually

appealing parts are, so precalculating has to be done carefully. Also, the deeper the zoom level is, the more

visually appealing the resulting images become and calculation times increase significantly.

The goal of this thesis is to research methods to efficiently generate fractals. We hope to perform the calcula-

tions fast enough to facilitate interactive viewing. The real-time constraint should be low enough so the user

is not hindered by the latency between pressing a button and seeing the result. We set our real-time constraint

to one second. Even though a latency of one second is very high, it still is a reasonable time to be asked to

5

wait, especially on high zoom levels.

In this thesis, we often refer to ‘front-end’ and ‘back-end’ when talking about fractal viewers. The task of a

back-end in this context is handling the computation of the fractal. The task of the front-end is displaying the

fractal and providing an interface for the user which allows interactivity.

We need a tool to test if our results are correct and are calculated within the real-time constraint. Since we

could not find a tool which would easily support a different back-end, we decided to develop our own fractal

viewer named Fraccert. Fraccert should have a clear division between the front-end and back-end, so it will

allow others to change one of the two components. This way, others can easily research other methods of

efficiently generating or displaying fractals. To facilitate this, the code should be easy to understand and easily

expandable, so modularity and clear high level design is very important. So our second goal is to develop a

tool which can be used to research fractal generation methods with. Other fractal viewers are not well suited

to perform experiments with, so our tool will focus on a structure which allows timing different parts of the

calculation process.

The performance of the front-end is as important for interactivity as the performance of the back-end. So

our front-end should efficiently use our back-end to display the calculated fractals. Not only are there some

optimizations which can be applied in the front-end to increase interactivity. A user friendly front-end can

also save many calculations. For instance, if the rendered screen is not what the user wanted, the screen has

to be adjusted slightly and rendered again. If the user had better control, this second render could have been

prevented. So our third goal is making an efficient, user friendly front-end to display our results with.

1.3 Related work

There are many articles available on generating the Mandelbrot and Julia sets. Unfortunately, due to the

popularity among non-mathematicians, there is much incorrect information available, especially in the easier

to understand pieces. Many sources blindly copy from other sources (mostly Wikipedia) without referencing

them. Sources with correct information are difficult to find, because there are many sources with incorrect

information. The best available information comes from mathematical papers. These papers are very technical

and require a thorough understanding of complex dynamics which is a difficult field of mathematics which

describes these fractals. They also require knowledge of (algebraic) topology.

1.3.1 Current publications and articles

All important background knowledge of fractals is covered in [Cro95]. This work introduces the mathematical

concepts without being too technical. This makes the mathematics describing the sets easy to understand.

There exist many methods to color a fractal. We need a coloring algorithm which takes one parameter and

returns a color, which is a three dimensional parameter. So we need a function f : R → R3. We would like

this function to be continuous so that two input values which are close together produce two output values

which are close together1. Many methods rely on expensive operations like the sine function. [Sil13] presents

a function which is relatively inexpensive to compute and produces a visually appealing color spectrum.
1This does not follow from the definition of continuous. However, if the function is continuous, we can easily scale this function to

get the desirable behavior.

6

[Wil] shows an easy method to prove the Mandelbrot set is symmetric around the real axis and [Bea16] proves

this for the Julia sets. These symmetries can be used to optimize the computation of these sets.

[Cro05] shows a method to algebraically determine functions which define parts of the Mandelbrot set. Using

these functions, we can skip calculating some pixels. The article expresses the functions in a polar coordinate

system. In Fraccert, we use a Cartesian coordinate system, so we have to transform these functions to our

coordinate system.

There are general algorithms which perform border tracing, however, these are used in contexts outside of

fractal rendering. The main disadvantage of most methods is that the number of considered pixels is not

minimized. However, the ideas from these algorithm may be useful in a fractal rendering context. We only

found one article on border tracing in a fractal rendering context [Rue12], however, this method is not well

suited for SIMD optimizations, see Section 7.2. Border tracing is also mentioned by many other websites,

however, these websites only mention the concept and do not give details on implementing a border tracing

algorithm. The only details on an implementation of border tracing are segments of undocumented source

code [qba].

Another optimization which is mentioned often is periodicity checking. Here we check if an orbit reaches a

point it has reached before. If a certain point is reached a second time, we know it will not diverge because

the orbit will always return back to this point. This check is very expensive and most orbits do not reach

certain points twice, so its speed-up is very questionable. Also, because floats have limited precision (even

the GMP ones), this check might introduce errors. If a point reaches a neighboring point so close a float

cannot differentiate them, we would assume this point does not diverge. This may be incorrect, because the

point is slightly different and may have a totally different orbit. XaoS, which is discussed in the next section,

implements this optimization and also questions its use. To increase the effectiveness of this optimization,

we could consider points to be equivalent within a certain distance, however, this would further increase the

error.

1.3.2 Current software

There are many programs which can calculate and view fractals. Many of these use different techniques to

optimize the required calculations. We will discuss four programs. These are chosen because they are well

known within the fractal community. Fractint is one of the first popular fractal generators and it uses an

interesting optimization which is not useful anymore. The others have some interesting optimizations and

also have some problems we would like to avoid in Fraccert.
• Fractint [fra]: Fractint is one of the first widespread fractal generators. The name is a combination of

fractal and integer. Fractint was created in 1988. Back then, many computers did not have special floating

point math units. The ones available were very expensive. Instead of using floats, Fractint only uses

integers for its calculations. How this is done is described in [Pet91]. Fractint gained much performance

by using integers, since the floating point math units were much slower back then. Because it was one

of the first programs which had high performance on many systems, it became very popular.

7

• XaoS [xao]: XaoS supports high frame-rate zooming. It achieves this by reusing pixels from the previous

rendered frame. It is difficult to use previously calculated information when zooming. Using straight-

forward methods causes rendering artifacts. Many heuristics were tried to find a good pixel reusing

scheme. In the end, this effort led to a fractal viewer with very efficient scaling. XaoS does not support

easy translation of the view. Also, it has a lot of errors when it is not given enough time to correct them.

The smooth zooming only remains smooth when the maximum number of iterations is fairly low, which

limits the amount of detail.

• Gnofract 4D [gno]: Gnofract 4D is a versatile program. It supports custom iterative functions and

has many features. Its front-end feels slow and awkward to control. This results in a less interactive

experience. It also does not support smooth zooming. Rendering the Mandelbrot and Julia sets is not

very fast compared to other programs. This might be because the program is a general fractal viewer.

Many optimizations in rendering the Mandelbrot and Julia sets are specific to those sets. It also misses

some optimizations like pixel reuse in translation, which makes translating much slower. The program

tends to crash when performing too many actions to fast.

• NVIDIA’s Mandelbrot [nvi]: NVIDIA has a Mandelbrot renderer as sample code for its CUDA SDK.

This renderer uses GPU acceleration for calculating the Mandelbrot set. This program is faster than

any CPU implementation will ever be when using floats. However, when using doubles or ever higher

precision floats the performance quickly decreases, because consumer GPUs have little double precision

floating point units. Also, it does not have any algorithmic optimization, because performing checks

(branching) is much slower than brute-forcing on GPUs. Because of the performance drop on higher

precision floats and large overhead on optimizations, CPU implementations are still relevant.

Fraccert should be interactive and easy/fast to control. It should also achieve these goals without noticeably

impacting the performance. Fraccert should not only optimize the computation of the fractal, but also optimize

actions in the front-end to achieve minimal latency. It should also support unlimited detail, although it may

be hard to remain interactive beyond the limit of most other fractal viewers.

1.4 Our contributions

Distance estimation (Section 3.2) is normally used for smooth coloring, so there are many fractal viewers

which use similar formulas as ours. However, we did not find literature or fractal viewers using distance

estimation to make the thin filaments visible.

Symmetry pasting (Section 4.3) is used by many fractal viewers. Most implementations use the CPU for pixel

copying. We did not find any work which uses GPU acceleration for this.

As discussed in Section 7.1, it is possible to use a part of the real axis as a shape. As far as we know, this

shape is not considered in other publications or programs. Also, we did not see mentions of using hitbox

detection to only check for shapes within screen bounds. Most fractal viewers hard-code these to shapes in

the back-end, which prevents dynamically changing the shapes which are checked for, which in turn prevents

an easy implementation of the hitbox detection. This is why we use a list of shapes which the back-end has to

check for.

8

The general idea of border tracing (Section 4.5) came from other articles, but our implementation was our own

creation. No work mentions multi-threading combined with border tracing (Section 4.5.2), so we had to devise

our own threading scheme (dividing the screen in blocks). The only other understandable implementation

we found did not foresee SIMD (Section 7.2) in the future, which is possible with our implementation. Other

implementations coded border tracing into the function which computes the fractal, which prevent others

from only copying the border tracing part. Our implementation is separated from calculating the fractal,

which makes it easy to reuse in other projects.

When we developed the Julia window (Section 3.5) to visualize the Julia sets morphing, we did not know of

any program which had this feature. However, long after implementing it, we found out XaoS has a similar

feature. Not knowing this during development may have helped with designing our version which differs

from XaoS’ much, which resulted in a much less limited implementation.

In this thesis, all building blocks necessary to develop a fractal viewer are extensively described. We also

systematically tested the optimizations we implemented to measure their effectiveness; something we did not

find elsewhere when researching the optimizations methods. Current fractal viewers are not well suited to

perform experiments with. With our tool, new optimizations can easily be implemented in a clear manner

and experiments can be performed on them.

1.5 Thesis overview

This thesis is organized as follows. Chapter 2 contains background information about fractals, the math

used to describe them and some interesting behavior of fractals. Chapter 3 describes the different features

of Fraccert and the corresponding implementations. Chapter 4 describes more efficient implementations of

some features and methods to speed render times up. The performance of Fraccert and its optimizations is

measured in Chapter 5 and is concluded in Chapter 6. In Chapter 7 we discuss features and optimizations

which could still be added or improved.

9

Chapter 2

Preliminaries

There is no real definition for fractal. Before the Julia sets were found, the only known fractals consisted of

simple geometric rules or patterns. Examples of such fractals are the Cantor set and the Sierpinski triangle,

see Figure 2.1. Back then, the word fractal was not used. However, the definition of these figures was along

the lines of recursive self-similarity. Later, the definition became more refined and became along the lines of

a figure whose complexity is invariant under scaling (i.e. when you zoom in, the amount of detail does not

change). However, this definition is informal, as there is no good measure to define complexity of detail with.

After Benoit Mandelbrot discovered fractals, he coined the term fractal in 1975 and defined it as “a set with a

fractional Hausdorff dimension1” [Man77]. Later it was refined to “a set having Hausdorff dimension strictly

greater than its topological dimension”, since some fractals have a integer Hausdorff dimension. However,

this definition was also found to be too restrictive. Now, there is no formal definition of fractal, only a list of

characteristics which are often found in fractals such as self-similarity.

(a) Cantor set (b) Sierpinski triangle

Figure 2.1

1For integers, the Hausdorff dimension agrees with the topological dimension. A line is 1D, a square is 2D and a cube is 3D. When
you halve the measure of each dimension for a shape with an integer dimension (cut the shape in halve through every dimension), the
volume of the shape reduces by 2D , where D is the dimensions of the shape. This leaves us with 2D smaller copies of the shape. When
you halve the measure of each dimension of the Sierpinski triangle (to get n smaller copies of the original shape), you’ll get 3 smaller
copies of the triangle so it divides the volume by 3. So the dimension of the Sierpinski triangle is 2D = 3, which is log2(3) ≈ 1.585.
See [Man82] or [HOP92] for a more detailed explanation. Here, Hausdorff dimension is referred to as fractal dimension.

10

In this chapter, we quickly discuss basic complex math, because the Mandelbrot and Julia sets are sets of

complex numbers. Subsequently, we define and explain the Mandelbrot and Julia sets. Then, there is an

estimation of the amount of work needed to generate an image of the Mandelbrot set to show how important

efficiency is. Finally, we show different kinds of self-similar behavior.

2.1 Complex mathematics

In this thesis, we will refer to a complex number as a pair z = [x, y], which represents z = x + yi. The function

<(z) = x gives the real part of z and =(z) = y the imaginary part as a real number.

A complex number can be represented as a point in a graph, see Figure 2.2. Here, a complex number

represents coordinates in the complex plane. The addition of two complex numbers can be represented as the

addition of the two vectors describing the points, see Figure 2.2a. You can also define a complex number as

z = r ∗ (cos(θ) + i sin(θ)), where r = |z| (the modulus; distance to origin) and θ is the angle from the real axis.

In this representation, a complex multiplication is defined as

z ∗ w = |z| ∗ (cos(θ) + i sin(θ)) ∗ |w| ∗ (cos(φ) + i sin(φ))

= |zw| ∗ (cos(θ + φ) + i sin(θ + φ)).

This can be interpreted as adding the angles and multiplying the moduli of the complex numbers, see

Figure 2.2b.

(a) Addition (b) Multiplication

Figure 2.2: Visualization of complex operations.
Source: https://www2.clarku.edu/faculty/djoyce/complex/

2.2 Mandelbrot set

The Mandelbrot set is a set of complex numbers. A complex number c is in the Mandelbrot set if it does not

diverge when iterated through the iterative function mc(z) : zn+1 = z2
n + c for n = 0 to ∞, where z0 = 0.

Figure 2.3 visualizes some iterations of the iterative function for two complex numbers. For any iterative

function, the left side is always zn+1, so we will omit this in the rest of the thesis. Also, on the right side the

subscript for z is always n, so the subscript will also be omitted.

11

https://www2.clarku.edu/faculty/djoyce/complex/

Figure 2.3: A visualization of iterating complex numbers in the complex plane.
Source: https://commons.wikimedia.org/wiki/File:Complex_mandelbrot_illustration.png

Edited by the author.

It can easily be proven that complex numbers z where |z| > 2 diverge [Cro95]. This implies that the Mandelbrot

set is bounded by a closed disk around the origin of radius 2. Here is an example calculation for c = [−1.5, 1].

z0 = [0, 0] |[0, 0]| = 0

z1 = [0, 0]2 + [−1.5, 1] = [−1.5, 1] |[−1.5, 1]| ≈ 1.803

z2 = [−1.5, 1]2 + [−1.5, 1] = [−0.25,−2] |[−0.25,−2]| ≈ 2.016 > 2︸ ︷︷ ︸
diverges!

So [−1.5, 1] is not an element of the Mandelbrot set.

When visualizing the Mandelbrot set, complex numbers that have been found to be in the set are usually

colored black. The complex numbers outside the set are usually colored based on how fast they diverge.

There are many algorithms to calculate the color of a complex number outside the set, which are explained in

Section 3.1.2.

2.3 Julia sets

A Julia set is defined as the boundary of a set of complex numbers which do not diverge when iterated

through an iterative function. The filled in Julia set is the set of all complex numbers which do not diverge.

In this thesis, we will always refer to the filled in Julia sets. In the case of Julia sets, the iterative function

can take any rational function f (z) = p(z)/q(z), where p(z) and q(z) are complex polynomials. For some

functions, the Julia set is not a fractal, e.g. f (z) = z2, where the Julia set is the unit disk. Note that other

iterative functions which are not a rational complex polynomial may also result in a fractal. Even though these

fractals may behave like Julia sets, they are not.

In this thesis, we will focus on the Julia sets J(fc) with iterative function fc(z) = z2 + c. When fc is used in

this thesis, it always refers to this iterative function. Also, when referring to Julia sets, we always refer to J(fc)

12

https://commons.wikimedia.org/wiki/File:Complex_mandelbrot_illustration.png

unless stated otherwise. Here, c is a complex number which can be chosen arbitrarily and z0 is the complex

number of which its membership is checked.

There are two kinds of Julia sets, connected and fully disconnected [Cro95]. When a Julia set is connected,

there is a path from every complex number in the set to every other without leaving the set. When it is fully

disconnected, every connected subset has one element. In other words, there is always a complex number

which is not in the set between two complex numbers in the set. The Mandelbrot set can also be defined as

the set of complex numbers c for which the Julia set is connected [HOP92].

Calculating Julia sets is very similar to calculating the Mandelbrot set for an arbitrary iterative function.

Where the Julia sets start with z0 = z, the Mandelbrot starts with z0 = 0. Note that for the Mandelbrot set

z1 = z2
0 + c = 02 + c = c. Where the Julia sets pick a complex number z0 which is iterated, the Mandelbrot set

picks a complex number c which is iterated. This complex number corresponds to the location of a pixel in

the complex plane.

2.4 Self-similarity

Even though the Mandelbrot set shows chaotic behavior, when looking at the set, its patterns feel predictable.

This is likely due to its self-similar nature. Around some special points, called Misiurewicz points [Lei89], it

shows infinite self-similar behavior. The pattern in a neighborhood of a Misiurewicz point will repeat infinitely

when scaled with specific sequence of varying factors. After scaling, the rendered image will be unchanged

except for a rotation. Images which are invariant under scaling (and rotation) show the Droste effect. When

zooming in between two Misiurewicz points, the emerging pattern will look like a mix of the patterns around

the two points. Julia sets also show the Droste effect, however, Julia set patterns repeat when scaled with a

specific constant factor. In theory, the Julia sets could be fully rendered by rendering the parts which remain

invariant under scaling and rotation. The Julia set can then be constructed by copying this part around. This

would be very efficient, because the set only has to be calculated once and can then scale and rotate infinitely.

Also, scaling and rotation are done very efficiently by GPUs, so this would be incredibly fast. However, it is

very difficult to determine what parts are invariant under which scaling and rotating factors and no program

has successfully implemented this technique as of yet.

The Mandelbrot set and Julia sets are also very similar to each other. The Julia set with complex parameter

c will resemble the patterns of the Mandelbrot set when rendering around point c [HOP92], see Figure 2.4

for examples. Unfortunately, the amount of detail possible in the figure is very limited. See Section 3.5 for

more information about exploring this phenomenon. The shapes of the Julia sets can also be found within the

Mandelbrot set.

13

Figure 2.4: Different values of c in the Mandelbrot set and the corresponding Julia set.

14

Chapter 3

Implementation

The fractal viewer we implemented, Fraccert, is written in C++ and compiled with GCC’s g++ (9.1.0), using

SDL2 (2.0.9) for the graphics and user interaction. Fraccert is developed for Linux, however, all OS interaction

is done through SDL, so it should be platform independent. Fraccert also uses GMP (6.1.2) (GNU Multiple

Precision arithmetic library). There is no official Windows support for GMP, but it can be compiled on

Windows. OpenMP is used for multi-threading, so your compiler has to support that. The source code for

Fraccert can be found at https://github.com/lucmans/fraccert.

The controls for Fraccert can be found by running “./fraccert - -help”. When Fraccert is started, the terminal

it is started from becomes a console which can be used to interact with Fraccert. The available commands are

listed at startup. Note that all input actions are queued, which means that all given input will be processed,

even if they are given when waiting for a fractal to render. The input queue can be emptied with the escape key

(‘Esc’), so the user does not have to wait for all input to process before regaining control over the application.

In this thesis, the following definitions will be used:
• Remin and Remax: These numbers represent the interval [Remin, Remax] which is displayed horizontally.

• Immax and Immin: The interval [Immax, Immin] which is displayed vertically.

• ∆Re and ∆Im: The size of our view in the real and imaginary axis (∆Re = Remax −Remin).

• NMAX: The number of iterations before concluding a complex number is part of a set.

• Pixel (x, y): The pixel at coordinates x and y, where x is in [0, screenWidth] and y is in [0, screenHeight].

Note that pixel (x, y) is x pixels from the left and y pixels from the top of the screen. When x increases, the

corresponding real value increases. When y increases, the corresponding imaginary value decreases. So pixel

(0, 0) is at complex number [Remin, Immax].

In this chapter, we will first show how the Mandelbrot and Julia sets are calculated and show different

methods to color them. Then, details about translation and scaling are described. Subsequently, we explain the

problem with using normal floats. Finally, we discuss some features of Fraccert and explain the architecture

and design choices behind Fraccert.

15

https://github.com/lucmans/fraccert

3.1 Escape time algorithm

Rendering an image of a fractal consists of two steps. First, for each pixel, we calculate if the corresponding

complex number is in the set. If not, this calculation tells us how fast it diverges. Then, using this information,

we can color the pixel. This method of pixel coloring is called an escape time algorithm, because the time

(iteration) when a point escapes (diverges) is used for coloring.

3.1.1 Calculating escape iteration

The function which calculates the Mandelbrot set requires Remin, Remax and Immax (or Imcenter). Immin is

calculated based on the aspect ratio to prevent stretching the fractal. Then, the size of a pixel in the complex

plane is calculated. With this, we can start at (Remin, Immax) and iterate over all pixels by incrementing

the current complex number by the pixel size. Each pixel then goes through the iterative function and

afterwards its color is calculated. See Algorithm 1 for a pseudo-code implementation. Note that the actual

implementation has some small optimizations. For instance, |z| is calculated as
√
<(z)2 +=(z)2. When both

sides of the inequality are squared, we get <(z)2 +=(z)2 > 4, which omits taking the square root of the left

side.

input : Remin, Remax and Immax
output : Pointer to pixelbuffer of rendered fractal

1 screenWidth← getWidthPixels();
2 screenHeight← getHeightPixels();
3 pixels[screenWidth ∗ screenHeight] ← 0;
4 pixelSize← ∆Re/screenWidth;

5 for y← 0 to screenHeight do
6 for x ← 0 to screenWidth do
7 c← [Remin + (x ∗ pixelSize), Immax − (y ∗ pixelSize)];
8 z← 0;

9 n← 0;
10 for n to NMAX do
11 if |z| > 2 then break;
12 z← z2 + c
13 end

14 pixels[y ∗ screenWidth+ x]← colorPixel(n);
15 end
16 end

17 return pixels
Algorithm 1: Escape algorithm for calculating the Mandelbrot set.

3.1.2 Coloring

The color a pixel gets is based on the speed with which iterations diverge from the origin. We use the iteration

count of when the modulus of the complex number became greater than two, the escape iteration, as a

measure of speed. If we divide the escape iteration by NMAX, we get a normalized value t in [0, 1]. With this

normalized value, it is easy to color a pixel. The straightforward method would be mapping the normalized

range to the range of the colorspace which is [0, 16 777 216], because each color (red, green and blue) has a

16

value in [0, 255] and 2563 = 16 777 216. This method has a big disadvantage. The coloring is not continuous,

which means two escape iteration counts that are very close together might have very different colors, see

Figure 3.1 for an example. This is called banding. The color continuity is dependent on NMAX, so colors change

wildly when NMAX is changed a little bit. For some values, it only uses one or two colors. This is because

it will divide 16 777 216 in such a way, that some of the least significant bits are always zero. In the case of

NMAX = 256, the sixteen least significant bits are zero, so only the most significant color channel will be used.

One advantage of this coloring method is that its visualization shows the difference in high/low detail areas

very well for most values of NMAX, because of the strong banding.

There is another potential problem with coloring pixels. If NMAX is bigger than the number of colors, some

escape iteration levels will get the same color. This only happens when NMAX is very high, so it is not a big

problem. We further discuss this in Appendix B.1.

Figure 3.1: Example of banding which occurs on bad coloring algorithms.

To get a smooth transition between color bands, we need a continuous mapping from the normalized iteration

count to a 3D color space. We have implemented the method described in [Sil13]. This method uses a slight

modification of Bernstein polynomials to achieve a continuous coloring scheme. We use three polynomials

to map each color channel to a value in [0, 255], see Figure 3.3. Because the three polynomials ‘flow’ into

each other, the color will smoothly transition to the next one when iterating over t. The formulas for the

polynomials are r(t) = 9 ∗ (1− t) ∗ t3 ∗ 255
g(t) = 15 ∗ (1− t)2 ∗ t2 ∗ 255
b(t) = 8.5 ∗ (1− t)3 ∗ t ∗ 255

Figure 3.2: Coloring using Bernstein polynomials. Figure 3.3: A plot of the three Bernstein basis polynomials.

17

Even though the color bands flow into each other nicely, banding is still visible. See Appendix B.1 on how to

prevent this. Note that pixels which escape immediately (n = 0) and pixels which diverge (n = NMAX) are both

colored black. This is not a problem, since all points which diverge immediately lie far away from the set. In

Fraccert, immediately escaping points are slightly colored to remedy this problem.

3.2 Exterior distance estimation coloring

When rendering an image using the escape time algorithm, the focus of the rendered image is on the behavior

of the iterative function around the set. This is partly because the detail is in the colors, but more importantly,

often most pixels in our view are not in the set at all. The set has very small filaments (branches) connecting

bigger “islands” of the set [Mun11]. Since these filaments are so small, they often travel between pixels. An

escape time rendered image of the set, where black is in the set and white outside, will look disconnected and

sparse, see Figure 3.4a.

Instead of rasterizing the domain within our view and calculating the escape velocity for each pixel to color

it, we could also use the smallest distance to a point in the set as a measure to color a pixel. This measure

emphasizes the shape of the actual set instead of the behavior around the set, see Figure 3.4c. The resulting

pattern closely resembles the pattern made by the color bands, see Figure 3.4b.

(a) Using escape time algorithm. (b) Figure to the left colored.

(c) Using exterior distance estimation.

Figure 3.4: Three images of the same part of the Mandelbrot set.

18

As described in [YD02], the exterior distance can be estimated by using the Hubbart-Douady potential

G(c) = lim
n→∞

1
2n ln |zn| (3.1)

The distance estimate is given by

d =
G(c)
|G′(c)| (3.2)

Where the derivative of G(c) is

G′(c) = lim
n→∞

1
2n ·
|z′n|
|zn|

(3.3)

So the distance can be calculated as

d = lim
n→∞

|zn| ln |zn|
|z′n|

(3.4)

Since G′(c) is a function of c, the derivative z′n is with respect to c which gives us

z′n+1 = 2znz′n + 1 (3.5)

Note that the ‘+1’ term is only applied to the Mandelbrot set. When calculating the derivative of the Julia sets

with iterative function fc(z), the c in zn+1 = z2
n + c is constant, so derives to 0.

The implementation of the distance estimation resembles the algorithm described in Section 3.1.1, however,

in the distance estimation version, the inner loop also has to keep track of z′n+1 = 2znz′n + 1, see Algorithm 2.

Instead of coloring the pixels continuously as described in Appendix B.1, the pixels are colored black if they

are “close enough” to the set. The value of close enough should scale with the rendered domain. When

rendering the set fully zoomed out, close enough might be within 0.1 (Cartesian distance). However, if the

domain is only 0.001 wide, our entire view would be black if there is a point in the set nearby. So close enough

scales with ∆Re / CLOSEENOUGH, where CLOSEENOUGH can chosen by the user.

3.3 Scaling and translation

There are two ways of interacting with the view on the fractal. You can move the part of the fractal which is

viewed (translation), or zoom in or out (scaling). This section describes the straightforward method of scaling

and translation. More advanced methods are described in Section 4.2.

3.3.1 Translation

In order to translate our view, we only have to update Remin and Remax or Immin and Immax by the same

amount. To move left or right, respectively decrease or increase Remin and Remax. To move up and down,

respectively increase or decrease Immin and Immax. If we then render the fractal for the new bounds, our view

will have translated. When a naive implementation is used, all pixels will be recalculated. However, only the

pixels that enter our view need to be calculated and the other remaining pixels can be reused. This technique

will be explored in Section 4.2.

19

input : Remin, Remax and Immax
output : Pointer to pixelbuffer of rendered fractal

1 screenWidth← getWidthPixels();
2 screenHeight← getHeightPixels();
3 pixels[screenWidth ∗ screenHeight] ← 0;
4 pixelSize← ∆Re/screenWidth;
5 lineWidth← ∆Re/LINEWIDTH;

6 for y← 0 to screenHeight do
7 for x ← 0 to screenWidth do
8 c← [Remin + (x ∗ pixelSize), Immax − (y ∗ pixelSize)];
9 z← 0 ; //For Julia sets, use z0

10 z′ ← 0 ; //For Julia sets, use 1

11 n← 0;
12 for n to NMAX do
13 if |z| > 2 then break;

14 z′ ← 2 ∗ z ∗ z′ + 1 ; //For Julia sets, omit the +1
15 z← z2 + c
16 end

17 if n = NMAX then
18 d← 0
19 else
20 d← |z| ∗ ln |z|/|z′|
21 pixels[y ∗ screenWidth+ x]← (d < lineWidth ? BLACK : WHITE);
22 end
23 end

24 return pixels
Algorithm 2: Exterior distance estimation for calculating the Mandelbrot set.

input : Center of zoom (x, y) and scaleDirection (1 or -1)
output : Screen boundaries are updated

1 xRatio← x/getWidthPixels();
2 yRatio← y/getHeightPixels();

3 ∆Re← Remax − Remin;
4 ∆Im← Immax − Immin;

5 if scaleDirection = 1 then // Zoom in
6 ∆(∆Re) ← (SCALEFACTOR ∗ ∆Re)− ∆Re;
7 ∆(∆Im) ← (SCALEFACTOR ∗ ∆Im)− ∆Im;
8 else // Zoom out
9 ∆(∆Re) ← ((1/SCALEFACTOR) ∗ ∆Re)− ∆Re;

10 ∆(∆Im) ← ((1/SCALEFACTOR) ∗ ∆Im)− ∆Im;
11 end

12 Remin ← Remin − (∆(∆Re) ∗ xRatio);
13 Remax ← Remax + (∆(∆Re) ∗ (1− xRatio));
14 Immax ← Immax + (∆(∆Im) ∗ yRatio);
15 Immin ← Immin − (∆(∆Im) ∗ (1− yRatio));

Algorithm 3: Algorithm which updates the screen bounds when scaling.

20

3.3.2 Scaling

Scaling the view around point (x, y) can be seen as increasing or decreasing the distance between the bounds

for which the fractal is rendered. Only the real part will be considered in this section, since the calculations

for the imaginary part are similar. Let the real distance ∆Re = Remax −Remin. When scaling our view, ∆Re

should increase or decrease by a certain factor, the scale factor, to get the new distance ∆Re′. So we have to

update Remin and Remax such that ∆Re′ = SCALEFACTOR ∗ ∆Re = Re′max −Re′min. Note that SCALEFACTOR < 1

decreases ∆Re′ and thus zooms in.

Remin and Remax should change in such a way, that the center of scaling is point (x, y). This can be achieved by

changing Remin by an amount proportional to the fraction of pixels left of x (xRatio) and changing Remax by an

amount proportional to the fraction of pixels right of x (1−xRatio). Both changes together should amount to

the desired increase or decrease of the distance between the bounds. Now, when we use ∆(∆Re) = ∆Re′−∆Re

(i.e. the change in distance), the bounds Remin and Remax can be updated by the following two formulas:

Remin −= ∆(∆Re) ∗ xRatio
Remax += ∆(∆Re) ∗ (1−xRatio)

With these new bounds, the fractal can be calculated as described before. See Algorithm 3 for a pseudo-code

implementation of the scaling algorithm.

3.4 Arbitrary precision floats

In Fraccert, we use ‘normal’ floating point numbers with double precision by default. If we were to use

a GPU, we would have been limited to single precision because most consumer GPUs have little double

precision float units. Floats can only describe a finite number of real numbers. The numbers which can be

accurately described depend on the float standard used. The IEEE 754-2008 [iee08] standard (which describes

the standard for floating point arithmetic) states that a float consists of three parts; one bit for the sign of the

number, the exponent and the significant (sometimes called the mantissa). The significant describes an integer

which is then multiplied by 10 exponent, like scientific notation for numbers. Note that most implementations

of floats use base 2 instead of 10. Since the base of a float does not change its behavior (only the number it

represents), we assume the base of a float is 10, because it is more intuitive to work with.

When calculating a very small domain of a fractal, two things can happen. This significant may not have

enough bits to describe the number. This is comparable to a number being larger then INT MAX. Secondly, the

exponent may not have enough bits to scale the significant to a small enough value. E.g. when the exponent is

seven bits, thus can scale the significant to 1026
= 1064 (not 1027

because there is a sign bit), and the domain is

from 1 ∗ 10−70 to 2 ∗ 10−70. The latter is very unlikely, because when working with very small numbers they

usually also have a large significant part (i.e. the small numbers usually have a lot of non-zero digits, like

0.1234567 and 0.1234568 instead of 0.00000123 and 0.00000124 which can easily be described as 1.23 ∗ 10−6

and 1.24 ∗ 10−6).

21

Figure 3.5: Image of the Mandelbrot set below the limit which double precision floats can describe.
In Fraccert, use the command “loc limit” to get this image.

If there are not enough significant bits to differentiate two floats when rendering a fractal, some pixels get

clumped together, see Figure 3.5. To achieve higher precision floats, GNU Multiple Precision arithmetic library

(GMP) is used. This library was chosen, because it is present on most Linux systems (it is a dependency for

the GCC compilers and FFmpeg which are present on most Linux systems) and it is one of the fastest. One of

the reasons it is the fastest, is because most multiple precision libraries are built on GMP.

Using GMP floats instead of normal floats greatly reduces the speed of arithmetic as will be discussed in

Section 5.7.

After zooming in, ∆Re may become smaller than a float can describe. Then, Remin and Remax can become

the same value. When this happens, the user is unable to zoom out (but can still set the domain through

the console). To prevent this, scaling (and setting the domain) should always check if the current precision

can describe the domain. If not, the precision should be increased before calculating the new domain. This

check is difficult to implement in a generic manner; independent of the number of bits for the precision and

exponent. Another way to solve this problem is always using higher precision floats for the program state

than used in calculating the fractal. This ensures that the low precision rendering artifacts always occur before

the program state has too little precision to describe its state. When the user sees these artifacts the user can

increase the precision used.

It is important to note that only the significant part of a GMP float scales with precision. The exponent is

always a constant number of bits [gmp]. Even though this makes GMP’s precision limited, the limit is nearly

impossible to reach.

In Fraccert, an unsigned integer is used to describe the iteration count. On the platform on which Fraccert

is developed, UINT MAX is 4 294 967 295 (= 232 − 1). Such a high value of NMAX is only necessary when the

domain is much smaller than normal floats can describe. When rendering such a domain with normal floats

22

it would already take a very long time, so with GMP floats it would take an unreasonable amount of time. If

an unsigned integer is not big enough, it can easily be changed to a unsigned long or unsigned long long by

changing the typedef for iter t in fractal.h. On the platform on which Fraccert is developed, ULLONG MAX

is 18 446 744 073 709 551 615 (= 264 − 1). Calculating the set using such high NMAX and GMP floats on current

computers can easily take years (if not decades) to compute. If, for some reason, this value is not high enough,

the program can be changed to support GMP integers.

3.5 Julia window

When viewing the Julia sets, a second smaller window pops up with the Mandelbrot set, see Figure 3.6. This

window helps exploring the resemblance between the two sets, as described in Section 2.4. This window

has the same functionality as the main window and uses all the implemented optimizations. The complex

parameter c used for the Julia set can be set by clicking in this window. It is also possible to drag the mouse

while holding it down. This will only render the Julia set for the pixel under the cursor after the previous set

has rendered. When holding ‘ctrl’ while dragging, every Julia set is rendered for every pixel that is dragged

over. This creates a smooth animation where the Julia sets morph into each other.

Figure 3.6: Julia window which pops up when viewing the Julia set.

23

3.6 Orbit plotting

Orbits are an important tool in complex dynamics. They are often used to reason about the behavior of

iterations. An orbit is the path zn travels when iterating. Since this behavior emerges from subsequent

iterations, it is called dynamic behavior. The behavior of an orbit is chaotic, however, there seem to be patterns

in this chaos. These patterns can be described with orbits very well. For a complex number c, the complex

numbers in the neighborhood of c show similar dynamic behavior. Also, the dynamical behavior of some

complex numbers can be inferred from the behavior of other complex numbers. To view the orbit of a pixel in

Fraccert, right click the pixel. See Figure 3.7 for an example.

Figure 3.7: An example of an orbit.

3.7 Design choices and program architecture

The code of Fraccert was made with modularity in mind. Not only does it help maintaining the application, but

it also makes implementing new features very easy, which is important, because Fraccert is mainly developed

as a fractal research tool as mentioned in Section 1.2. The modular architecture helps understanding the

code-base, which allows others to easily expand upon it.

Fraccert can be seen as two separate components; the front-end and back-end. The front-end handles all

user interaction using a model-view-controller design pattern. The front-end consists of handling user input

(controller), keeping track of the program state (model) and drawing pixels to a screen based on this state

(view). The back-end is used through a ‘fractal’ interface. The only task of the back-end is calculating certain

values for the front-end. This could be the color or the escape iteration/distance estimation for all pixels. This

interface is a base class which specific fractals can inherit. Because of this interface, it is easy to add other

fractals to Fraccert which can also utilize all optimizations used in the front-end.

24

The back-end is compiled as a library called Fracfast. It is compiled as a static library by default (for efficiency),

but it can also be built as a shared library by changing a setting in the Makefile. This library file (along with the

headers) can easily be used in other projects. Building the back-end as a separate library forces the back-end

to be independent from the front-end. The back-end has no state; it uses the functional design paradigm. This

means that Fractal class and all its child classes should have no non-const data members. Because of this,

every function in the back-end is modular and has no side effects on subsequent calls to the back-end. This

ensures the back-end cannot be in an unstable/corrupted state. Another way to put it, is that Fracfast is a

math library. It only performs certain calculations and does not offer any interactivity.

To make the back-end as versatile as possible, it returns an array uint32 t pixels[width*height] with

RGBA values for every pixel which has to be deleted (freed) by the receiver. This can easily be interpreted by

different front-ends to produce efficient graphics. The back-end is called with at least three parameters:

1. Domain: The complex domain defined by [Remin, Remax] and [Immax, Immin].

2. Resolution: The number of horizontal and vertical pixels the back-end should return. The domain is

rasterized according to the resolution.

3. Data: All required data for the back-end is sent through this void pointer. The back-end can also return

extra data through this pointer.

4. Range optional: The range defines which pixels of the resolution should be calculated using xmin, xmax,

ymin and ymax. This is useful when only a part of the screen needs to be rendered. When it is not

provided, the full resolution will be rendered.

Passing the range to the back-end instead of calculating the smaller domain and resolution for the correspond-

ing range in the front-end helps preventing rounding errors which would result in rendering artifacts in the

resulting frame. This also makes partial rendering of a fractal easy, which helps implementing features such

as multi-threaded rendering (Section 4.1) or rendering on a distributed system (e.g. multiple CPUs/GPUs or

multiple computers connected by a network).

Examples of parameters which are sent as part of the data parameter are NMAX, CLOSEENOUGH and the shapes

for shape checking (Section 4.4). It can also contain information about what optimizations should be used.

An example of data the back-end may send back is the escape iteration for each pixel, which is useful for the

deepen optimization discussed in Section 7.5.

The front-end always uses GMP floats. It would be more efficient to use normal floats until they are not

precise enough anymore, however, the overhead for GMP floats in the front-end is very small. All front-end

calculations are still very fast compared to the calculations the back-end has to perform. By always using GMP

floats, the design of the front-end is simplified significantly. For results about the speed-down, see Section 5.7.

To implement new optimizations or fractals, it is important to be familiar with the flow of the program. See

Figure 3.8 for visualization of the front-end.

The front-end only responds to user input, so we start with an input from the window or console. This input

is parsed by IOController or Console respectively (the controller), which in turn calls the corresponding

member function of Program (the model). Since input can come from two different threads, race conditions

can occur. This is why all public member functions of Program need to lock a mutex to control this race.

25

Make sure when calling any public member function of Program from a member function that the lock is not

requested twice, otherwise a deadlock will occur. Program will work out what fractal should be rendered next

for which domain according to the user input by updating its state. Then, Graphics (view) is called to render

the frame. All front-end rendering optimizations are performed here. Graphics works out how to call the

back-end based on a snapshot of the current state provided by Program and draws the output to the screen.

Graphics also saves the last rendered frame which can be used for optimizations.

Figure 3.8: Flow of user input through Fraccert.

The main functionality of the back-end is rendering a frame (i.e. filling a pixelbuffer with colors). This can

be done by calling render() on a Fractal object. This function will determine how the pixelbuffer should

be calculated. It handles multi-threading (Section 4.5.2) and calls a calcScreen() function. The different

calcScreen() functions provide different methods of rendering a screen. The methods can differ in the result

they produce (e.g. different algorithms like escape time or distance estimation coloring, different coloring

schemes like normalized or smooth coloring or normal/GMP floats) or differ in which optimizations are

used. The calcScreen() functions determine what pixels should be calculated in which order and calls a

calcPixel() function to calculate the measure which will be used to color the pixel. This measure is sent to a

calcColor() function to get the color of the pixel.

26

Chapter 4

Optimizations

The implementation as discussed in Chapter 3 performs inadequately. As mentioned before, even though

modern GPUs will render images of the Mandelbrot set nearly instantaneously, problems arise when higher

precision is needed. This only makes the GPU efficient on relatively low scale factors. Also, branching is

inefficient on GPUs, so some kinds of optimizations might make GPU rendering less efficient. However, for

high precision CPU work, these optimizations are still very valuable.

There are a number of small optimizations which can be done with the implementation in Algorithm 1.

Modern compilers implement some automatically. For instance, we could cache the square of the real and

imaginary part of z, since it is used more than once. But study of the generated binary from the compiler

shows this is done automatically. Also, as noted before, the tests
√
<(z)2 +=(z)2 > 2 and <(z)2 +=(z)2 > 4

are equivalent. However, the latter saves an expensive square root operation.

Many optimizations described in this chapter may produce small errors. Note that most of these errors might

not be a problem, because most of the rendered fractal is still accurate. When the user is exploring the fractal,

speed is of high importance. Only if the user wants an accurate render, these errors become a problem. This

is why all error introducing optimizations can be turned off in Fraccert.

In this chapter, we first look at optimizations which can be realized through parallelization. Then, we look at

optimizations of features described in Chapter 3. Finally, we look at optimizations which rely on characteristics

of the Mandelbrot and Julia sets.

4.1 Parallelization

The computation of the color of a pixel is independent from other pixels. In other words, the color of a pixel

is only dependent on itself. This allows us to calculate any number of pixels in parallel. The reason GPUs can

calculate the set quickly is because they can efficiently do single precision floating point operations in parallel.

A GPU could calculate every pixel at the same time. However, as discussed before, a GPU has its limitations.

Therefore, in the remainder of this section we will only consider CPUs.

There are two ways of parallelization on CPUs. The first is using the multiple cores on a system concurrently.

27

The second is by using SIMD instructions, which is described in Section 7.2. SIMD is an abbreviation for

‘single instruction, multiple data’, which is a very broad term to describe a class of parallel computers. There

also is an extension to the SIMD instructions called fused multiplication addition (FMA). The instructions

from this extension allow an addition and multiplication to be performed in one instruction. Technically, this

is not SIMD, because it works on a single piece of data. But it could be considered a form of parallelization,

because it performs two operations at once.

It is possible to use multiple CPU cores at the same time with multi-threading. A simple approach to split the

workload is to divide the screen in n blocks, where n is the number of cores on the system. After a block has

been calculated, it is written to a shared pixel buffer. When all blocks have been calculated, the shared pixel

buffer can be returned from the back-end. A problem with this method is that some blocks require more work

to be calculated than others when more pixels reach higher iteration counts. The calculation time bottlenecks

on the slowest block.

A thread per pixel is also not optimal, because there is a constant overhead per render() call in the back-end

and thread management also introduces overhead. It will also create many cache misses because the pixels

may not be calculated in memory order. A good way to split the work over multiple threads is by assigning

each thread a line (or line segment/multiple lines) of pixels to render, because the pixels are stored in memory

as lines. When the number of line(segment)s is sufficiently higher than the number of threads, we circumvent

the previously described bottleneck problem. As long as there are line(segment)s available, a thread that has

finished calculating its current line(segment) will simply be assigned a new one.

The implementation of multi-threading is discussed in Section 4.5, because the optimization in this section

requires a specific threading scheme.

4.2 Pixel reuse

When translating and scaling, many pixels on the current screen will be the same as pixels on the next screen

and may be reused. The current frame has to be saved in order to implement this optimization, along with

information about the frame to implement it efficiently. Fraccert only saves the domain of the last frame along

with the colors of the pixels.

Reusing pixels while translating is very straightforward to implement, however, there is a problem which

is easily overlooked. If the translation is not exactly n pixels (a whole number), there will be a difference in

distance between two pixels on the border of the new and recycled pixels. It is almost impossible to guarantee

a pixel aligned translation due to how floats work (rounding errors in float math), however, a close enough

approximation can prevent noticeable rendering artifacts. Due to rounding errors, it is also possible for the

∆Re and ∆Im to change during translation. This may result in off-by-one errors when calculating the exact

pixels to copy from/to, so out of bound array accesses may occur. If all the invalid accesses are avoided, the

result is still correct but might be one pixel off.

Since the implementation is very straightforward, no code for translation will be provided in this thesis. To

see an implementation, see the function extendDraw() in graphics.cpp. Implementing this algorithm comes

down to the idea of calculating three areas of pixels. First you have to calculate which pixels are shared by

28

the two frames and where these pixels end up in the new frame. Then, you have to calculate which part of

the new frame is still empty and fill these pixels with their corresponding colors.

4.3 Symmetry

The Mandelbrot set is symmetric around the real axis. If Immax > 0 and Immin < 0, then there are pixels

which can be reused through symmetry. When calculating pixels, we take the complex number in the upper

left corner of the pixel. When reusing pixels from above the real axis, we reflect these pixels over the real axis.

As a result of this reflection, the complex number in the bottom left corner of a pixel is used instead. This

could be seen as erroneous behavior, but one could argue it does not matter. The Mandelbrot set is perfectly

symmetric, so one could expect the discrete approximation to be perfectly symmetric as well. This argument

would make the ‘erroneous’ version better. Usually some form of anti-aliasing is performed on the resulting

image. This would also lead to the use of a different part of the pixel. When this is used, the error introduced

by symmetry checking is overshadowed by anti-aliasing. Since it is debatable if this optimization leads to

imperfect images of the Mandelbrot set, there is an option to turn it off in the program.

All Julia sets (also Julia sets using other iterative functions than fc) have symmetries, however, these are

difficult to compute [Bea16]. For the Julia sets J(fc), there is a rotational symmetry around the origin of 180◦.

This is the same as a reflection over the real axis followed by a reflection over the imaginary axis (order does

not matter). Since the reflection is over both axes, both have to be in the screen bounds. Because this barely

happens, we decided to focus on other optimizations instead of implementing this for the Julia sets.

The speed-up using symmetry pasting technique is not as trivial as it may seem, see Section 5.2 for more

information.

Algorithm 4 describes an efficient CPU implementation of this algorithm with pseudo-code. The function

copyRow(array, src, dest) copies the row with index src to index dest of array. Here, array[j][i] is the

same as array[j∗width + i]. copyRow() is implemented using memcpy() from the standard C library, which is

typically a highly optimizes routine to copy data. In lines 5–13, we first check if there is any data to copy. This

is only the case if there are lines of pixels above and below the real axis. Then, we have to determine if the

biggest part is under or above the real axis. We calculate this part and the other part is constructed by copying

the corresponding rows. The idea behind this algorithm is that the lines are copied around a pivot, the real

axis. First, the location of the pivot is calculated. Then, the lines on one side of the pivot are copied to the

other side of the pivot. The actual implementation in Fraccert uses GPU acceleration, which copies the entire

area and flips it as one big block of pixels, see Section 5.2 for results about the difference between CPU and

GPU symmetry pasting.

29

input : Remin, Remax, Immin and Immax
output : Pointer to pixelbuffer of rendered fractal

1 screenWidth← getWidthPixels();
2 screenHeight← getHeightPixels();
3 pixels[screenWidth ∗ screenHeight] ← 0;
4 pixelSize← ∆Re/screenWidth;

5 // Symmetry checking

6 ymin ← 0;
7 ymax ← screenHeight;
8 if Immin < 0 and Immax > 0 then
9 if Immax + Immin >= 0 then // Most pixels above real axis
10 ymax ← ((Immax ∗ screenHeight)/(Immax − Immin)) + 1 ; //Set ymax to the real axis

11 else // Most pixels below real axis
12 ymin ← ((Immax ∗ screenHeight)/(Immax − Immin)) ; //Set ymin to the real axis

13 end

14 // Normal calculation

15 for y← ymin to ymax do
16 for x ← 0 to screenWidth do
17 c← [Remin + (x ∗ pixelSize), Immax − (y ∗ pixelSize)];
18 pixels[y ∗ screenWidth+ x]← calculatePixel(c);
19 end
20 end

21 // Copy to top half

22 for y← 0 to ymin do copyRow(pixels, ymin + ymin − y, y) ;

23 // Copy to bottom half

24 for y← ymax to screenHeight do copyRow(pixels, ymax + ymax − y, y) ;

25 return pixels
Algorithm 4: Symmetry checking and pasting in the Mandelbrot set.

4.4 Shape checking

Complex numbers which are part of the Mandelbrot set are the most expensive ones to compute, because

for these numbers NMAX will be reached. We can prevent iterating these numbers by using geometric shapes

(represented through formulas) to describe parts of the set. When iterating a complex number, we calculate

if the complex number is in one of the shapes. Because we check each shape individually, this check takes

longer for every shape we add. So when trying to describe the entire set with these shapes, the check will

take infinitely long.

There are only two ‘perfect’ shapes in the Mandelbrot set, see Figure 4.1. These are the cardioid and the disk

to the left of the cardioid called the period-2 bulb. They are defined by Equations 4.1 and 4.2, respectively.

Here, z[0] = <(z) and z[1] = =(z).

q ∗ (q + (z[0]− 0.25)) < z[1]2 ∗ 0.25, where q = (z[0]− 0.25)2 + z[1]2 (4.1)

z[0]2 + (2 ∗ z[0]) + 1 + z[1]2 < 0.0625 (4.2)

All other disks are slightly distorted [Vep00]. Unfortunately, ellipses do not fit them either. It is possible to use

the largest disk/ellipse which is contained by a bulb to further optimize the calculation process, but this will

increase the overall computation time for only a small reward.

30

Figure 4.1: Grey shapes visualizing the period-2 bulb (red) and the cardioid (yellow).

4.5 Border tracing

The Mandelbrot set is simply connected [Hub82]. In other words, there is a path from any point in the

Mandelbrot set to every other point which only goes through points in the set. Because it is simply connected,

there is only one topologically distinct path between two points. This means that if there are multiple paths

connecting two points, there is a continuous function which can transform these paths into each other. This

implies that if a closed curve can be drawn where all points on the curve are in the set, all points inside the

closed curve are in the set. This saves iterating all the points within the closed curve. Note that Julia sets where

the complex parameter is in the Mandelbrot set are also connected, so can be border traced as well. If we find

the perimeter of a set, we can skip calculating all pixels within the perimeter because we know they are part of

the set. Unfortunately, it is only proven that the set itself is simply connected; not the color bands surrounding

the set. However, it is reasonable to assume this is also the case for the color bands. Note that the color bands

are not simply connected, but dually connected, since a color band always contains one hole, which is the

Mandelbrot set (or a color band which escapes one iteration higher). When calculating the Mandelbrot set

with NMAX = 0 and repeatedly increase NMAX by one, you see the pattern shown in Figure 4.2. Here, you can

see that every iteration starts a new color band strictly inside the Mandelbrot set for that iteration. It might

not look like this in the above images, but if you zoom in sufficiently far, you will see no color bands touching

with a difference in escape iteration greater than one. See Figure 4.3 for an example of the third image zoomed

in sufficiently far. For NMAX < 10, you can easily see that every color band is dually connected.

31

Figure 4.2: Mandelbrot set with NMAX 0 to 5.

Figure 4.3: Example which shows every color band is simply connected for NMAX = 2.

Even though the Mandelbrot fractal shows complex behavior, it always seems to follow certain patterns (i.e.

when you zoom in on a pattern, it roughly stays the same no matter how far you zoom in). So it seems

reasonable to assume all color bands stay connected for any value of NMAX.

There are many methods to calculate the boundaries of color bands, however, most methods only give a

description (usually represented through formulas) of the curve which describes the boundary of a color

band. It is computationally expensive to determine which pixels are hit by the curve. Also, it is difficult to

32

implement zooming with these methods, since you always get a description of the entire curve, not only the

part which is on screen. Other currently known methods perform a walk along the border, which is called

border tracing.

Even though the Mandelbrot set and some Julia sets (and possibly the color bands) are connected, our discrete

approximation might not be. Because of this, the image obtained with border tracing might not be accurate,

see Figure 4.4 for a visual representation of a pattern which would cause an issue. Here, if we use the top-left

corner of a pixel, then the border tracing algorithm would not color the top ellipse black if we were tracing

the bottom black part. It would not see the little black line connecting the two parts because it is in between

two pixels. However, these kinds of patterns do not seem to emerge too often. If they were to appear, the

generated image would often look even better than a perfect image, because this error works as a sort of noise

reduction post-processing in areas with many different colors close together. See Section 5.4 for information

about the difference in the images.

Figure 4.4: An example of a pattern on which border tracing would produce an inaccurate image.

4.5.1 Implementation

There are multiple ways to implement border tracing. We only focus on one method, because as will be

discussed in Section 7.2, it allows more optimization in the future. Fraccert finds all pixels that have a

neighbor pixel with a different color. It starts by putting the border of the screen in a queue called the

pixelQueue. This is a queue of pixels for which the check, if the neighbors have a different color, is performed.

After the screen border has been added, the main loop starts. The only thing this loop does, is getting the

next pixel from pixelQueue and check its neighbors until pixelQueue is empty. To check if the color of a

neighbor is different from the color of the pixel considered, the color of the pixel and its eight neighbors have

to be calculated. If one of the neighbors pixels has a different color, this neighbor is added to pixelQueue. If

33

pixelQueue is empty, all borders are colored. Now, to color the remaining pixels, we iterate over the pixel

buffer and assign to every uncolored pixel the color of the pixel to its left.

The alpha color channel is used to save information about border tracing. The alpha channel is normally used

to indicate how opaque a pixel should be. Since we do not use the alpha value in the front-end (we do not

use transparency), we do not reset it back to a sensible value for efficiency reasons. If correct alpha values are

required, they can be set correctly in the loop which fills all areas inside the borders. We assume all pixels

which have not been considered yet have an alpha of 0, so we have to initialize the pixelbuffer with zeros.

For more details, we refer the reader to an excerpt of the Fraccert C++ implementation in Appendix C.

4.5.2 Multi-threading

In Section 4.1, we argued that we should implement multi-threading by splitting the screen in lines. However,

to utilize border tracing we need a surface to fill in, so multi-threading border tracing this way will not result

in a speed-up (even a speed-down, due to overhead that border tracing introduces over brute-forcing). Border

tracing always calculates the border of the screen and can at best save calculating the surface of the screen,

so it is important to keep the surface to perimeter ratio as high as possible. There are two factors which

determine the surface to perimeter ratio. The first factor is the ratio between the width and height of the

shape. A square has the largest surface of any rectangle for a given perimeter, so we should keep the width to

height ratio as close to 1 as possible. The second factor is the size of the shape. The larger the rectangle, the

higher the surface to perimeter ratio becomes. In short, we want to partition the screen into as few squares

as possible. However, as discussed in Section 4.1, we also want more squares than the number of threads

to improve opportunities for load balancing. This trade-off is studied in Section 5.5. The optimal number

of squares is dependent on the domain which we render. If there are parts of the domain which are much

quicker than other parts, it is advantageous to divide the screen in more parts. However, if all blocks roughly

take the same time to compute, it is advantageous to only split the screen into n parts.

Not only the number of blocks has to be determined, but the number of threads can also impact the perfor-

mance. Using more threads than cores can impact the performance in multiple ways. Aside from the overhead

of managing threads, using more threads than cores creates excessive context switches and may increase the

number of cache misses. However, if a core is idle, then it can be switched to a different thread. Fraccert spends

most time in the iteration loop, so a CPU core is barely ever idle. This trade-off is studied in Section 5.5.

The multi-threading scheme is implemented as follows. We start by dividing the screen in blocks. Blocks are

expressed using the ranges which are described in Section 3.7. First we determines the number of splits which

should be performed. Splitting is dividing a block in two equal sized blocks of which the width to height

ratio is closest to 1. This comes down to splitting along the axis which has the most pixels. The number of

blocks b can be calculated from the number of splits s as b = 2s, because every split doubles the number

of blocks. Since we want more blocks than threads t, we perform a minimum of s = d log2(t)e splits. The

ranges determined by these splits are put in a queue. Every idle thread tries to get a block from the queue

until there are no blocks left. A mutex has to be used to control any race conditions that might occur while

getting a block from the queue. After a block is calculated, its pixels are copied to a shared pixel buffer which

is returned when all blocks are finished calculating. Note that for performance reasons we do not use a queue

34

in the actual implementation. We instead use an integer to the next block in an array.

In theory, it is possible to create a threading algorithm which will split blocks into smaller blocks when there is

a thread free. However, it is very difficult to get consistent performance gain from this method. For consistent

speed-up, we would need a measure (heuristic) of progress of a block, so we could subdivide the block which

has the most work to be done left. Keeping track of or calculating this information adds much overhead and

finding a good heuristic is a difficult task. Even with this information available, it is difficult to determine if

subdividing will actually speed rendering up, because stopping the calculations of a block and dividing it

over more threads causes overhead.

35

Chapter 5

Experiments and discussion

Running experiments on the Mandelbrot and Julia sets is not trivial. Some features and optimizations have

different effects on different domains and values for NMAX. To compensate for this fact, we run tests on two

domains. The first is the default Fraccert domain with a very high resolution. We will refer to this domain as

‘home’. The second is the sum of nine arbitrarily chosen domains with a small ∆Re and ∆Im with resolutions

close to screen resolutions. We will refer to this sum as ‘average domain’, because it reflects the speed-up you

might expect on average while exploring. For a list of all used domains with corresponding resolutions and

NMAX with pictures, see Appendix A. When testing an optimization, all other optimizations are disabled to

reflect the effect of the optimization compared to brute forcing. In all experiments, we measure the time it

takes for the back-end to return the pixels. All are performed using double precision floats or GMP floats

where stated. Fraccert is compiled with GCC’s g++ (9.1.0) with the -O3 and -s flags. All tests were forced on

1 CPU with ‘taskset’ (except the multi-threading tests) and were given a niceness of −20 (highest priority).

The niceness should not matter, because the computer did not have any other processes or services/deamons

running (the only other process that was ‘running’ was the shell from which the tests were started, which is

put to a sleep process state). All the listed results are the average of 25 tests. Before running the tests, we run

our brute force algorithm on the home domain to try to get the CPU frequency up to the frequency which will

be used during the other 25 tests. Also, we prevent the CPU from going to idle (core parking) by disabling it

with ‘cpupower’. The tests were run on an Intel Core i7 6700HQ.

In this chapter, we first look at the optimizations symmetry checking, shape checking and border tracing. Then

we look at the speed-up of multi-threading. Subsequently, we check how much GMP floats effect calculation

speeds. Finally, we look at the speed-up of all optimizations combined.

5.1 Brute force

We need a reference to compare our optimizations to. We use the brute force variant, because this is the most

straightforward method of computing the set. It is also the least efficient method. The results are listed in

Table 5.1. When we list the standard deviation in the rest of this chapter, it is always the standard deviation

36

of the results with the optimization, since the standard deviation of the brute force results can be found here.

To quickly recapitulate, the standard error σ notes that 68.27% of the results were within ±1σ, 95.45% within

±2σ and 99.73% within ±3σ. We abbreviate standard deviation as ‘stdev’ in all tables.

domain time stdev

home 43.130 s 0.0011

average 19.858 s 0.0009

Table 5.1: Calculation speed with brute force.

5.2 Symmetry

The upper bound for speed-up which can be realized through symmetry pasting is 2x, because at best half of

the calculations can be skipped. This does not take the overhead of checking for symmetry and pasting pixels

into consideration. When rendering the Mandelbrot set with the real axis vertically centered, the difference

between the theoretical speed-up and the measured speed-up is the overhead of symmetry checking and

pasting. See Table 5.2 for the results. The listed standard deviation for the theoretical speed-up is from the

results without symmetry pasting. The other two are from the results with their respective symmetry pasting

variant. Symmetry pasting is done in the front-end, so we do not only measure the back-end speed, but also the

overhead of symmetry checking and pasting in the front-end. We use a slightly altered home domain, because

in this domain the overhead of symmetry pasting and checking is much larger compared to calculating the

set which makes interpreting the results easier. Here, Re = [−2, 2] and Im = [−1.5, 1.5] with a 1600x1200

resolution and NMAX = 256. The average domain is not considered, because the domains in the average domain

cannot utilize symmetry pasting. The CPU implementation is as described in Algorithm 4 in Section 4.3. The

GPU implementation uses SDL’s textures, which is an abstraction provided by SDL to easily use VRAM (GPU

memory). While in VRAM, the GPU can efficiently perform operations like rotation, translation, mirroring

(flipping), scaling and sheering. Instead of copying the pixels row by row like our CPU implementation, the

GPU can work on the entire texture at once, which is more efficient. However, the pixels have to be copied to

the VRAM first.

without with speed-up stdev

theoretical 294.42 ms 147.21 ms 2.000x 0.7056

CPU 294.42 ms 153.88 ms 1.913x 0.8031

GPU 294.42 ms 147.57 ms 1.995x 0.9242

Table 5.2: Calculation speed with and without symmetry pasting.

The parameters on which the test was performed are very similar to the parameters Fraccert starts with. The

default resolution is lower, however, we think most user will use Fraccert full screen which would be closer to

the used resolution. Higher resolutions increase the amount of work which can be omitted, but also increases

the amount of data to copy. So the speed-up on higher resolutions is dependent on the number of iterations

needed to render the frame. When higher values of NMAX are used, the user is usually not rendering parts

which have the real-axis in screen, so no extra benefit will be gained.

37

Note that the speed-up of using a GPU for symmetry copying on the Julia sets might be higher, because the

copied pixel buffer also has to be reversed. On the CPU, reversing an array is expensive. On the GPU, flipping

a texture vertically is as fast as flipping it vertically and horizontally.

5.3 Shape checking

We first look at the speed-up realized through shape checking, see Table 5.3 for the results. Note that in the

experiments we only check for the cardioid and period-2 bulb.

domain without with speed-up stdev

home 43.130 s 5.817 s 7.41x 0.0006

average 19.858 s 19.641 s 1.011x 0.0010

Table 5.3: Calculation speed with and without shape checking.

The speed-up on the home domain is very high. Most pixels on this domain only require few iterations to

diverge and most pixels which do not diverge in NMAX iterations are in one of the shapes. Because of this, it

poorly reflects speed-up when exploring deeper zoom levels. However, most of the time, the user starts from

the home domain to find interesting parts. If the user chooses to explore near defined shapes, the speed-up

becomes very high because points in the set are more expensive to compute when NMAX is increased.

The results of the average domain show little speed-up. Without average domains e and f, it is slightly below

1. This is because average domains e and f are the only domains which contain pixels within one of the shapes.

On domains e and f, the speed-up is about 1.32x. The speed-up on all the other domains combined is 0.98x

(1.02x speed-down).

Our implementation of shape checking is not optimal. If we have descriptions of many shapes, so most points

in the set are described, we could skip iterating many more points. However, doing the check would take

very long, because checking for any extra shape adds computation time per pixel. If the shape is out of screen

bounds, then no pixel will be in this shape. If we calculate which shapes are within the screen bounds, we

can limit our check to only these shapes. This increases the number of computations per screen, but will

save much branching per pixel, so it moves computation away from the inner-loop. There are very efficient

algorithms which can figure out which shapes are within screen bounds, because they are important for

hitbox detection (checking if two or more bodies collide) which is done a lot in video games. To facilitate this,

the back-end expects a list of shapes which to check for.

As with symmetry pasting, the speed-up of shape checking is not trivial. In this case, we also have to consider

the time it takes to calculate if a pixel is in a shape. To test how well shape checking performs, we compare

it to a theoretical speed-up. The theoretical speed-up is based on the number of iterations skipped by using

shape checking, see Table 5.4 for the results. The ‘measured’ result is from Table 5.3. There are 11 017 252 551

iterations needed to calculate the home domain. Only 1 243 399 551 are done with per pixel shape checking.

9 773 853 of 48 000 000 pixels, which is 20.4%, are within a shape. The theoretical speedup is 11017252551
1243399551 = 8.86.

38

without with speed-up

theoretical 43.130 s 4.868 s 8.86x

measured 43.130 s 5.817 s 7.41x

Table 5.4: Calculation speed of shape checking compared to theoretical speed-up.

About 1 second is spend on performing the calculations. This is very little time, especially considering that

we check the equations for both shapes 48 000 000 times. When rendering a Full HD (1920x1080) image, we

only perform these equations 2 073 600 times (23 times less). So the overhead of checking the two shapes

in domains which do not contain them is very small. However, other shapes, except the one mentioned in

Section 7.1, require more operations to compute. As a consequence, the overhead of checking for these shapes

when they are not within screen bounds may be much higher.

5.4 Border tracing

We first check if the border tracing produces correct images. If the images are too distorted, the result is

incorrect and its speed becomes irrelevant. To test the difference in images, the Mandelbrot set is computed

with and without border tracing. Then, we count the number of pixels which do not have the same color

(discarding the alpha channel). The results are listed in Table 5.5.

domain #incorrect #total ratio

home 64 48 000 000 1.33 ∗ 10−6 (approximately 1 in 750 000)

average 62 18 662 400 3.32 ∗ 10−6 (approximately 1 in 300 000)

Table 5.5: Difference in images with and without border tracing.

The error border tracing introduces is very minimal. There are 54 incorrect pixels are in average domain f

and 8 in e, so most domains are fully correct. Since the differences are so small, it is very difficult to notice

it in side by side pictures. To see the difference, use Fraccert and turn border tracing on and off. The error

might even be favorable in many cases. Errors usually occur in areas with much variation in a small region

of pixels. In these areas, the patterns in the chaotic behavior cannot be distinguished anymore because of

the limited number of pixels to describe these areas. Especially when using coloring algorithms with strong

banding, these areas will look like noise (like tv static) as can be seen in Figure 3.1 of Section 3.1.2. Border

tracing fills some of these noisy areas in with one color. The error border trace introduces cannot be seen

without comparing it to a brute forced image, because the patterns in the Mandelbrot set emerge from the

behavior of the borders of the color bands (called lemniscates) and the borders are unaffected (only the color

of the area in the borders). Because of this, the error works somewhat as a noise reduction technique which is

applied in post-processing by other fractal viewers.

39

Next, we take a look at the speed-up realized though border tracing, see Table 5.6 for the results.

domain without with speed-up stdev

home 43.130 s 1.435 s 30.06x 0.0006

average 19.858 s 12.955 s 1.53x 0.0006

Table 5.6: Calculation speed with and without border tracing.

The speed-up of border tracing is very high on the home domain. Not only are there many points in the set

of which iteration can be skipped. Most parts of the set which are skipped have circular borders. Circles have

the lowest circumference to area ratio and only the circumference has to be calculated, so these shapes are

optimal for border tracing. The results for the average domain may reflect the speed-up that users experience

better.

The speed-up of border tracing is strongly dependent on the value of NMAX for a given domain. If NMAX is very

low for the zoom level, there is little detail so every color band has a large surface. When NMAX is very high for

the zoom level, some details may be skipped. The extra details on higher values for NMAX increase the number

of color bands, which in turn increases the number of pixels on a border. The added detail will usually lower

the circumference to area ratio, see Figure 5.1, which also impacts the performance negatively.

NMAX = 1100 NMAX = 5000

Figure 5.1: Difference in circumference to area ratio for difference choices of NMAX.

The current implementation of border tracing is not optimal with respect to the number of pixels that are

actually calculated, because it will create four wide borders (two pixels for both colors). When tracing a border,

every pixels checks all eight neighbors. By keeping track which direction the border is relative to the pixel, we

can skip checking some neighbors. This will also prevent making four wide borders. However, our method

of border tracing allows much easier implementation of SIMD instructions which is described in Section 7.2.

Also, the four wide borders prevent some errors, because it forces more pixels to be calculated.

5.5 Multi-threading

The speed-up from multi-threading is very dependent on the domain. For instance, when testing the speed-up

of the home domain with few blocks, the results seem very poor. This is because blocks close to the border

of the screen finish very fast and blocks in the center take much longer, so the entire process bottlenecks on

40

the blocks in the center. However, when zooming in, the workload of each block tends to average out. This

is comparable to splitting the screen in more blocks, except that using more blocks adds a small overhead.

However, this overhead is very small compared to the time it takes to render a frame.

All tests in this section were performed on a CPU with four cores which are reported as eight cores due to

hyper-threading. The results may differ on non-hyper-threading cores.

As discussed in Section 4.5.2, our choice of both the number of threads and splits may affect the rendering

time. Since the optimal number of threads should be trivial (the number of cores reported by OpenMP), we

first test the optimal number of threads. We still test the optimal number of threads, because hyper-threaded

cores do not behave the same as two cores. Some algorithms can benefit from having more threads than cores.

This likely is not the case with border tracing, but it is still wise to check. The results of this test can be found

in Table 5.7 and Figure 5.2. In the table, the diminishing returns of too many threads can be seen well. In the

graph, you can see the behavior of increasing the number of threads. We split the results into two graphs,

because of the huge difference between the results in both graphs which can be seen by the different y-axis

scaling. We chose 8 splits, which corresponds to 28 = 256 = 16 ∗ 16 blocks. The standard deviation is so small,

that the error bar which represents it becomes a dot in the graph.

Figure 5.2: Calculation speeds for different number of threads.

threads 6 7 8 9 10 11 12 13 14 15 16

brute force home 8.783 s 7.675 s 6.834 s 6.865 s 6.855 s 6.831 s 6.796 s 6.804 s 6.796 s 6.803 s 6.798 s

stdev 0.0129 0.0235 0.0333 0.0385 0.0467 0.0392 0.0264 0.0351 0.0405 0.0283 0.0252

brute force average 3.962 s 3.452 s 3.054 s 3.060 s 3.060 s 3.062 s 3.064 s 3.064 s 3.065 s 3.063 s 3.062 s

stdev 0.0026 0.0025 0.0007 0.0049 0.0068 0.0078 0.0058 0.0053 0.0053 0.0062 0.0055

border trace home 0.529 s 0.477 s 0.436 s 0.433 s 0.432 s 0.431 s 0.429 s 0.427 s 0.427 s 0.428 s 0.428 s

stdev 0.0021 0.0008 0.0010 0.0030 0.0037 0.0036 0.0031 0.0021 0.0021 0.0039 0.0037

border trace average 2.719 s 2.374 s 2.110 s 2.110 s 2.112 s 2.112 s 2.111 s 2.112 s 2.113 s 2.111 s 2.111 s

stdev 0.0011 0.0015 0.0005 0.0035 0.0038 0.0039 0.0035 0.0029 0.0026 0.0040 0.0036

Table 5.7: Calculation speeds for different number of threads.

It seems the number of cores reported by OpenMP (eight, including hyper-threading cores) is the optimal

choice. Note that we ran these experiments on a minimal system; the results may differ on a system which

has to context switch constantly to facilitate other threads.

41

Next, we check what number of splits is optimal, see Table 5.8 and Figure 5.3 for the results. We use 8 threads

because it is the best choice for most measurements according to Table 5.7 and OpenMP reports 8 cores in

the used CPU. Note that as discussed before, the results on the home domain are very specific to this domain

and should not be used for setting the number of splits used for any arbitrary domain. Again, the standard

deviation is so small, that they become dots in the graph.

Figure 5.3: Calculation speeds for different number of splits.

splits 6 7 8 9 10 11 12 13 14 15 16

blocks 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

brute force home 7.441 s 7.078 s 6.841 s 6.780 s 6.684 s 6.662 s 6.644 s 6.640 s 6.640 s 6.639 s 6.639 s

stdev 0.0078 0.0037 0.0055 0.0012 0.0027 0.0008 0.0009 0.0002 0.0002 0.0001 0.0001

brute force average 3.226 s 3.120 s 3.054 s 3.039 s 3.030 s 3.023 s 3.021 s 3.021 s 3.022 s 3.025 s 3.031 s

stdev 0.0024 0.0009 0.0006 0.0003 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

border trace home 0.407 s 0.419 s 0.437 s 0.481 s 0.549 s 0.649 s 0.781 s 0.984 s 1.243 s 1.635 s 2.121 s

stdev 0.0010 0.0014 0.0010 0.0005 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

border trace average 2.138 s 2.103 s 2.110 s 2.134 s 2.192 s 2.264 s 2.386 s 2.518 s 2.730 s 2.916 s 3.194 s

stdev 0.0013 0.0006 0.0005 0.0002 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000

Table 5.8: Calculation speeds for different number of splits.

The optimal number of splits is very difficult to determine. Not only does it depend on the domain, resolution

and NMAX, but also on the number of cores available. On the system which performed the tests, 7 splits seemed

to be optimal for the average domain with border tracing (which will be used in most settings). If a computer

has more than 27 = 128 cores, a higher number of splits might be faster. Note that 4 splits on the home

domain with border tracing performs very poorly. This is probably due to bottlenecking on the last blocks.

Also, using more than 6 splits quickly reduces the speed-up. This is because border tracing performs very

well on this domain. By making more splits, we create more borders which have to be calculated which could

normally be skipped.

Finally, we test the total speed-up, see Table 5.9 for the results. We use 8 threads because it is the number

of cores reported by OpenMP and 7 splits because it seems the optimal choice according to Table 5.8. Note

that on an aspect ratio of 16:9, the block will roughly be square for an uneven number splits. For an aspect

42

ratio of 4:3, an even number of splits results on roughly square blocks. Because our all domain in the average

domain have a 16:9 aspect ratio and we chose an uneven number of splits, they have an advantage over the

home domain when border tracing is used.

domain without with speed-up stdev

brute force home 43.130 s 7.078 s 6.09x 0.0037

brute force average 19.858 s 3.120 s 6.36x 0.0009

border trace home 1.435 s 0.419 s 3.43x 0.0014

border trace average 12.955 s 2.103 s 6.16x 0.0006

Table 5.9: Calculation times with and without multi-threading using the optimal configuration of 8 threads and 7 splits.

On most domains, we see a speed-up of about 6x. Because calculating the fractals can be fully parallelized,

the theoretical speed-up is 8x when using eight cores. We are still far from an 8x speed-up. We actually have 4

cores which are reported as 8 due to hyper-threading, which limits our speed-up. Even though we use many

splits, we probably still bottleneck on some blocks, especially on the home domain with border tracing. Also,

the splitting algorithm and thread management introduce some overhead.

Strangely, when using OpenMP’s ‘for’ directive, which automatically splits a loop over multiple threads,

we see a 1.5x speed-down, even though it could handle the required mutex more efficiently. So in our

implementation, we handle locking the mutex and assigning blocks from our queue ourself.

5.6 Combining all optimizations

The speed-up of all optimizations combined can be found in Table 5.10. Here, we use symmetry pasting,

shape checking with the main cardioid and period-2 bulb, border tracing and multi-threading with 8 threads

and 7 splits.

domain none all speed-up stdev

home 43.130 s 0.437 s 98.70x 0.00064

average 19.858 s 2.172 s 9.14x 0.00051

Table 5.10: Speed difference between all or no optimizations.

The results are worse than expected. The results from Table 5.9 are slightly faster. In the home domain,

symmetry pasting essentially adds an extra split, because only halve of the screen is rendered and the same

number of splits is performed. So we should reduce the number of splits when using symmetry pasting. The

average result is slightly worse, because we check for the shapes every pixel. In our results in Table 5.3, we

still see a speed-up in the average domain. Since we use border tracing, some pixels in one of the shapes

are skipped, so the speed-down increases slightly. We think this can fully be prevented if we implement the

hitbox detection for shape checking. Note that the average domain calculates nine domains, so the average

rendering time per domain is 2.172
9 = 0.241.

43

5.7 GMP

First we look at the performance in the front-end. Since we want to describe and modify the domain using

GMP floats, it is important to test if this performs well. If these calculations already add a noticeable overhead,

then the program can never be responsive, no matter how much the back-end is optimized. It takes < 0.003

milliseconds to perform scaling in the front-end using normal double precision floats and 0.022 milliseconds

with GMP floats. The speed of the entire process (getting user input, parsing it and drawing the new screen)

without the back-end time when using GMP floats is 0.25 milliseconds. This is the total latency of the front-

end, which is important when reasoning about the responsiveness of the front-end. Since scaling is the most

expensive front-end operation we perform and it still takes well within one millisecond, we do not need to

measure the other operation speeds. The speed-down is very small, especially compared to the speed of the

back-end, so we choose to always use GMP floats in the front-end. Most computer monitors already have

a response time of > 4 milliseconds which most users never notice. Note that timing also introduces some

overhead. The results of timing scaling using normal floats and doing nothing at all are indistinguishable. So

we can only conclude that using GMP floats is fast enough. The reported speed-down is far from accurate.

Next, we will look at the performance of GMP floats in the back-end. Using GMP floats over normal floats

in the back-end introduces a significant overhead as can be seen in Table 5.11. The minimum precision of a

GMP float is 64 bit, which is very close to a standard double which has 53 bit precision. To see the speed

difference on higher precisions, see Figure 5.4. Here, the normal float is listed with a precision of 0 to illustrate

the difference between a normal float and GMP floats of different precisions. The precision of GMP floats

increases in steps of 64 bit (this can be different on different architectures). The times noted in these figures are

the time it took for the back-end to return a pixelbuffer after requesting it. No optimizations were used. Note

that these experiments were run on a server because these experiments take a very long time to complete.

This server has a slightly faster CPU than the one used in all other experiments, so the results are slightly

faster than others in this chapter. This server has an Intel Xeon E5-2667 v2 CPU, uses GCC version 8.2.0 and

GMP version 6.1.0. We could use taskset, but could not set the niceness below 0, which in this case would

have mattered because there were other processes running on the system.

domain normal float GMP float speed-down stdev

home 43.130 s 2088.24 s 48.42x 6.374

average 19.858 s 978.846 s 49.29x 5.690

Table 5.11: Speed difference between normal floats and 64 bit GMP floats with brute forcing.

44

Figure 5.4: Speed difference between different precision GMP floats with brute forcing.

The speed difference between a 64 bit and 128 bit float is much less than the difference between a normal float

and a 64 bit GMP float. Otherwise very high precision calculations become infeasible quickly. However, even

when using the lowest amount of bits, rendering is not fast enough for interactive viewing, so optimizations

become even more important, assuming they still speed rendering up. Unfortunately, some optimizations do

not work as well on such small scales. One example is symmetry checking, because the real axis will almost

never be in screen. Shape checking has the same problem.

Next we will look at the effect of border tracing. Note that border tracing might perform slightly worse on

scales which have to be represented by GMP floats, because the set shows more detail on higher zoom levels.

The results can be found in Table 5.12 and Figure 5.5. Table 5.13 shows the speed-up gained from using border

trace.

domain normal float GMP float speed-down stdev

home 1.435 s 50.616 s 35.27x 0.082

average 12.955 s 552.83 s 42.67x 0.532

Table 5.12: Speed difference between normal floats and 64 bit GMP floats with border tracing.

Figure 5.5: Speed difference between different precision GMP floats with border tracing.

45

domain brute force border trace speed-up

home 2088.24 s 50.616 s 41.26x

average 978.846 s 552.83 s 1.77x

Table 5.13: Speed difference between brute forcing and border tracing using GMP floats.

We do not need GMP floats to describe the home domain; double precision floating points are precise enough.

However, we can still compare the results to the normal float border trace. We see that the GMP border trace

performs better when using GMP floats, especially on the home domain. This is because every pixel is more

expensive to compute, so skipping a pixel saves more time. The higher the number of skipped pixels, the

lower the speed-down. Even if we use multi-threading with 8 cores and assume a 6 times speed-up (based in

Table 5.9), we still can not render using GMP floats within our real-time constraint.

46

Chapter 6

Conclusions

In this thesis, we have described methods to optimize calculating images of the Mandelbrot and Julia sets.

We use symmetry and the shapes in the Mandelbrot set to skip iterating pixels. We also skip calculating

pixels using border tracing. All the calculations are split over blocks which can be calculated in parallel. These

optimizations allow us to calculate the set 10 to 100 times faster. At first, calculating the home domain took

about 40 seconds and the average domain about 20 seconds. With all optimizations, this is reduced to about

half a second for the home domain and about two seconds for the average domain. There are nine domains

in the average domain, so it takes about 0.2 to 0.25 seconds to compute one domain. This is well within our

set real-time constraint of one second. However, we did not test for very high values for NMAX. High values for

NMAX are not a problem for most domains. Usually, most pixels escape much earlier and the iteration of many

pixels in the set can be skipped with border tracing. The images calculated with GMP floats still take about

one minute to calculate, which is too long for interactive viewing. However, this is much faster than before,

considering that it first took 30 minutes to calculate the home domain and about two minutes to calculate the

average domain.

The first goal was to research methods to generate fractals quickly. We successfully implemented most

optimizations found in related work. The only big optimizations we did not implement are SIMD and

perturbation theory, which are discussed in Chapter 7. We did not implement periodicity checking because of

its questionable use and error prone nature. Using orbit plotting in Fraccert, it can easily be seen that barely

any orbit goes though the same point twice.

The second goal was to develop a tool in which fractal optimizations could easily be implemented. Also, it

should support running experiments on the implemented methods. We succeeded in doing this by creating

a clear design in the back-end with an expandable interface which front-ends can use to interact with the

optimizations. Dividing the back-end in four steps which correspond to composing the screen (render()),

calculating the screen (calcScreen()), calculating a pixel (calcPixel()) and calculating a color (calcColor())

allows others to implement optimizations in each step of the calculation process. Also, all optimizations are

implemented generically. Shapes can dynamically be added to a list of shapes to check for. Border tracing is

implemented as part of the fractal interface, so others can easily use this optimization.

47

The third goal was creating a tool which could efficiently display the fractals. As discussed, user friendliness

helps with efficiency, because it can prevent having to compute extra frames if the result is slightly different

than expected. Even though Fraccert’s controls feel intuitive, precise control is still difficult. The user can

only easily translate and scale with a certain step size. For more precise control, the user has to provide the

exact domain through the console. As will be discussed in Section B.2, we have plans for implementing better

controls, however, it is not yet present. We do support some features which are absent in many other fractal

viewers like orbit plotting, the ability to see the Julia sets morphing into each other and a way to view the

small filaments connecting different parts of the sets.

Comparing our results to other well optimized fractal viewer is difficult. Most programs do not report the

time rendering a screen took. Also, the well optimized fractal viewers usually use techniques which cause the

screen not to be rendered as a whole. For instance, XaoS uses smooth scaling. Because many pixels are reused,

we cannot compare XaoS directly to our results. Gnofract 4D uses anti-aliasing and successive refinement,

which is explained in Section 7.8.

48

Chapter 7

Future work

Rendering time can still be improved, as will be discussed in this chapter. As discussed in Chapter 5, shape

checking and border tracing can still be improved further. We do not discuss utilization of the Droste effect

for Julia sets, because the math describing this is not defined well enough to implement this.

7.1 Symmetry/shape check improvement

Symmetry copying introduces an error as discussed in Section 4.3. When the real axis is aligned with a pixel,

the top of a pixel above the real axis has the same distance from the real axis as the top of the pixel below the

pixel containing the real axis. We can circumvent the error by aligning the real axis to a pixel. However, this

would limit the precision of translation. Aligning the real axis would allow us to use another shape for shape

checking; the line on the real axis described by the interval [−2, 0.25]. When the pixels are not aligned with

the real axis, this shape cannot be used, because most complex numbers c diverge when their real part is in

this shape (<(c) ∈ [−2, 0.25]) but their imaginary component is non-zero (=(c) 6= 0).

7.2 Explicit SIMD

In this section, we will only focus on the SIMD instructions on x64 architectures provided through instruction

sets like AVX (Advanced Vector Extensions) and FMA. The instructions in the AVX extensions allow a single

operation to be performed on multiple variables at the same time. The supported data types and instructions

are very limited, but all our required double precision floating point arithmetic is supported. The most recent

AVX-512 supports 512 bits registers. Since we use double precision floats, which are 64 bit, we can perform
512
64 = 8 calculations concurrently. Note that we are using complex numbers, so we need two floats per

complex number. Coincidently, Intel uses computation of the Mandelbrot set as an example to show their AVX

C++ bindings [Lom11]. Here, we can see a brute force implementation and results about the speed-up. The

speed-up from SIMD instructions is less than the number of calculations which can be performed concurrently,

because data has to be moved to special AVX registers and the escape checking has some extra overhead.

49

However, as we can see in [Lom11], the speed-up gets close to the theoretical limit.

As said before, Intel implements the brute force variant. Implementing border tracing with SIMD is much

harder. Fortunately, our version of border tracing allows for an easy way to implement SIMD. We always

calculate the color of the eight neighbors of a pixel, so we can calculate up to eight neighbors concurrently,

given our AVX registers are big enough. The current AVX can only calculate four neighbors concurrently,

but when AVX-1024 is released, we can calculate all neighbors concurrently. This will probably give less of

a speed-up than using SIMD on the brute force variant, due to the random access nature of border tracing.

Because of this, we should check that border trace with SIMD is indeed faster than brute force with SIMD

when this is implemented.

As with AVX, the compiler might not find all cases where FMA can be used. When using FMA in the source

code, we do not have to worry about supporting architectures which do not have FMA hardware, which

makes the source code more readable. However, still not as readable as not using FMA functions in the source

code. During compilation, the compiler can easily change all FMA operations to normal multiplications and

additions. If we were to explicitly implement FMA in our source code, we would like to provide a script

which can transform the source code back to source code without FMA operations to maintain readability.

7.3 Handwritten assembly

Almost all calculation time is spent in the loop which iterates a complex number, so it is important this loop is

well optimized. The assembly the compiler generates may not be optimal. The instructions for this loop could

be replaced by handwritten assembly, which could perform better. One disadvantage of using handwritten

assembly is that the code is less portable.

7.4 GPU acceleration

In the same way we switch from normal floats to GMP floats when necessary, we could also switch between

single and double precision floats. When we do this, we can perform all single precision calculations on a

GPU. However, the precision limit of a GPU is reached very quickly (∆Re = 8 ∗ 10−5 with 2000 pixels). In

the current state of Fraccert, there is only a small latency when rendering frames on this scale. This latency

will further be reduced if SIMD is implemented or processors with higher core counts are used. However, by

the time users have higher core counts or AVX-1024 is released, we might also have much higher resolution

screens. Resolution increases in two dimensions (width and height), so doubling the resolution may square

the calculation time, so there might still be a benefit of using GPUs on lower scales.

7.5 Deepen

When increasing NMAX, only points that were considered to be part of the set can get a different escape iteration,

because points that escaped before NMAX will still escape on the same iteration. So we only have to recompute

points which reached NMAX. When decreasing NMAX, we can just color all pixels black which have an escape

50

iteration higher than the new NMAX. Implementing this requires information about when a pixel escaped to

be saved between two back-end calls. Since the back-end does not have a state, we would have to return a

(pointer to a) second buffer of the same dimensions as the pixel buffer which contains this information. In

theory, the escape iterations could be calculated from the colors of pixels, but this is very expensive, because

with our coloring algorithm it would need to perform two square roots and two cube roots.

This optimization is very useful, because when zooming in, every few steps NMAX has to be increased to see

the smaller details on the smaller domain. Also, changing NMAX can change the coloring of the current domain.

When trying to get a nice screenshot of the set, the user might change NMAX much to get the most visually

appealing coloring, so this optimization makes this process much faster.

7.6 Perturbation theory

Perturbation theory is a field of math which studies the approximation of problems which cannot be solved

exactly. It tries to solve these problems by solving an easier problem which can be solved exactly. Then, using

this easier problem, the solution of the unsolvable problem is calculated by estimating the error the unsolvable

problem introduces compared to the exact solution. These estimations are usually expressed as power series,

because much research has been done on perturbation in power series (i.e. the Lagrange remainder in Taylor

expansions to approximate transcendental functions) and they are generally used to solve these kinds of

problems with. As described in [Mar13], it is possible to estimate zn without arbitrary precision floats from a

different point yn which is calculated with high precision. In this paper, it is postulated that computing three

orders of this power series is enough to estimate zn if the third order error is significantly smaller than the

second order error. This would reduce the number of high precision floating point calculations significantly.

However, not every choice of yn will guarantee that the third order error is much smaller than the second

order error, so we need a method of finding such complex number efficiently, which is a difficult problem.

There are programs which successfully implement this, but most still have significant errors around certain

points [HA14]. Figure 7.1 shows an example of distortion when using perturbation theory. This distortion is

much less when viewing small domains which have to be described by GMP floats.

7.7 Scaling

Reusing pixels when scaling is very difficult. When using an arbitrary scale factor, at worst (e.g. with scale

factor π) only one pixel can be reused (the center of scaling pixel) because none of the pixels align. Using a

whole numbered scale factor (especially 2) maximizes the number of pixels which can be reused. However,

such large scale factors are not user friendly when exploring, because it is difficult to see where the current

frame came from with respect to the previous frame (imagine using Google Maps where you could only scale

by ten steps at a time). As mentioned in Section 1.3.2, XaoS solved the pixel reuse problem very well. XaoS

spends all available CPU time in rendering new pixels while reusing the others which could not be calculated

in time. A heuristic determines which pixels have a higher priority of being recalculated which minimizes the

amount of rendering artifacts. Since XaoS implements this so well, we instead focused on other optimizations.

51

Figure 7.1: Distortion when using the depicted values of c. The three images use the same domain.
Screenshots made with XaoS.

7.8 Successive refinement

While calculating the next frame, the user has to wait without feedback. There are ways by which we can

provide feedback to the user about the new domain without rendering it.

Currently, scaling works in steps. While waiting for the next frame to be calculated, we can use the GPU to

efficiently scale the current image to the new domain. Because the GPU can do this so efficiently, we can do

52

it in many steps, which results in a smooth transition to the new domain. This scaled image will have poor

quality, but it does provide some feedback on the new domain. When rendering a frame takes very long, the

user can see an approximation of the new frame and get the choice to cancel rendering the domain.

We could also use a technique which is called successive refinement [Mun10]. Here, we first render the new

frame on a very low resolution and successively render the pixels in between the already calculated ones,

effectively doubling the resolution each step, see Figure 7.2. This can also be seen as an optimization, because

the user sees the requested domain faster but with a lower resolution. Our implementation of border tracing

would still work efficiently if we do not clear the alpha channels used for flow control between successive

steps. The earlier mentioned article [Mun10] mentions an optimization using successive refinement. This is

the inverse of a border tracing algorithm, because it detects if a pixel is part of the surface of a color band.

Unfortunately, this method is more error prone than border tracing. It cannot make use of SIMD as much as

our border tracer.

Figure 7.2: Four steps of successive refinement.

53

Appendix A

Experiment domains and parameters

All locations used during experiments are listed in Table A.1. All of these values can also be found in

locations.cpp. To see any location, use the command “loc <location>” in Fraccert. For all locations in the

average domain, a picture is provided in Figure A.1.

54

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Pictures of locations in Table A.1

location Re Im resolution NMAX

home [−2.0, 1.0] [−1.125, 1.125] 8000x6000 1000

sym [−2.0, 2.0] [−1.5, 1.5] 1600x1200 256

a [−0.6701,−0.6641] [0.4539, 0.4572] 1920x1080 600

b [−1.74858614,−1.74858479] [0.01262719, 0.01262795] 1920x1080 2500

c [−0.74766,−0.74728] [0.08290, 0.08312] 1920x1080 2250

d [−0.6701,−0.6641] [0.4539, 0.4572] 1920x1080 1500

e [−1.26,−1.195] [0.1417, 0.1782] 1920x1080 700

f [−0.753,−0.727] [0.1441, 0.1588] 1920x1080 350

g [−0.7475087485,−0.7475087322] [0.0830715266, 0.0830715359] 1920x1080 1000

h [−0.439165,−0.439089] [0.574562, 0.574604] 1920x1080 450

i [−0.439165,−0.43909] [0.574507, 0.574549] 1920x1080 475

Table A.1: Table of all locations.

55

Appendix B

Future Fraccert features and

improvements

Fraccert could use some improvements. Some features are still missing and some features are not as easy to

use as others. For instance, the user should be able to cancel the current calculation. We would also like to

support custom iterative functions to render arbitrary fractals.

B.1 Coloring improvements

Even though our current coloring algorithm looks visually appealing, it has some problems. There is still

much noise in some areas. Even though this can never fully be prevented, some coloring algorithm may have

less noise. Another way of circumventing this problem is by using higher resolution screens, however, this

increases rendering times much. The effect of a higher resolution screen can be mimicked through anti-aliasing

techniques like supersampling.

As mentioned before, when NMAX is higher than the number of colors, some color bands get the same color.

There are multiple ways to prevent this problem. One of the easier methods is performing ncol = ndiv mod k,

where ncol is the number which is used by the chosen coloring algorithm, ndiv is the escape iteration and k

is a number, like the number of colors in the color space. This way, the color space cycles after k colors. Note

that with our smooth coloring method, pixels outside the set become black if ndiv mod k = 0. This can be

prevented by using slightly different equations for values ndiv > k.

When using coloring methods where the color is chosen based on ndiv, you will always see banding, because

ndiv is not continuous. Using gradient coloring methods eliminates this problem. If a color is first chosen with

an escape time algorithm, we can then add a gradient to the color band which slowly transitions between the

two neighboring color bands. For an example, see Figure B.1. As seen in Section 3.2 the bands seem to follow

the pattern made by the set itself. If this is the case, the distance estimate could directly be used for gradient

coloring.

56

Figure B.1: Difference between escape time coloring and gradient coloring.
Source: https://en.wikipedia.org/wiki/Mandelbrot_set#Continuous_(smooth)_coloring

B.2 Precise translation and scaling

When translating or scaling in Fraccert, it moves big steps at a time. Even though this is fine for most cases, it

would be nice to be able to easily change the domain in smaller steps. Currently, it can be done through the

console, however, this is not user friendly. It would be more convenient to be able to use the mouse for these

actions, since it offers precise control. Translating could be done by dragging the screen. Scaling could be

done by selecting a rectangle which should become the new screen bounds. One problem is that the user can

select a rectangle of any aspect ratio. Gnofract 4D only lets the user select a rectangle with the same aspect

ratio as the screen. The initial click sets the upper left corner of the new view. This makes selecting the exact

domain which you want to view difficult. Usually, people put the object of focus in the middle. By letting the

user click on the middle of the new domain and then letting him drag the mouse while holding the mouse

button down allows for comfortable precise scaling. While the user is dragging the mouse, a rectangle could

appear on screen which indicates what the new domain will be when the mouse button is released.

A problem of letting the user translate by dragging is that new pixels should be calculated while dragging

to see what the new domain will be. Calculating every row of pixels which enters the screen is inefficient,

because we cannot border trace on a row of pixels. Since we would need to use pixel reuse to be fast enough

for smooth transitioning, we can only change the domain in steps the size of a pixel, which limits the precision

of translating.

B.3 Symmetry pasting in back-end

We already use GPU acceleration in symmetry pasting. Since we use the GPU through an abstraction provided

by SDL, we do the pasting in the front-end. It would be better to perform symmetry checking in the back-end,

so it does not have to be implemented by everyone using the back-end. We do not perform it in the back-end,

because we do not want a dependency on a graphics/multimedia library in a math library. Also, SDL has to

be initialized, which breaks with our functional design. When we implement symmetry pasting, we would

probably use a framework like OpenCL, because it is supported by most GPUs.

57

https://en.wikipedia.org/wiki/Mandelbrot_set#Continuous_(smooth)_coloring

Appendix C

Border trace implementation

1 void Fractal : : calcScreen (const Domain& domain , const Resolution& res , const Range& r , Shapevector&←↩

shapes , uint32_t∗ pixels) const {

2 const double ps = (domain . rMax − domain . rMin) / (double) res . w ;

3

4 // Set border t r a c e s t r u c t up

5 BorderTrace bt ;

6 bt . pixels = pixels ; bt . pixelSize = ps ; bt . data = &shapes ;

7 bt . rMin = domain . rMin ; bt . iMax = domain . iMax ;

8 bt . w = res . w ; bt . h = res . h ;

9 bt . xMin = r . xMin ; bt . xMax = r . xMax ; bt . yMin = r . yMin ; bt . yMax = r . yMax ;

10 bt . dX = r . xMax − r . xMin ; bt . dY = r . yMax − r . yMin ;

11

12 // Border t r a c e

13 edgeInQueue (bt) ;

14 while (! bt . pixelQueue . empty ()) {

15 checkNeighbors (bt , bt . pixelQueue . front ()) ;

16 bt . pixelQueue . pop () ;

17 }

18 fillEmptyPixels (bt) ;

19 }

20

21 void Bordertrace : : addQueue (BorderTrace& bt , const unsigned i n t pixel) const {

22 i f (bt . pixels [pixel] & QUEUED)

23 re turn ;

24

25 bt . pixelQueue . push (pixel) ;

26 bt . pixels [pixel] |= QUEUED ;

27 }

28

29 void Bordertrace : : edgeInQueue (BorderTrace& bt) const {

30 // This funct ion i s only c a l l e d a t s t a r t of border t race , so c l e a r queue .

31 bt . pixelQueue = std : : queue<unsigned int >() ;

58

32

33 f o r (unsigned i n t y = bt . yMin ; y < bt . yMax ; y++) {

34 addQueue (bt , y ∗ bt . w + bt . xMin) ;

35 addQueue (bt , y ∗ bt . w + bt . xMin + (bt . dX − 1)) ;

36 }

37 f o r (unsigned i n t x = bt . xMin + 1 ; x < bt . xMax − 1 ; x++) {

38 addQueue (bt , x + (bt . yMin ∗ bt . w)) ;

39 addQueue (bt , x + (bt . yMin ∗ bt . w) + ((bt . dY − 1) ∗ bt . w)) ;

40 }

41 }

42

43 uint32_t Bordertrace : : getColor (BorderTrace& bt , const unsigned i n t pixel) const {

44 i f (bt . pixels [pixel] & COLORED)

45 re turn bt . pixels [pixel] & COLOR ;

46

47 const unsigned i n t x = pixel % bt . w ,

48 y = pixel / bt . w ;

49

50 double c [2] ;

51 c [0] = bt . rMin + (x ∗ bt . pixelSize) ;

52 c [1] = bt . iMax − (y ∗ bt . pixelSize) ;

53

54 bt . pixels [pixel] = calcPixel (c , bt . data) | COLORED ;

55

56 re turn bt . pixels [pixel] & COLOR ;

57 }

58

59 void Bordertrace : : checkNeighbors (BorderTrace& bt , const unsigned i n t pixel) const {

60 const unsigned i n t x = pixel % bt . w ,

61 y = pixel / bt . w ;

62

63 // Ca l cu l a te current p i x e l

64 const uint32_t pixelColor = getColor (bt , pixel) ;

65

66 // Bools f o r e x i s t e n c e of l e f t −, r ight −, up− and down−neighbor

67 // Cache the r e s u l t s , because they are used of ten

68 const bool rightExists = x < bt . xMax − 1 ,

69 leftExists = x > bt . xMin ,

70 downExists = y < bt . yMax − 1 ,

71 upExists = y > bt . yMin ;

72

73 // F i r s t c a l c u l a t e 4 the neighbors and check i f they are d i f f e r e n t

74 bool rightDifferent = f a l s e , leftDifferent = f a l s e , downDifferent = f a l s e , upDifferent = f a l s e←↩

;

75 i f (rightExists)

76 rightDifferent = getColor (bt , pixel + 1) != pixelColor ;

77 i f (leftExists)

78 leftDifferent = getColor (bt , pixel − 1) != pixelColor ;

79 i f (downExists)

59

80 downDifferent = getColor (bt , pixel + bt . w) != pixelColor ;

81 i f (upExists)

82 upDifferent = getColor (bt , pixel − bt . w) != pixelColor ;

83

84 // Check neighbors of the neighbors which are d i f f e r e n t

85 i f (rightDifferent)

86 addQueue (bt , pixel + 1) ;

87 i f (leftDifferent)

88 addQueue (bt , pixel − 1) ;

89 i f (downDifferent)

90 addQueue (bt , pixel + bt . w) ;

91 i f (upDifferent)

92 addQueue (bt , pixel − bt . w) ;

93

94 // Same f o r diagonals

95 bool rdDifferent = f a l s e , ruDifferent = f a l s e , ldDifferent = f a l s e , luDifferent = f a l s e ;

96 i f (rightExists && downExists)

97 rdDifferent = getColor (bt , pixel + bt . w + 1) != pixelColor ;

98 i f (rightExists && upExists)

99 ruDifferent = getColor (bt , pixel − bt . w + 1) != pixelColor ;

100 i f (leftExists && downExists)

101 ldDifferent = getColor (bt , pixel + bt . w − 1) != pixelColor ;

102 i f (leftExists && upExists)

103 luDifferent = getColor (bt , pixel − bt . w − 1) != pixelColor ;

104

105 i f (rdDifferent)

106 addQueue (bt , pixel + bt . w + 1) ;

107 i f (ruDifferent)

108 addQueue (bt , pixel − bt . w + 1) ;

109 i f (ldDifferent)

110 addQueue (bt , pixel + bt . w − 1) ;

111 i f (luDifferent)

112 addQueue (bt , pixel − bt . w − 1) ;

113 }

114

115 void Bordertrace : : fillEmptyPixels (BorderTrace& bt) const {

116 unsigned i n t pixel ;

117 f o r (unsigned i n t y = bt . yMin ; y < bt . yMax ; y++) {

118 f o r (unsigned i n t x = bt . xMin + 1 ; x < bt . xMax ; x++) {

119 pixel = y ∗ bt . w + x ;

120 i f (! (bt . pixels [pixel] & COLORED))

121 bt . pixels [pixel] = bt . pixels [pixel − 1] ;

122 }

123 }

124 }

60

Bibliography

[Bea16] A.F. Beardon. Symmetries of Julia sets. 2016.

https://vdocuments.mx/symmetries-of-julia-sets.html.

[BM09] Ari Ben-Menahem. Historical Encyclopedia of Natural and Mathematical Sciences. Springer-Verlag Berlin

Heidelberg, 1st edition, 2009.

[Cre25] Hubert Cremer. Über die Iteration rationaler Funktionen. Jahresbericht der Deutschen Mathematiker-

Vereinigung, 33:185 – 210, 1925.

[Cro95] Richard M. Crownover. Introduction to Fractals and Chaos. Jones & Bartlett Publishers, 1995.

[Cro05] Donald D. Cross. Algebraic solution of mandelbrot orbital boundaries. 2005.

http://cosinekitty.com/mandel_orbits_analysis.html

Accessed on 27-06-2019.

[fra] Fractint official site.

https://fractint.org/

Accessed on 27-06-2019.

[gmp] GMPs official documentation.

https://gmplib.org/manual/Floating_002dpoint-Functions.html

Accessed on 28-05-2019.

[gno] Gnofract 4D official site.

https://edyoung.github.io/gnofract4d/

Accessed on 27-06-2019.

[HA14] Claude Heiland-Allen. Perturbation glitches. 2014.

http://mathr.co.uk/blog/2014-03-31_perturbation_glitches.html

Accessed on 20-06-2019.

[HOP92] Dietmar Saupe Heinz-Otto Peitgen, Hartmut Jürgens. Chaos and Fractals. Springer-Verlag New York,

1992.

[Hub82] Adrien Douady, John Hamal Hubbard. Itération des polynômes quadratiques complexes. 1982.

61

https://vdocuments.mx/symmetries-of-julia-sets.html
http://cosinekitty.com/mandel_orbits_analysis.html
https://fractint.org/
https://gmplib.org/manual/Floating_002dpoint-Functions.html
https://edyoung.github.io/gnofract4d/
http://mathr.co.uk/blog/2014-03-31_perturbation_glitches.html

[iee08] IEEE 754-2008 - IEEE standard for floating-point arithmetics. 2008.

https://ieeexplore.ieee.org/document/4610935.

[Jul18] Gaston Julia. Mémoire sur l’itération des fonctions rationnelles. Journal de Mathématiques Pures et

Appliquées, 1:47 – 246, 1918.

[Lei89] Tan Lei. Similarity between the Mandelbrot set and Julia sets. 1989.

http://www.math.univ-angers.fr/~tanlei/papers/similarityMJ.pdf.

[Lom11] Chris Lomont. Introduction to Intel Advanced Vector Extensions. 2011.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf

Or shorter version:

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/.

[Man77] Benoı̂t B. Mandelbrot. Fractals: Form, chance, and dimension. W.H.Freeman & Company, 1977. Trans-

lation of Les objets fractals. Forme, hasard et dimension from French from 1975.

[Man82] Benoı̂t Mandelbrot. The fractal geometry of nature, 1982.

https://users.math.yale.edu/~bbm3/web_pdfs/encyclopediaBritannica.pdf.

[Mar13] K. I. Martin. Superfractalthing maths. 2013.

http://superfractalthing.co.nf/sft_maths.pdf

Accessed on 26-03-2019.

[Mat78] Robert W. Brooks, J. Peter Matelski. The dynamics of 2-generator subgroups of PSL(2, c). Riemann

Surfaces and Related Topics, pages 65 – 71, 1978.

[Mun10] Robert P. Munafo. Successive refinement. 2010.

http://mrob.com/pub/muency/successiverefinement.html

Accessed on 20-06-2019.

[Mun11] Robert Munafo. From the Mandelbrot set glossary and encyclopedia. 2011.

https://www.mrob.com/pub/muency/filament.html

Accessed on 21-03-2019.

[nvi] Documentation of CUDA SDK.

https://docs.nvidia.com/cuda/cuda-samples/index.html#mandelbrot

Accessed on 27-06-2019.

[Pet91] Tim Wegner, Mark Peterson. Fractal Creations. Waite Group Press, 1991.

[qba] Boundary tracing method in qbasic.

https://web.archive.org/web/20150220012221/http://www.reocities.com/CapeCanaveral/

5003/mandel.htm

Accessed on 27-06-2019.

62

https://ieeexplore.ieee.org/document/4610935
http://www.math.univ-angers.fr/~tanlei/papers/similarityMJ.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Intro_to_Intel_AVX.pdf
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
https://users.math.yale.edu/~bbm3/web_pdfs/encyclopediaBritannica.pdf
http://superfractalthing.co.nf/sft_maths.pdf
http://mrob.com/pub/muency/successiverefinement.html
https://www.mrob.com/pub/muency/filament.html
https://docs.nvidia.com/cuda/cuda-samples/index.html#mandelbrot
https://web.archive.org/web/20150220012221/http://www.reocities.com/CapeCanaveral/5003/mandel.htm
https://web.archive.org/web/20150220012221/http://www.reocities.com/CapeCanaveral/5003/mandel.htm

[Rue12] Franciska Ruessink. Boundary trace floodfill. 2012.

https://www.codeproject.com/tips/461694/boundary-trace-floodfill

Accessed on 27-06-2019.

[Sil13] Paul Silisteanu. The Mandelbrot set in C++11. 2013.

https://solarianprogrammer.com/2013/02/28/mandelbrot-set-cpp-11/

Accessed on 29-10-2018.

[Vep00] Linas Vepstas. Mandelbrot bud maths. 2000.

http://linas.org/art-gallery/bud/bud.html

Accessed on 12-11-2018.

[Wil] Lucas Willems. Mandelbrot set symmetry proof.

https://www.lucaswillems.com/en/articles/3/mandelbrot-set-symmetry

Accessed on 27-06-2019.

[xao] XaoS official site.

http://matek.hu/xaos/doku.php

Accessed on 27-06-2019.

[YD02] Dan J. Sandin Yumei Dang, Louis H. Kauffman. Hypercomplex Iterations, Distance Estimation and

Higher Dimensional Fractals. World Scientific, 2002.

63

https://www.codeproject.com/tips/461694/boundary-trace-floodfill
https://solarianprogrammer.com/2013/02/28/mandelbrot-set-cpp-11/
http://linas.org/art-gallery/bud/bud.html
https://www.lucaswillems.com/en/articles/3/mandelbrot-set-symmetry
http://matek.hu/xaos/doku.php

	Abstract
	Introduction
	History of the Mandelbrot and Julia fractals
	Motivation
	Related work
	Current publications and articles
	Current software

	Our contributions
	Thesis overview

	Preliminaries
	Complex mathematics
	Mandelbrot set
	Julia sets
	Self-similarity

	Implementation
	Escape time algorithm
	Calculating escape iteration
	Coloring

	Exterior distance estimation coloring
	Scaling and translation
	Translation
	Scaling

	Arbitrary precision floats
	Julia window
	Orbit plotting
	Design choices and program architecture

	Optimizations
	Parallelization
	Pixel reuse
	Symmetry
	Shape checking
	Border tracing
	Implementation
	Multi-threading

	Experiments and discussion
	Brute force
	Symmetry
	Shape checking
	Border tracing
	Multi-threading
	Combining all optimizations
	GMP

	Conclusions
	Future work
	Symmetry/shape check improvement
	Explicit SIMD
	Handwritten assembly
	GPU acceleration
	Deepen
	Perturbation theory
	Scaling
	Successive refinement

	Appendix Experiment domains and parameters
	Appendix Future Fraccert features and improvements
	Coloring improvements
	Precise translation and scaling
	Symmetry pasting in back-end

	Appendix Border trace implementation
	Bibliography

