
Opleiding Informatica

Cracking the Mastermind Code

Sylvester de Graaf

Supervisors:

Rudy van Vliet & Jan van Rijn

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 31/07/2019

www.liacs.leidenuniv.nl

Abstract

Mastermind is a game where one or multiple code breakers try to crack a four-colour code
in a certain number of guesses. More than forty years ago, Knuth described an algorithm
that needs at most five guesses to crack all codes in a Mastermind game with six different
colours and the option to use the same colour more than once in the code. Nowadays,
Mastermind is also played with more than six different colours, as well as the rule to
use each colour at most once in the code. In this thesis we try to find a better algorithm
to solve this variety of Mastermind games, and examine what the maximum number of
guesses would be to solve all the possible codes for these games. Different algorithms
will also be compared with each other, to see how much they differ in performance.

i

Contents

1 Introduction 1

2 Algorithms 4
2.1 Five-Guess Algorithm . 4
2.2 Random Algorithm . 6
2.3 MiniMax Only Knuth Codes Algorithm . 7
2.4 Secondary MiniMax Knuth Codes Algorithm . 8
2.5 Every Possible Branch Only Knuth Algorithm . 9
2.6 Every Possible Branch Algorithm . 11
2.7 Random Knuth Codes Algorithm . 12
2.8 Other Algorithms . 12

3 Experiments 13
3.1 Possible Best Algorithms . 13
3.2 Walking Down Every Possible Branch . 14
3.3 Worst Case Scenario . 15
3.4 Other Algorithms . 18

4 Best Algorithm Results 19

5 Conclusions and Further Research 23

References 24

1 Introduction

Mastermind is a code-breaking game for two or more players. One player, the code maker,
makes a code consisting of m pins, while all the other players are code breakers. Code
breakers take turns to try to crack the Mastermind code, which is made by the code maker
[Wik].

The first board game version of Mastermind was made in 1970 by Mordecai Meirowitz
[Mei].
In the physical game, the Mastermind code is formed using m = 4 pins, and the feedback for
this guess is represented by two sliders, a red one and a white one. The red one indicates
the correct colour in the correct place, while the white one tells us the number of correct
colours in the wrong place. For the ease of notation, we use digits 1, 2, ..., n− 1, n to denote
the colours. A possible notation for a code could be 1123.

Most versions of Mastermind have a limit of eleven rounds to crack the code. After ev-
ery guess, the code maker will tell us two things:

• The number of correct colours in the correct place (cp).

• The number of colours which are in the code, but are in the wrong place (wp).

Below is an example gameplay for a Mastermind game with two code breakers and where
the Mastermind code is 1214:

1. The first code breaker starts with guess 5111.

2. The code maker gives the following feedback: 1 cp and 1 wp. The code breaker gets
back 1 cp, because the second 1 in his guess is in the correct place. There is one other
1 in the code, but since the code breaker did not guess it in the correct place, he gets
back 1 wp.

3. The second code breaker follows up with guess 1313.

4. The second code breaker receives the feedback: 2 cp and 0 wp.

After these steps the first code breaker makes a guess again, then the second code breaker,
etc. This continues until either the Mastermind code has been cracked or the limit number
of guesses has been reached.

In this thesis we study algorithms for the case with one code breaker, trying to crack
the code in as few guesses as possible.
When there is only one code breaker, he wins when he cracks the code within the specified
number of guesses (this is when we get m cp back as feedback).
If there are multiple code breakers, the first code breaker who guesses the code within the
specified number of guesses wins.

1

In case of two or more code breakers, every guess, no matter by which code breakers,
counts as one guess towards the specified number of guesses.
If the code is not cracked within the specified number of guesses, the code maker wins the
game.

Figure 1: Mastermind game with six colours.
Source: https://en.wikipedia.org/wiki/Mastermind_(board_game)#/media/File:Mastermind.jpg.

Mastermind is a game that uses a minimum of six different colours, and the following rules
can be applied for a game:

1. It is allowed to use the same colour multiple times in the Mastermind code. This game
variant will be referred to as same colour allowed (sca) .

2. It is not allowed to use the same colour multiple times in the Mastermind code. This
game variant will be referred to as same colour not allowed (scna) .

Originally, Mastermind was played with six colours with the sca variant.
Nowadays the physical board game that is sold, has eight different colours and is played
with both variants (sca and scna). To represent what sort of Mastermind game we play, we
will write Mastermind(n, m, a/na), where n is the number of colours we can use in the code,
m is the length of the code we need to crack, and a/na tells us if it is allowed to use the same
colour multiple times in the code.

Back in 1977, Donald Knuth described an algorithm that can crack each of the 64 = 1296

possible codes of a Mastermind(6, 4, a) game, in five guesses or less [Knu77]. We can also
prove that it is not possible to crack every code for this game in four guesses or less:

1. We start with the first guess. Knuth describes a worst case guess, which leaves at most
256 codes that can still be the Mastermind code after this guess.

2. We can theoretically separate 255 of these codes equally into 13 different subsets based
of the feedback (there is one code that returns feedback 4 cp and 0 wp in the next
guess).

2

https://en.wikipedia.org/wiki/Mastermind_(board_game)#/media/File:Mastermind.jpg

3. After the second guess, there will be at least one subset that has at least d(255/13)e = 20

possible codes that can still be the Mastermind code.

4. After the third guess, there will be at least one subset with at least d(20− 1)/13e = 2

possible codes left, that can still be the Mastermind code.

5. If we guess the wrong code in guess four, we need to take an extra guess. Therefore we
cannot crack every code in four guesses or less.

In the sense of using the smallest number of guesses possible, we can say that Knuth’s
algorithm is optimal. For games with more than six colours, it is not known what the smallest
number of guesses is to crack any possible code. It has been proven that the Mastermind
satisfiability problem is NP-complete by Jeff Stuckman and Quo-Qiang Zhang in 2005 [SZ05].
Some earlier research also shows the speed and effectiveness of a genetic algorithm, a simu-
lated annealing algorithm and a random search algorithm to solve a game of Mastermind
[BHG+96].

Nowadays Mastermind is played with more than six colours. For these games, we do
not know what the best algorithm is to solve all possible codes, and what the maximum
number of guesses would be if we tried to crack one of these codes.

In this thesis we try to find the answer to the following two questions:

1. What is the best algorithm to solve an sca Mastermind game with six colours?

2. How many guesses would this algorithm need for Mastermind games of both sca and
scna variants, with six up till and including ten different colours?

In principle it is possible to make codes of less than or more than four pins, as well as to play
games with less than six or more than ten different colours. However, these games are not
played in practice. That is why we only look at the variants that actually appear in practice.

In Chapter 2 we describe the algorithms we test to solve the first question of our thesis.
In Chapter 3 we test the performance of our algorithms for sca Mastermind games with six
colours.
In Chapter 4 we answer the second question of our thesis.
Finally, in Chapter 5 we discuss the conclusions of this thesis and the future work that can
still be done.

3

2 Algorithms

For this thesis, we decided to use a variety of different algorithms, to see which are the best.
In the description of these algorithms, we use the following terms:

• Knuth codes: The codes that may still be the secret code, given the guesses made so
far and the feedback for these guesses.

• Possible codes: The codes that have not been guessed yet.

• Total codes: Total possible codes before the algorithm starts (e.g. 1296 for an sca
Mastermind game with six colours and four pins).

• Guess codes: The current possible codes with the lowest MiniMax value (explained in
Section 2.1).

We decided that, whenever a Mastermind code has been made, it cannot be changed
anymore.
Bestavros & Belal have done their own research, where they let the code maker change
the Mastermind code after every guess. They describe two methods of how the code maker
changes the Mastermind code [BB86].

2.1 Five-Guess Algorithm

In 1977, Donald E. Knuth described an algorithm that can solve Mastermind(6, 4, a) games
in five guesses or less. As this could be the algorithm we are looking for to solve our first
thesis question, we decided to include it into our research. His algorithm uses an auxiliary
function MiniMax, which is described below:

This program gives a l i s t of guesses that are the best to use as next guess .
This l i s t is sorted from lowest number to highest number,
e .g. 1122 comes before 1133.

function MiniMax(knuth_codes , possible_codes){
FOR each code in possible_codes :

FOR each code_to_crack in knuth_codes :
feedback = GuessCode(code_to_crack , code)
times_found[feedback]++

ENDFOR
maximum = GetMaxValue(times_found)
scores [code] = maximum

ENDFOR

minimum = GetMinValue(scores)

4

FOR each code in possible_codes :
IF scores [code] == minimum:

add code to guess_codes
ENDIF

ENDFOR

return guess_codes
}

function GuessCode(code_to_crack , code){
compare code_to_crack and code

return number of cp and wp
}

Below is the pseudocode of the Five-Guess Algorithm:

This program describes the Five−Guess Algorithm made by Knuth

function Mastermind(n, m, a/na){
total_codes = GetTotalCodes(n, m, a/na)
knuth_codes = total_codes
possible_codes = total_codes
mastermind_code = GetMastermindCode(total_codes)

WHILE mastermind_code has not been cracked :
code = GetCode(knuth_codes , possible_codes)
feedback = GuessCode(mastermind_code , code)

IF feedback == (m cp and 0 wp) :
mastermind_code has been cracked

ELSE:
PruneList (code , feedback , knuth_codes)

ENDIF
ENDWHILE

return number of guesses needed to crack the code
}

function PruneList (last_guess , feedback , knuth_codes){
FOR each code in knuth_codes :

retrieved_feedback = GuessCode(code , last_guess)

5

IF retrieved_feedback != feedback :
remove code from knuth_codes

ENDIF
ENDFOR

}

function GetMastermindCode(total_codes){
return a random code from total_codes

}

function GetTotalCodes(n, m, a/na){
return l i s t of a l l codes that can be made
with the rules specified by the user .

}

function GetCode(knuth_codes , possible_codes){
guess_codes = MiniMax(knuth_codes , possible_codes)
code = GetGuessCodeFromList(knuth_codes , guess_codes)

remove code from possible_codes

return code
}

function GetGuessCodeFromList(knuth_codes , guess_codes){
return the f i r s t knuth_code we can find in guess_codes
return the f i r s t code in guess_codes i f we could not find a knuth_code

}

2.2 Random Algorithm

We made an algorithm that randomly tries codes, until the game has been won. We made
this algorithm, because we wanted to see what happens if we just go through all the codes
without making use of the code maker’s feedback.

This program describes an algorithm that solves a game of Mastermind.
It randomly goes down al l possible codes ,
until the Mastermind code has been cracked .

function Mastermind(n, m, a/na){
total_codes = GetTotalCodes(n, m, a/na)

6

possible_codes = total_codes
mastermind_code = GetMastermindCode(total_codes)

WHILE mastermind_code has not been cracked :
code = GetCode(possible_codes)
feedback = GuessCode(mastermind_code , code)

IF feedback == (m cp and 0 wp) :
mastermind_code has been cracked

ENDIF
ENDWHILE

return number of guesses needed
}

function GetCode(possible_codes){
get one random code from possible_codes
remove this code from possible_codes
return code

}

The functions GuessCode, GetTotalCodes and GetMasterMindCode
have been described in Section 2.1

2.3 MiniMax Only Knuth Codes Algorithm

An interesting aspect of Knuth’s algorithm is, that it sometimes takes a code as guess that is
not in Knuth codes. We were interested what would happen if we modified this algorithm, so
that the MiniMax function only stores the Knuth codes in guess codes.

This program solves a game of Mastermind by using MiniMax and pruning .
The difference between this algorithm and the Five−Guess Algorithm is
that this algorithm does not store the possible_codes in guess_codes
that are not knuth_codes

function MiniMax(knuth_codes){
FOR each code in knuth_codes :

FOR each code_to_crack in knuth_codes :
feedback = GuessCode(code_to_crack , code)
times_found[feedback]++

ENDFOR

7

maximum = GetMaxValue(times_found)
scores [code] = maximum

ENDFOR

minimum = GetMinValue(scores)
FOR each code in knuth_codes :

IF scores [code] == minimum:
add code to guess_codes

ENDIF
ENDFOR

return guess_codes
}

The function Mastermind and a l l the other function i t uses ,
are the same as the ones described in Section 2.1

The Mastermind function of this algorithm works the same as the Five-Guess Algorithm. We
can see in the pseudocode above, that MiniMax only iterates over the Knuth codes, instead
of over all possible codes. This makes sure our guess codes only consist of Knuth codes.

2.4 Secondary MiniMax Knuth Codes Algorithm

Knuth’s Five-Guess Algorithm only looks at the minimum value. We wondered if there would
be an improvement if the algorithm would try to use a Knuth code (if it exists) as guess with
the second lowest value, when there was no Knuth code for the lowest value in guess codes.

This program solves a game of Mastermind by using MiniMax and pruning .
The difference between this algorithm and the Five−Guess Algorithm is
that this algorithm also looks for knuth_codes which have the second
best minimum value , when knuth_codes lack in guess_codes for the
best minimum value .

function MiniMax(knuth_codes , possible_codes){
FOR each code in possible_codes :

FOR each code_to_crack in knuth_codes :
feedback = GuessCode(code_to_crack , code)
times_found[feedback]++

ENDFOR
maximum = GetMaxValue(times_found)
scores [code] = maximum

8

ENDFOR

minimum = GetMinValue(scores)
minimum2 = GetSecondMinValue(scores , minimum)
FOR each code in possible_codes :

IF scores [code] == minimum:
add code to guess_codes

ELSE IF scores [code] == minimum2:
add code to guess_codes

ENDIF
ENDFOR

return guess_codes
}

function GetSecondMinValue(scores , minimum){
return the lowest value in l i s t scores that is not equal to minimum

}

The function Mastermind and a l l the other function i t uses ,
are the same as the ones described in Section 2.1

Note that f i r s t the possible_codes with the
lowest minimum value are stored in guess_codes ,
followed by those with the second lowest minimum value .

In case there is no knuth_code in guess_codes , the algorithm wil l
s t i l l take the f i r s t possible_code that has the lowest minimum value .

2.5 Every Possible Branch Only Knuth Algorithm

In Knuth’s Five-Guess Algorithm, he uses the first Knuth code (or just the first code by lack
of Knuth codes in guess codes) in guess codes. We wondered how important it is for the
algorithm to actually use the first Knuth code in guess codes as next guess, instead of an
arbitrary Knuth code in guess codes. Rather than running the algorithm a number of times
with random Knuth codes from guess codes, we haven chosen to try each of these Knuth
codes as a next guess, and see how many guesses we need to finish the game in each of the
cases. That is, we try all possible branches in the search tree. In other words, we walk down
every possible path in the tree.

This program walks down every knuth_code for a guess i f

9

l i s t guess_codes contains codes that are in knuth_codes .
Otherwise i t takes the f i r s t code in guess_codes .

function Mastermind(n, m, a/na){
total_codes = GetTotalCodes(n, m, a/na)
FOR each mastermind_code in total_codes :

knuth_codes = total_codes
possible_codes = total_codes
code = GetCode(knuth_codes , possible_codes)
feedback = GuessCode(mastermind_code , code)

IF feedback == (m cp and 0 wp) :
program needed one guess to crack the code

ELSE:
PruneList (code , feedback , knuth_codes)
LoopOverCodes(knuth_codes , possible_codes , mastermind_code)

ENDIF
ENDFOR

}

function LoopOverCodes(knuth_codes , possible_codes , mastermind_code){
codes = GetCodeList (knuth_codes , possible_codes)
FOR each code in codes :

For this iteration , remove code from possible_codes
feedback = GuessCode(mastermind_code , code)
IF feedback == (m cp and 0 wp) :

print the number of guesses we made
unti l we cracked the mastermind_code

ELSE:
PruneList (code , feedback , knuth_codes)
LoopOverCodes(knuth_codes , possible_codes , mastermind_code)

ENDIF
ENDFOR

}

function GetCodeList (knuth_codes , possible_codes){
guess_codes = MiniMax(knuth_codes , possible_codes)
codes= GetGuessCodeFromList(knuth_codes , guess_codes)

return codes
}

function GetGuessCodeList(knuth_codes , guess_codes){

10

return a l l the knuth_codes we can find in guess_codes
return the f i r s t code in guess_codes i f we could not find a knuth_code

}

The functions GuessCode, GetTotalCodes , GetCode, and PruneList
have been described in Section 2.1
In PruneList possible_codes and knuth_codes
are only removed from the local l i s t

We used a fixed code to make the first guess. This is, because a Mastermind(6, 4, a) game
has 90 first best guesses, which all consist of two times two different colours (1122, 1212,
1221, 1133, etc.). If we walk over all total codes as Mastermind code, we would get the same
results for each of these 90 codes, only at different paths. Since getting 90 times the same
results is not useful, we decided to use 1122 as our fixed first guess.

2.6 Every Possible Branch Algorithm

In Section 2.5 we described that we were interested in what would happen if we walked
down all Knuth codes entries contained in guess codes. We are, however, also curious what
happens if we walk down all entries in guess codes, if it does not contain a code that exists
in Knuth codes. With this algorithm and the one described in Section 2.5, we try to find out if
it matters that Knuth always takes the first (Knuth code) entry of guess codes, instead of an
arbitrary one.

This program walks down every knuth_code for a guess i f
l i s t guess_codes contains codes that are in knuth_codes .
Otherwise i t walks down al l codes in guess_codes .

The function Mastermind and a l l the functions i t uses , are the same as
the ones described in Section 2.5

The only difference is the following function :

function GetGuessCodeList(knuth_codes , guess_codes){
return a l l the knuth_codes we can find in guess_codes
return guess_codes i f we could not find a knuth_code

}

11

2.7 Random Knuth Codes Algorithm

Knuth uses the MiniMax function to determine promising guess codes. We wanted to see
how important this function is for solving the Mastermind code. That is why we made an
algorithm that instead of using the MiniMax function to get the best next guess, we take a
random code from Knuth codes and use that code as our next guess.

This program describes an algorithm that solves a game of Mastermind.
It randomly selects knuth codes for i t s guesses ,
until the Mastermind code has been cracked .
It also makes use of pruning .

function GetCode(knuth_codes , possible_codes){
get one random code from knuth_codes
remove this code from possible_codes
return code

}

The functions Mastermind, GuessCode, GetTotalCodes ,
PruneList and GetMasterMindCode
have been described in Section 2.1

2.8 Other Algorithms

In the past, there have been several other people beside Knuth, who came up with an
algorithm to solve a game of Mastermind. One of these algorithms is a genetic algorithm
which is based of the creation of a large set of eligible guesses collected throughout the
different generations of the genetic algorithm [BGL09]. Another algorithm that has been
described uses depth-first backtracking to solve a Mastermind game [KL93].

12

3 Experiments

We tested the algorithms described in Chapter 2, to see which algorithm was the best. There
are two ways to define an algorithm for Mastermind as the best algorithm:

1. The best algorithm is an algorithm that requires as little guesses as possible in the
worst case.

2. The best algorithm is an algorithm that requires as little guesses as possible on average
for all codes.

We decided to define the best algorithm in terms of how many guesses it needs in worst
case to crack a Mastermind code. The lower the number of guess, the better. If there is a tie
between two algorithms, we will look at the average number of guesses needed to crack all
codes (the lower the better).
We decided to do the testing on a Mastermind(6, 4, a) game, since both Knuth [Knu77] and
Koyoma & Lai [KL93] use this variant for their research.
In contrast to our research, a research has been done by Barteld Kooi [Koo05] in 2005, where
he compares different algorithms and determines the average number of guesses needed by
these algorithms to solve a Mastermind(6, 4, a) game, given a certain first guess.

In Chapter 4 we test sca and scna Mastermind games with n = (6, 7, 8, 9, 10) for the
algorithm that proves to be the best.

Since the random algorithm (Section 2.2) takes 1
2
∗ 1296 = 648 guesses on average, and

1296 guesses at most, we decided we will not look further into this algorithm, since it will
certainly not be the best algorithm.

3.1 Possible Best Algorithms

We start by looking at the algorithms described in Sections 2.1, 2.3 and 2.4.
We tested these algorithms against all total codes, which is 1296 in this case, and counted
how many times it took the algorithm 1, 2, ..., r − 1, r guesses to crack the Mastermind code,
where r is the biggest number of guesses we needed for these algorithms.

13

Guesses FG MMOKC 2MMKC
1 1 1 1
2 6 12 6
3 62 99 63
4 533 468 528
5 694 662 697
6 0 54 1

Total guesses 5,801 5,828 5,805
Average guesses 4.476 4.497 4.479

Table 1: Number of times the Five-Guess Algorithm (FG), MiniMax Only Knuth Codes
Algorithm (MMOKC) and Secondary MiniMax Knuth Codes Algorithm (2MMKC) needed
a certain number of guesses to crack a code, as well as the total and average number of
guesses to crack all codes.

When we look at table 1, we see a few interesting things.

• All three algorithms have one code that needs only one guess to crack the Mastermind
code. This is code 1122, since that is the code these algorithms use as their first guess.

• There is an increasing line between the number of guesses needed and the number of
times that we have a code that needs that number of guesses.

• The Five-Guess Algorithm and the Secondary MiniMax Knuth Codes Algorithm require
almost the same total number of guesses.

We can conclude, that sometimes taking a code that is not in Knuth codes as guess, gives us
better results. Apparently, in these cases, such a guess yields more, useful information for
later steps.
Overall, MMOKC, which only uses codes that are left in Knuth codes as guess, performs less
good than the others, which sometimes take a code that is not in Knuth codes as guess. We
can therefore conclude that MMOKC is not the best algorithm we have found so far.
Since the 2MMKC Algorithm has one code that needs six guesses (this is code 2462), we
conclude that the Five-Guess Algorithm is the best algorithm we have found so far.

3.2 Walking Down Every Possible Branch

The algorithms described in Sections 2.5 and 2.6 were not intended to become the best
algorithm possible. Instead, we made these algorithms to see what would happen if instead
of taking the first (Knuth) code in guess codes, we walk down all possible knuth codes in
guess codes. We made two variants, one where we try all codes in guess codes when there

14

Guesses EPB EPBOK
1 1 1
2 305 305
3 17,424 10,352
4 2,035,536 166,579
5 9,359,424 380,110
6 128,448 16

Total guesses 55,762,835 2,598,629
Average guesses 4.832 4.662

Table 2: Number of times the Every Possible Branch Algorithm (EPB) and Every Possible
Branch Only Knuth Algorithm (EPBOK) needed a certain number of guesses to crack the
Mastermind code over all possible paths, as well as the total number and average number
of guesses to crack all codes with all paths. A path is a sequence of guesses the algorithm
takes, until it cracks the Mastermind code.

are no Knuth codes in guess codes, and one where, if this happens, we just take the first
code in guess codes.
When we look at table 2, there are a few things we need to mention:

• The first guess we do is always fixed (code 1122 in this case). That is the single path
that needs one guess to crack the Mastermind code.

• We walk approximately 20 times more paths if we always check every code in guess
codes when it does not contain any Knuth code.

• Not only do we sometimes need six guesses to crack the Mastermind code, we also
need a lot more guesses on average (4.832 or 4.662 in comparison to 4.476 of the
Five-Guess Algorithm)

• For EPBOK, only 2.87∗10−3% of the total paths need six guesses to crack the Mastermind
code, while 1.11% of the total paths need six guesses for EPB.

We can conclude, that it is relevant that we always take the first Knuth code in guess codes,
or the first code in guess codes if it does not contain any codes that are in Knuth codes. This
was not mentioned in [Knu77] and [Wik].

3.3 Worst Case Scenario

In Section 2.7 we describe an algorithm that chooses a random Knuth code as its next guess.
To determine the worst case scenario, we wanted to measure how many paths we would
walk, when we are only taking Knuth codes as viable guesses, and what the average number

15

of guesses is that we would need to solve all paths. This, however, would take a long time.

That is why we instead tried to calculate how long it would take, if we would test this.
To simulate the worst case scenario, we modified the MiniMax Only Knuth Codes Algorithm
(Section 2.3), so that it would take the highest value instead of the lowest value:

function MiniMax(knuth_codes){
FOR each code in knuth_codes :

FOR each code_to_crack in knuth_codes :
feedback = GuessCode(code_to_crack , code)
times_found[feedback]++

ENDFOR

maximum = GetMaxValue(times_found)
scores [code] = maximum

ENDFOR

maximum2 = GetMaxValue(scores)
FOR each code in knuth_codes :

IF scores [code] == maximum2:
add code to guess_codes

ENDIF
ENDFOR

return guess_codes
}

function Mastermind(n, m, a/na){
total_codes = GetTotalCodes(n, m, a/na)
knuth_codes = total_codes
possible_codes = total_codes
mastermind_code = GetMastermindCode(total_codes)

WHILE mastermind_code has not been cracked :
print number of codes le f t in knuth_codes
code = GetCode(knuth_codes , possible_codes)
feedback = GuessCode(mastermind_code , code)

IF feedback == (m cp and 0 wp) :
mastermind_code has been cracked

ELSE:
PruneList (code , feedback , knuth_codes)

16

ENDIF
ENDWHILE

return number of guesses needed
}

All the other functions that are used , are the same as
the ones described in Section 2.1

We ran this program a number of times, keeping track of the number of codes left in Knuth
codes. In the end we found a code path in which we needed nine guesses to crack the
Mastermind code. We multiplied the number of codes left in Knuth codes for every guess we
did, which gave us a total of 1296 ∗ 625 ∗ 256 ∗ 81 ∗ 16 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 6.44972544 ∗ 1012 paths we
would need to walk in the worst case for a single Mastermind code. This would mean we
would need to walk a total of 1296 ∗ 6.44972544 ∗ 1012 = 8.35884417 ∗ 1015 paths.
It is worth mentioning that the actual number of paths is much lower than this, since almost
all paths need less than nine guesses, which also reduces the number of paths.

In theory, we could walk all possible paths with the same methods as described in Sec-
tion 2.6, and we ran this algorithm for several minutes. We wrote down how many paths we
had walked. This gave us a result of 315 paths per second.

With this average, walking all paths would take 1296∗1296∗625∗256∗81∗16∗4∗3∗2∗1/315 =

2.6536013 ∗ 1013 seconds, or 840875.5 years.

Instead of walking all these paths, we decided to run the Random Knuth Codes Algorithm
(Section 2.7) 10.000 times:

Guesses Random Knuth Codes Algorithm
1 9
2 165
3 853
4 3,353
5 4,220
6 1,320
7 79
8 1

Total guesses 45,891
Average guesses 4.589

Table 3: Number of times Random Knuth Codes Algorithm needed a certain number of
guesses to crack a code, as well as the total and average number of guesses to crack 10.000
random codes.

17

When we look at the results, we see that our average is surprisingly close to that of the Five-
Guess Algorithm (4.476) and that it is better than that of Every Possible Branch Algorithm
(4.832) and Every Possible Branch Only Knuth Algorithm (4.662). However, in some cases it
needs seven or eight guesses to crack a code.

3.4 Other Algorithms

The algorithm made by Koyoma and Lai gives an average guesses of 4.34 [KL93]. They,
however, sometimes need six guesses to crack a code. That is why we do not consider this
algorithm the best algorithm.
The algorithm made by Berghman et al. [BGL09] uses 4.39 guesses on average. It was,
however, not possible for us to reconstruct their algorithm. We therefore could not test how
many guesses it would take at most.
If the maximum number of guesses were five, just like for Knuth’s Five-Guess Algorithm,
then the algorithm by Bergman et al. would be better, because of the lower average.
However, from the algorithms that we could test, Knuth’s Five Guess Algorithm is the best,
both in terms of maximum number of guesses, and in terms of the average. Therefore, we
will use this algorithm for our experiments with the other variants of Mastermind in Chapter
4.

18

4 Best Algorithm Results

When looking at all the results, we came to the conclusion that the Five-Guess Algorithm
(Section 2.1) is the best algorithm we explored. We will therefore use the Five-Guess Algo-
rithm to answer the second question of this thesis:
How many guesses would the best algorithm need for Mastermind games of both sca and
scna variants, with six up till and including ten different colours?

We start with the six colours results:

Guesses sca 6 colours scna 6 colours
1 1 1
2 6 3
3 62 53
4 533 191
5 694 112

Total guesses 5,801 1,490
Average guesses 4.476 4.139

Table 4: Number of guesses needed for a certain code with the Five-Guess Algorithm for an
sca and scna Mastermind game with six colours and the number of codes that need that
number of guesses, as well as the total and average number of guesses to crack all codes.

When we count the total codes, we see that, instead of 1296 total codes with sca, we only
have a 360 with scna. This reduces the computation time to crack all codes a lot.
Another thing we like to mention is, that the first guess of the scna variant is code 1234.
This is, because of symmetry: at the start of a Mastermind game, all 360 guesses are equally
good. That is why guess codes contains all 360 codes. The lowest numeric value of these
codes is code 1234.
It is also not surprising that the average number of guesses of scna is lower than sca: if
there are less codes to choose from, we need less guesses to crack the Mastermind code.

19

We now consider the sca and scna Mastermind games with seven and eight colours:

Guesses sca 7 colours scna 7 colours sca 8 colours scna 8 colours
1 1 1 1 1
2 2 2 1 2
3 64 59 56 56
4 538 378 500 463
5 1,512 379 2,169 931
6 28 21 1,369 227

Total guesses 10,077 3,715 21,230 8,042
Average guesses 4.698 4.423 5.183 4.787

Table 5: Number of guesses needed for a certain code with the Five-Guess Algorithm for an
sca and scna Mastermind game with seven and eight colours and the number of codes that
need that number of guesses, as well as the total and average number of guesses to crack all
codes.

As we can see, when we have seven colours, we cannot crack every code within five guesses.
Below are some interesting results we found by testing:

• We need at most six guesses to crack a random code for a Mastermind game with seven
or eight colours.

• The first code it takes as a guess is 1234 for all four game variants (sca and scna, with
both seven and eight colours).

• When we increase the number of colours, the number of times we guess a code in four
guesses or less stays roughly the same, but the number of times we need five or six
guesses to crack a code, increases a lot. We can explain this:

– Every feedback creates a subset of Knuth codes.

– Every guess separates the Knuth codes in a number of subsets. This number is
more or less independent from the number of colours.

– For most of these subsets, we use the same first few guesses.

– After a few guesses, we are more likely to use codes which consist of the added
colours as guesses.

That is why the number of times we guess a code in four guesses or less stays roughly
the same.

We finally consider the sca and scna Mastermind games with nine and ten colours.

20

Guesses sca 9 colours scna 9 colours sca 10 colours scna 10 colours
1 1 1 1 1
2 1 2 1 3
3 58 52 50 44
4 429 515 380 515
5 2,455 1,661 2,367 2,124
6 3,367 766 5,812 2,151
7 250 27 1,389 202

Total guesses 36,120 15,311 58,103 27,139
Average guesses 5.505 5.063 5.810 5.385

Table 6: Number of guesses needed for a certain code with the Five-Guess Algorithm for
an sca and scna Mastermind game with nine and ten colours and the number of codes that
need that number of guesses, as well as the total and average number of guesses to crack all
codes.

As we can see, when we have nine colours, we cannot crack every code within six guesses.
When we compare nine colours with ten colours, and also look at our previous games with
six, seven and eight colours, there are quite some things worth mentioning:

• We need at most seven guesses to crack a random code for a Mastermind game with
nine or ten colours.

• The first code it takes as a guess is 1234 for all four game variants (sca and scna, with
both nine and ten colours).

• When we have the sca variant with eight or more colours, there is only one code that
needs two guesses to be cracked. For nine and ten colours this is code 5566. For ten
colours we can easily explain this. If the feedback we get to our first guess 1234 is 0 cp
and 0 wp, we are left with 1296 Knuth codes. The situation we have now, looks like the
beginning of the sca Mastermind variant with six colours, with the only difference, that
possible codes contains 9999 codes, instead of 1296. It then behaves almost the same
as the sca Mastermind variant with six colours.

• When we have the scna variant with ten colours, we suddenly have three codes that
need only two guesses to be cracked.

When we were testing the Five-Guess Algorithm, we encountered a few other interesting
things.

• When we increase the number of colours, two things happen:

21

1. Overall, the number of codes that need a low number of guesses gradually de-
creases.

2. The number of codes that need many guesses increases very fast.

• For an sca Mastermind game with six colours and 1296 total codes, we need five
guesses or less to crack every code. When we have 4096 total codes, we need at most
six guesses. We thought that there might be a strict relation between the number
of total codes and the maximum number of guesses needed, regardless of the type
of the game (sca or scna). This hypothesis, however, turned out to be false. An scna
Mastermind game with nine colours has 3024 total codes, but has 27 codes that need
seven guesses to crack the secret code.

• For an sca Mastermind game with six colours, the first guess took us from 1296 Knuth
codes to 256 in the worst case. When we did the next guess, we had 46 Knuth codes
left. After the third guess, we had six Knuth codes left. With the fourth guess, we had
one Knuth code left. Then we needed our fifth guess to crack the secret code.
We tried to find a relation between the number of Knuth codes left before pruning and
the number of Knuth codes left after pruning, but we were unable to find it.

• The average number of guesses needed to crack all codes increased when we increased
the colours. This is indeed what we expected to happen.

22

5 Conclusions and Further Research

In this thesis we investigated the following questions:

1. What is the best algorithm to solve a Mastermind game with six colours, where it is
allowed to use the same colour multiple times in the code?

2. How many guesses would this algorithm need for Mastermind games, for the variants
that the same colour is allowed or is not allowed multiple times in the code, with six up
till and including ten different colours?

We tested several algorithms, and of these algorithms, the best algorithm to solve a Master-
mind game with six colours, with multiple times the same colour allowed in the code, is the
Five-Guess Algorithm that Donald E. Knuth made.

So, using the Five-Guess Algorithm to answer our second question, we saw that it takes at
most five guesses for a Mastermind game with six colours, six guesses for a Mastermind
game with seven or eight colours, and seven guesses for a Mastermind game with nine or ten
colours, regardless of the variant of the game (multiple times the same colour allowed or not).

For future research it would be a good idea to see if the patterns we observed in the exper-
iments, for example the gradually decreasing number of codes that can be solved in four
guesses or less, stay the same when we use more colours.
The relationship between the maximum number of guesses, the number of colours and the
variant of Mastermind is also worth looking into in the future.

We could also make another variant of the Five-Guess Algorithm, which takes a fixed entry
out of all best next guesses, instead of the first entry.
Furthermore, we also had an idea for one more algorithm, which takes into account the pre-
vious guesses, in order to make an even better guess. In the limited time frame for this thesis
project, it was not possible to work this out. It might be interesting to look at this in the future.

A whole different future project would be, to see if the Five-Guess Algorithm would still be
optimal if we used codes of length five or more, instead of length four.
Another interesting research would be to see if our Secondary MiniMax Algorithm would
still be worse than Knuth’s algorithm, when we have seven colours instead of six.

23

References

[BB86] Azer Bestavros and Ahmed Belal. Mastermind: A game of diagnosis strategies.
Bulletin of the Faculty of Engineering, Alexandria University, pages 1–10, 1986.

[BGL09] Lotte Berghman, Dries Goossens, and Roel Leus. Efficient solutions for Master-
mind using genetic algorithms. Computers & Operations Research, 36(6):1880–
1885, 2009.

[BHG+96] J. L. Bernier, C. I. Herrt’aiz, J. J. M. Guervt’os, S. Olmeda, and A. Prieto. Solving
Mastermind using GAs and simulated annealing: A case of dynamic constraint
optimization. PPSN IV: Proceedings of the 4th International Conference on
Parallel Problem Solving from Nature, pages 554–563, 1996.

[KL93] Kenji Koyoma and Tony W. Lai. An optimal Mastermind strategy. Journal of
Recreational Mathematics, 25(4):251–256, 1993.

[Knu77] Donald E. Knuth. The computer as Master Mind. Journal of Recreational Mathe-
matics, 9(1):1–6, 1976–77.

[Koo05] Barteld Kooi. Yet another mastermind strategy. ICGA Journal, 28(1):13–20, 2005.

[Mei] Mordecai Meirowitz. https://en.wikipedia.org/wiki/Mordecai_Meirowitz.
Retrieved 2019-05-06.

[SZ05] Jeff Stuckman and Guo-Qiang Zhang. Mastermind is NP-Complete. arXiv:
cs/0512049, 2005.

[Wik] Wikipedia. Mastermind (board game). https://en.wikipedia.org/wiki/
Mastermind_(board_game). Retrieved 2019-05-06.

24

https://en.wikipedia.org/wiki/Mordecai_Meirowitz
https://en.wikipedia.org/wiki/Mastermind_(board_game)
https://en.wikipedia.org/wiki/Mastermind_(board_game)

	Introduction
	Algorithms
	Five-Guess Algorithm
	Random Algorithm
	MiniMax Only Knuth Codes Algorithm
	Secondary MiniMax Knuth Codes Algorithm
	Every Possible Branch Only Knuth Algorithm
	Every Possible Branch Algorithm
	Random Knuth Codes Algorithm
	Other Algorithms

	Experiments
	Possible Best Algorithms
	Walking Down Every Possible Branch
	Worst Case Scenario
	Other Algorithms

	Best Algorithm Results
	Conclusions and Further Research
	References

