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Abstract

A set of positive generators S ⊂ N with a probability distribution p on S induces a monotone
transitive walk on the integers Z, with P(x, x+s) = p(s). Kruskal’s principle observes that when
two independent copies of the walk are started from nearby states then, with high probability,
they do not have to travel far before visiting a common state (“collision distance”). We develop
tools for determining the expected collision distance and the probability of collision within a
certain distance. We then derive bounds in terms of “collision time”; These are used to prove
that Pollard’s Kangaroo method solves the discrete logarithm problem gx = h on a cyclic group
in expected time (2 + o(1))

√
N , when x is in an interval [a, b] of size N = b − a + 1. We also

resolve a conjecture of Pollard’s by showing that the same bound holds, when step sizes are
generalized from powers of 2 to powers of any fixed n.

1 Introduction

Probabilistic “paradoxes” can have unexpected applications in computational problems, but math-
ematical tools often do not exist to prove the reliability of the resulting computations, so instead
practitioners have to rely on heuristics, intuition and experience. A case in point is Kruskal’s Prin-
ciple, also known as the Kruskal Count, a probabilistic observation reported by Martin Kruskal
and popularized in a card trick by Martin Gardner. In a 1978 paper John Pollard applied the
same trick to a mathematical problem related to code breaking, the Discrete Logarithm Problem:
solve for the exponent x, given the generator g of a cyclic group G and an element h ∈ G such
that gx = h. Variations on this important algorithm are still the fastest methods for breaking
many codes, including instances of the Diffie-Hellman key exchange, ElGamal cryptosystem, the
US government’s DSA (Digital Signature Algorithm), and the Bitcoin protocol.

Pollard’s Kangaroo method involves running two independent instances of the same random
walks on a cyclic group G, one starting at a state gy with known exponent Y0 = y (the “tame
kangaroo”) and the other starting at state h = gx with unknown exponent X0 = x (the “wild
kangaroo”), with the walks terminating after their first collision gXi = gYj . If it is known that
|X0 − Y0| ≤ N for some N then this can be designed to have runtime order

√
N . This exploits

the property that two independent instances of an increasing additive walk, Z → Z + s where
s ∈ S ⊂ N, will visit some common state Xi = Yj (“collide”) fairly quickly when started at nearby
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states. Kruskal’s Principle exploits the related property that with high probability the walks will
collide without having traveled very far. (See Section 5.1 for a precise description of the Kangaroo
method.)

Past work examining collision of walks seems to be of little help in understanding Pollard’s
Kangaroo method. Lagarias et.al. [3] study Kruskal’s Principle, but only for uniform and geometric
walks for which the expected number of steps until an intersection (“collision time”) is easy to
determine. Pollard used similar methods to study the collision time of the kangaroo method, but
his results involved recurrence relations which can only be solved numerically on a case-by-case
basis [6]. In contrast, we develop a method for showing explicit bounds on expected collision time,
expected collision distance, and Kruskal’s Principle which are asymptotically quite precise.

Our approach to these questions is motivated by our past work on Pollard’s Rho algorithm for
Discrete Logarithm, a problem which concerns self-intersection of a single walk [2]. However, a key
part of that analysis involved examining transitions after the mixing time until a near stationary
distribution has been reached, whereas in the kangaroo walk when N � |G| , the algorithm may
terminate long before the walk has mixed. Instead we develop a notion of mixing distance D(ε), the
distance a walk on Z must travel until it has near uniform probability of hitting each subsequent
state. A first moment argument leads to results on Kruskal’s Principle and expected collision
distance, with collision time following as a corollary.

An exact statement of our results involves a fair amount of notation, and so we leave it until
later. However, a heuristic is instructive. Suppose the two walks have transitions Z → Z + s, with
z ∈ S drawn from a distribution p : S → [0, 1] and average step size is S̄ =

∑
s∈S p(s) · s. Each

process visits a 1/S̄ fraction of states. So each state has probability (1/S̄)2 of being visited by both
walks. If we ignore dependencies between nearby states then we expect the walks to travel distance
S̄2 before colliding (“collision distance”). Likewise, each step of the Xi process has probability
1/S̄ of being visited by the Yj process, so ignoring dependencies then the two will collide after an
average of S̄ steps of the Xi process, and by symmetry the same holds for the Yj process. We
show that accounting for dependencies introduces a correction factor of (1 + Bε), where Bε is the
maximum expected number of collisions between two independent processes starting at a nearby
state and proceeding for the mixing distance D(ε).

In the specific case of the walk involved in Pollard’s Kangaroo method, our upper and lower
bounds even agree on their lead constants, which is quite rare among the analysis of algorithms
motivated by Markov chains. More specifically we have:

Theorem 1.1. Consider the interval discrete logarithm problem on cyclic group G: Solve for
unknown x when h = gx for g, h ∈ G and x uniform in interval [a, b]. The Distinguished Points
implementation of Pollard’s Kangaroo method with powers of 2 step sizes has expected run time

(2 + o(1))
√
b− a .

If x is not known to be uniform then the expected number of group operations is upper bounded by

(3 + o(1))
√
b− a ,

with equality when x = a or x = b.

The closest previous result is due to Pollard [6] who gave a convincing but not completely
rigorous argument for the first bound. Given the practical significance of Pollard’s Kangaroo
method for solving the discrete logarithm problem, we find it surprising that there has been no
fully rigorous analysis of this algorithm, particularly since it has been over 30 years since it was
first proposed in [5].
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The paper proceeds as follows. In Section 2 we study the expected collision distance and the
Kruskal count probability of collision within some distance d. In Section 3 we show how to bound
quantities appearing in Section 2, and describe a process for calculating them in Section 3.3. The
results are extended to collision time in Section 4. In Section 5 we apply the results of Section 3.3
and 4 to show sharp results for Pollard’s Kangaroo method with step sizes of powers of two. The
paper finishes in Section 6 with an extension of the results to powers of an arbitrary n, resolving a
conjecture of Pollard’s.

2 Collision Distance

Consider a Markov Chain on Z which is increasing and transitive:

∀x, s ∈ Z : P(x, x+ s) = P(0, s) > 0 , only if s > 0 .

If the walk is aperiodic, i.e. gcd({s : P(0, s) > 0}) = 1, then two independent instances {Xi}
and {Yj} of the walk will collide eventually, i.e. ∃i, j : Xi = Yj . It is natural to ask how far the
walks will travel before colliding, and how many steps this will take, known as collision distance
and collision time respectively. The probability that a collision occurs within some distance d is
sometimes known as the Kruskal Count, as it relates to a card trick popularized by Martin Gardner
and credited to Martin Kruskal.

In this section we consider two forms of this question: the probability that a collision will occur
within distance d, and the expected distance until the collision.

We first require some notation. Let S = {s > 0 : P(0, s) > 0} ⊆ N \ {0} and p(s) = P(0, s)
be a probability distribution on S. Then (p, S) generates the original walk on Z, with P(x, y) =
P(0, y − x) = p(y − x). Let S̄ =

∑
s∈S s p(s) denote the average step size, and Smax = maxs∈S s be

the largest step size. Asymptotically, each state has probability 1/S̄ of being hit by the Xi walk:

lim
d→∞

Pr (∃i : Xi = X0 + d) = 1/S̄ . (1)

It is natural to ask the distance required to closely approximate this limiting behavior.

Definition 2.1. The mixing distance D(ε), for ε ≥ 0, is the smallest integer such that

∀d ≥ D(ε) :
1− ε
S̄
≤ Pr (∃i, Xi = d | X0 = 0) ≤ 1 + ε

S̄
.

If d ≥ D(ε) and Y0 < X0 then each state X0 + d has probability ≈ 1/S̄ of being hit by X and
an independent ≈ 1/S̄ chance of being hit by Y , so that the probability that both walks hit the
state is ≈ 1/S̄2. If we ignore correlations then a collision is expected within distance D(ε) + S̄2.

The frequency of collisions before distance D(ε) will vary depending on the Markov chain, and
so we quantify it separately. Let Bε be the worst-case expected number of collisions between two
independent walks before they travel distance D(ε).

Bε = max
Y0≤X0=0

E
D(ε)−1∑
d=0

1{∃i,j : (Xi=Yj=d)∧((i,j)6=(0,0))} .

The main result of this section is to prove that when ε and Bε are close to zero and D(ε), Smax �
S̄2 then the walks travel an expected distance of (1 + o(1))S̄2 until a collision. More precisely,
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Theorem 2.2. Consider an increasing additive Markov chain on Z with generating set S, proba-
bility distribution p : S → [0, 1], and transitions P(x, x+ s) = p(s). Run two independent instances
of the walk with starting states Y0 < X0 = 0. The expected distance the walks travel until a collision
is:

Emin{d : ∃i, j, Xi = Yj = d} ≤ S̄2

(√
1 +Bε + 1

S̄

√
D(ε) + Smax

1− 2ε

)2

Emin{d : ∃i, j, Xi = Yj = d} ≥ S̄2

(
max{0, 1−

√
Bε}

1 + ε

)2

.

The probability there is no collision within distance d is:

Pr (6 ∃i, j, Xi = Yj ≤ d) ≤ exp

−d/S̄2

(√
1 +Bε + 1

S̄

√
D(ε) + Smax

1− 2ε

)2


Pr (6 ∃i, j, Xi = Yj ≤ d) ≥ exp

(
−d
/
S̄2

(
max{0, 1−

√
Bε}

1 + ε

)2
)
.

2.1 The proof

Roughly speaking our argument is as follows: break the walk into blocks covering some distance
D(ε) + ∆ each, determine the probability of no collision on a block, and then raise this to the `th

power to find the probability of no collision within ` blocks. Boundary effects complicate this a
little.

Let I∆
D count collisions with Xi = Yj ∈ [X0 +D,X0 +D + ∆), so that

I∆
D =

D+∆−1∑
d=D

1{∃i,j,Xi=Yj=X0+d} .

Our goal is to study Emin{d : Id0 > 0}. It is natural to expect that if EId0 is large then
Pr
(
Id0 > 0

)
is going to be large as well. We use a first moment argument to show this. In particular,

a non-negative random variable Z ≥ 0 satisfies

E[Z] = Pr (Z = 0) E[Z | Z = 0] + Pr (Z > 0) E[Z | Z > 0] ,

and so

Pr (Z > 0) =
E[Z]

E[Z | Z > 0]
.

We apply this with Z = I
D(ε)+∆
0 to obtain the following:

Lemma 2.3. Under the conditions of Theorem 2.2, if ε ≤ 1/2 and ∆ ≥ 0 then

Pr
(
I
D(ε)+∆
0 > 0 | Y0 < X0 = 0

)
≤ Bε +

∆

S̄2
(1 + ε)2

Pr
(
I
D(ε)+∆
0 > 0 | Y0 < X0 = 0

)
≥ ∆

S̄2

(1− 2ε)2

1 +Bε + ∆
S̄2

.

To show this we first need bounds on E[Z] and E[Z | Z > 0]. It is easier to consider I∆
D(ε) and

fill in the omitted intersections I
D(ε)
0 later.
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Lemma 2.4. Under the conditions of Theorem 2.2, if ∆ ≥ 0 then

(1− ε)2 ∆

S̄2
≤ E

[
I∆
D(ε) | Y0 < X0 = 0

]
≤ (1 + ε)2 ∆

S̄2

E
[
I∆
D(ε) | I

∆
D(ε) > 0, Y0 < X0 = 0

]
≤ 1 +Bε + E

[
I∆
D(ε) | X0 = Y0 = 0

]
.

Proof of Lemma 2.4. The walks Xi and Yj are independent and so if d ≥ D(ε) then

Pr (∃i, j, Xi = Yj = d | Y0 < X0 = 0)

= Pr (∃i, Xi = d | X0 = 0) Pr (∃j, Yj = d | Y0 < 0)

≥
(

1− ε
S̄

)2

.

The expectation E
[
I∆
D(ε) | Y0 < X0 = 0

]
then satisfies

E
[
I∆
D(ε) | Y0 < X0 = 0

]
= E

D(ε)+∆−1∑
d=D(ε)

1{∃i,j,Xi=Yj=d} | Y0 < X0 = 0


=

D(ε)+∆−1∑
d=D(ε)

Pr (∃i, j, Xi = Yj = d | Y0 < X0 = 0)

≥ ∆

(
1− ε
S̄

)2

.

The upper bound on E
[
I∆
D(ε) | Y0 < X0 = 0

]
is similar.

Now consider the conditional case of E
[
I∆
D(ε) | I

∆
D(ε) > 0, Y0 < X0 = 0

]
. By transitivity, the

number of intersections after the first collision is at most the number if X0 = Y0 = 0.

E
[
I∆
D(ε) | I

∆
D(ε) > 0, Y0 < X0 = 0

]
≤ 1 + E

[
∆−1∑
d=1

1{∃i,j,Xi=Yj=d} | X0 = Y0 = 0

]
≤ 1 +Bε + E

[
I∆
D(ε) | X0 = Y0 = 0

]
.

Proof of Lemma 2.3. As before, let Z = I
D(ε)+∆
0 , so that

Pr
(
I
D(ε)+∆
0 > 0 | Y0 < X0 = 0

)
≥ Pr

(
I∆
D(ε) > 0 | Y0 < X0 = 0

)
≥

E
[
I∆
D(ε) | Y0 < X0 = 0

]
1 +Bε + E

[
I∆
D(ε) | X0 = Y0 = 0

]
≥ (1− ε)2∆/S̄2

1 +Bε + (1 + ε)2∆/S̄2
≥
(

1− ε
1 + ε

)2 ∆/S̄2

1+Bε
(1+ε)2

+ ∆/S̄2
.
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For the upper bound

Pr
(
I
D(ε)+∆
0 > 0 | Y0 < X0 = 0

)
≤ E

[
I
D(ε)+∆
0 | Y0 < X0 = 0

]
= E

[
I
D(ε)
0 + I∆

D(ε) | Y0 < X0 = 0
]

≤ Bε + ∆
(1 + ε)2

S̄2
.

Lemmas 2.4 and 2.3 will now be combined to prove the theorem.

Proof of Theorem 2.2. Recall from our sketch at the beginning of the section that we first break
the walk into segments covering some distance D(ε) + ∆ each. Let D0 = 0, let D(ε) be the mixing

distance, and set Dk = Dk−1 + D(ε) + ∆. Also, let X
(k)
0 denote the first Xi ≥ Dk, and likewise

Y
(k)

0 is the first Yj ≥ Dk, with X
(0)
0 = X0 and Y

(0)
0 = Y0. Let Fk denote the event that these are

distinct, i.e. X
(k)
0 6= Y

(k)
0 . Then

Pr
(
ID`0 = 0 | F0

)
=

`−2∏
k=0

Pr
(
I
D(ε)+∆
Dk

= 0 ∧ Fk+1 | IDk0 = 0 ∧ Fk
)

×Pr
(
I
D(ε)+∆
D`−1

= 0 | ID`−1

0 = 0 ∧ F`−1

)
.

When Fk = 0 then assume that X
(k)
0 > Y

(k)
0 , and if not then exchange the labels of X and Y .

By Lemma 2.3, with ∆ replaced by ∆ + Smax,

Pr
(
I
D(ε)+∆
Dk

= 0 | IDk0 = 0 ∧ Fk
)

≥ Pr
(
I
D(ε)+∆
Dk

= 0 ∧ Fk+1 | IDk0 = 0 ∧ Fk
)

≥ Pr

(
I
D(ε)+∆+Smax

X
(k)
0

= 0 | IDk0 = 0 ∧ Fk
)

≥ 1−Bε −
∆ + Smax

S̄2
(1 + ε)2 .

In the other direction,

Pr
(
I
D(ε)+∆
Dk

= 0 ∧ Fk+1 | IDk0 = 0 ∧ Fk
)

≤ Pr
(
I
D(ε)+∆
Dk

= 0 | IDk0 = 0 ∧ Fk
)

≤ Pr

(
I
D(ε)+∆

X
(k)
0

= 0 | IDk0 = 0 ∧ Fk
)

≤ 1− ∆− Smax
S̄2

(1− 2ε)2

1 +Bε + ∆−Smax
S̄2

.

From this we obtain the probability of no collision in ` segments:(
1−Bε −

∆ + Smax
S̄2

(1 + ε)2

)`
≤ Pr

(
ID`0 = 0

)
≤

(
1− ∆− Smax

S̄2

(1− 2ε)2

1 +Bε + ∆−Smax
S̄2

)`
. (2)
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To bound Kruskal count observe that, if E0 ⊆ E1 ⊆ E2 ⊆ · · · is an increasing family of events,
then Emin{d : Ed} =

∑∞
d=0 Pr (¬Ed), where we let Ed = {Id0 > 0} be the event that a collision

occurs within distance d.

Emin{d : Id0 > 0} =

∞∑
d=0

Pr
(
Id0 = 0

)
≤
∞∑
`=0

(D(ε) + ∆)Pr
(
ID`0 = 0

)

≤ (D(ε) + ∆)
∞∑
`=0

(
1− ∆− Smax

S̄2

(1− 2ε)2

1 +Bε + ∆−Smax
S̄2

)`

= (D(ε) + ∆)
S̄2

∆− Smax
1 +Bε + ∆−Smax

S̄2

(1− ε)4
. (3)

This is minimized when ∆−Smax = S̄
√

(D(ε) + Smax)(1 +Bε). Substituting this into (3) gives the
upper bound on expected run time. Substituting this into (2) and using the relation 1 − x ≤ e−x

gives the upper bound on probability of no collision.
The lower bound is similar.

Emin{d : Id0 > 0} =

∞∑
d=0

Pr
(
Id0 = 0

)
≥
∞∑
`=1

(D(ε) + ∆)Pr
(
ID`0 = 0

)
≥ (D(ε) + ∆)

∞∑
`=1

(
1−Bε −

∆ + Smax
S̄2

(1 + ε)2

)`
= (D(ε) + ∆)

(
1

Bε + ∆+Smax
S̄2 (1 + ε)2

− 1

)
. (4)

This is maximized when ∆ + Smax = S̄2

(1+ε)2

(√
Bε − D(ε)−Smax

S̄2 (1 + ε)2 −Bε
)

. Substituting this

into (4) gives a lower bound, after some straightforward simplification. Substituting this into (2)
and using the relation: 1 − x ≥ e−x/(1−x) (valid for all x ∈ [0, 1))), gives the lower bound on
probability of no collision.

3 Calculating Collision Distance

The bounds of Theorem 2.2 require D(ε) and Bε. We develop tools for bounding these in Sections
3.1 and 3.2 respectively. This culminates in Section 3.3, where we develop a step-by-step process
for applying Theorem 2.2. We illustrate its application in Section 3.4 by examining the uniform
walk.

3.1 Mixing Distance

In order to understand our approach it is helpful to begin with some asymptotic properties of the
walk.

Recall that asymptotically each state has probability 1/S̄ of being hit by the Xi walk, so that
limD→∞ Pr (∃j : Xj = X0 +D) = 1/S̄. The probability that the first Xj ≥ X0 + D is given by
Xj = X0 +D + δ will be

F (D, δ) =
∑

s∈S, s>δ
Pr (∃j : Xj = X0 +D + δ − s) p(s) .
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In the limit this approaches

F (δ) = lim
D→∞

F (D, δ) =
1

S̄

∑
s∈S, s>δ

p(s) . (5)

It follows that if T satisfies Pr (XT = X0 +D + δ) = F (δ) for some D and all δ ∈ [0, Smax) then

∀d ≥ D : Pr (∃j : Xj = X0 + d) = 1/S̄ . (6)

It will almost never be the case that Pr (XT = X0 +D + δ) = F (δ) holds for fixed values of
D and T . However, the relation still holds if D and T are random variables, as long as D is
independent of δ. We show that (6) can be made rigorous when T is a stopping time:

Definition 3.1. A stopping time for a random walk {Xi}∞i=0 is a random variable T ∈ N such that
the event {T = t} depends only on X0, X1, . . . , Xt.

Lemma 3.2. Consider a stopping time T and associated random variable D such that

∀δ ≥ 0 : Pr (XT = X0 +D + δ) = F (δ) =
1

S̄

∑
s∈S, s>δ

p(s) .

Then
∀d ≥ D : Pr (∃j ≥ T : Xj = X0 + d) = 1/S̄ .

Proof. The proof will be inductive. The base case is when d = D. By assumption

Pr (∃j ≥ T , Xj = X0 + d) = F (0) = S̄−1 .

When d > D then by induction assume ∀c ∈ [D, d) : Pr (∃j ≥ T , Xj = X0 + c) = S̄−1. Then

Pr (∃j ≥ T , Xj = X0 + d)

= F (d−D) +
∑

c∈[D,d)

Pr (∃t ≥ T , Xt = X0 + c) p(d− c)

=

∑
s>d−D p(s)

S̄
+
∑

s≤d−D

1

S̄
p(s) =

1

S̄
.

The lemma follows.

In particular, if D(ε) is such that Pr (D > D(ε)) ≤ ε then

∀d ≥ D :
1− ε
S̄
≤ Pr (∃j ≥ T : Xj = X0 + d) ≤ 1 + ε

S̄
.

3.2 Bounding Bε

Once we have a bound on some D(ε) then Bε needs to be determined. The following lemma reduces
this to a problem of showing that the t-step transition probabilities decrease quickly in t.

Lemma 3.3. If D(ε) is the mixing distance, S the set of generators for the additive walk, and N
is any positive integer then

1

|S|
≤ Bε ≤ BT +

2

N

D(ε)

D(ε)− Smax
,
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where

T (ε,N) =
2D(ε)

S̄
+

1

2

(
Smax
S̄

)2

log(D(ε)N) ,

and BT , the expected number of collisions before time T (ε,N), satisfies

BT ≤ 2

T (ε,N)∑
i=1

i max
v

Pi(0, v) .

Proof. We will use Hoeffding’s Inequality, that if Z is the sum of n independent random variables
with values in [a, b] then for any t ≥ 0

Pr (|Z − EZ| ≥ t) ≤ exp

(
−2t2

n(b− a)2

)
.

For simplicity, let T = T (ε,N). Since XT − X0 =
∑T

j=1Xj − Xj−1 is the sum of T independent

random variables from S, with EXT −X0 = T S̄, then

Pr (XT < X0 +D(ε)) = Pr
(
(XT −X0)− T S̄ < −(T −D(ε)/S̄) S̄

)
≤ exp

(
−2(T −D(ε)/S̄)2(S̄/Smax)2

T

)
≤ 1

D(ε)N
.

Likewise, Pr (YT < X0 +D(ε)) ≤ 1
(D(ε)−Smax)N .

Then

Bε ≤ BT + Pr (XT < X0 +D(ε)) |{Yj : Yj < X0 +D(ε)}|
+Pr (YT < X0 +D(ε)) |{Xi : Xi < X0 +D(ε)}|

≤ BT +
1

D(ε)N
(D(ε) + Smax) +

1

(D(ε)− Smax)N
D(ε)

≤ BT +
2D(ε)

(D(ε)− Smax)N
,

and

BT = max
−Smax<Y0≤0=X0

T−1∑
i=0

T−1∑
j=1

Pr (Xi = Yj)

= max
−Smax<Y0≤0=X0

T−1∑
i=0

T−1∑
j=1

∑
w

Pi(X0, w)Pj(Y0, w)

≤
T∑
i=1

max
v

Pi(0, v)
i∑

j=0

(1 + 1{0<j<i})
∑
w

Pj(0, w)

=

T∑
i=1

2i max
v

Pi(0, v) .

The inequality follows by letting i denote the larger of the two indices and j the smaller, while the
final equality is because

∑
w Pj(0, w) = 1.

For the lower bound let X0 = Y0 so that Bε ≥ Pr (X1 = Y1) =
∑

s∈S p(s)
2. By Cauchy-Schwarz

1 =
∑
s∈S

p(s)× 1 ≤
√∑

s∈S
p(s)2

√∑
s∈S

12 ,

and so
∑

s∈S p(s)
2 ≥ 1/|S|. Then Bε ≥ 1/|S|.
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3.3 One approach to bounding collision distance

We combine the results of the previous two subsections to give an approach to applying Theorem
2.2 that seems to work for many problems. The first step is to construct a stopping time and use
it to upper bound mixing distance.

(Ia). Construct a “tentative” stopping time T1 which is uniform on some [d, d+ Smax). The value
of d may be a random variable which depends on much of the walk until time T1.

(Ib). If XT1 = X0 + d+ δ then “accept” this with probability

F (δ)

F (0)
=
∑
s>δ

p(s) ,

where F (δ) is as in (5). If accepted then set T = T1 and D = d. When it is not accepted then
start over from XT1 , use the same procedure as in (Ia) to construct a new tentative stopping
time which is uniform, again decide whether to accept/reject, and repeat until a stopping
time is accepted.

(Ic). How many steps will it take to find the stopping time?

Since δ is uniform in [0, Smax), the probability a tentative stopping time is accepted is

E
F (δ)

F (0)
=

Smax−1∑
c=0

Pr (δ = c)
F (c)

F (0)

=

Smax−1∑
δ=0

1

Smax

∑
s>c

p(s)

=

∑
s p(s)s

Smax
=

S̄

Smax
.

It follows that

Pr (T = Tk | T > Tk−1) = E
F (δ)

F (0)
=

S̄

Smax
.

If M = Smax
S̄

log(S̄/ε) then

Pr (T > TM ) ≤
M∏
k=1

Pr (T > Tk | T > Tk−1) ≤ ε

S̄
.

If Tk − Tk−1 ≤ ∆ for all k then TM ≤ ∆M , and so Pr (T > ∆M) ≤ ε/S̄ is bounded.

(Ic’). When Tk − Tk−1 is unbounded then we modify this slightly. Let

∆(ξ) = max
k

min{t : Pr (Tk − Tk−1 > t) ≤ ξ} .

If Tk is not determined by time Tk−1 + ∆(ξ) then set Tk = Tk−1 + ∆(ξ), automatically reject
this and construct Tk+1 starting from this time. Then Pr (T = Tk | T > Tk−1) ≥ S̄/Smax−ξ.
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In this case, if M = 2Smax
S̄

log(S̄/ε) and rounds have length Tk − Tk−1 ≤ ∆(S̄/2Smax) then

Pr (T > TM ) ≤
M∏
k=1

Pr (T > Tk | T > Tk−1)

≤
(

1− S̄

Smax
+
S̄/Smax

2

)2(Smax/S̄) log(S̄/ε)

≤ ε

S̄
.

(Id). Mixing distance satisfies one of the following:

(Ic) D(ε) ≤ M ∆Smax = ∆

(
Smax
S̄

)2

log(S̄/ε) S̄

(Ic′) D(ε) ≤ M ∆(S̄/2Smax)Smax = 2∆(S̄/2Smax)

(
Smax
S̄

)2

log(S̄/ε) S̄ .

Next, we upper bound collision number Bε:

(IIa). The appropriate value of T is given in Lemma 3.3. It may be simplified using the relations
Smax pmin ≤ S̄ ≤ Smax, where pmin = mins∈S p(s).

(IIb). It is helpful to note that maxu,v P
k(u, v) is non-increasing in k. To see this, suppose that

maxv P
k(0, v) ≤ C. By induction, if i > k then

max
v

Pi(0, v) = max
v

∑
w

Pi−k(0, w)Pk(w, v) ≤ C max
v

∑
w

Pi−k(0, w) = C . (7)

(IIc). In particular, if maxv P(0, v) ≤ α
|S| while maxv P

2(0, v) ≤ β and maxv P
k(0, v) ≤ ξ for some

k ≥ 2 then

1

|S|
≤ Bε ≤

2α

|S|
+ 2

k−1∑
i=2

i β + 2

T∑
i=k

i ξ +
2

N

D(ε)

D(ε)− Smax

≤ 2α

|S|
+ k2 β + T 2 ξ +

2

N

D(ε)

D(ε)− Smax
. (8)

This reduces the problem to one of studying single-step transitions, which are stated in each
problem, two-step transitions which are easy enough to compute, and then showing that some
moderately sized exponent has Pk(0, v)� 1/T 2|S|.

3.4 Uniform Distribution

We now examine collision of a walk with uniform transitions X → X + i with i ∈ [1, U ] for some
integer U ∈ N, so that S̄ = 1+U

2 and Smax = U . Previously Lagarius et.al. [3] used a coupling
method to show that

Pr (6 ∃i, j, Xi = Yj ≤ d) ≤ exp

(
− 4

U2
(1 + o(1)) d

)
.

Haga and Robbins used more direct methods to show this to be an equality [1]. We show this same
equality by use of our Theorem 2.2, and also show an equality for expected distance until collision.
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Our goal here is not to show a new result but to demonstrate methods we will later apply to the
harder Pollard’s Kangaroo method.

As discussed earlier, a simple heuristic suggests a collision will occur after an average distance
of S̄2 steps. We show this is true by using Theorem 2.2 and the methods of Section 3.3. We use
notation (Ia), (Ib), etc to denote step (Ia), (Ib) etc described in Section 3.3.

(Ia) Let X0 = 0. Then X1 = X0 + 1 + δ is uniformly random in [1, 1 + U), or equivalently δ is
uniform in [0, U). It follows that T1 = 1 is a tentative stopping time.

(Ib) The probability we accept this stopping time and set T = 1 and D = 1 is

Pr (T = T1 = 1) =
S̄

Smax
=

1 + U

2U
>

1

2

(Ic) More generally, if M = log2(S̄/ε) then

Pr (T > TM ) ≤
(

1− 1

2

)M
≤ ε

S̄

(Id) It follows that
D(ε) ≤M Smax ≤ 2S̄ log2(S̄/ε)

Next we study Bε.
(IIa) If N = S̄ then in Lemma 3.3

T (ε, S̄) =
2D(ε)

S̄
+

1

2

(
Smax
S̄

)2

log(D(ε)N)

≤ 4 log2(S̄/ε) +
1

2
· 4 · log(2S̄2 log2(S̄/ε))

< 2.2 + 10 log2(S̄/ε)

(IIb) Obviously maxv P
1(0, v) = 1/U , and so ∀i : Pi(0, v) ≤ 1/U as well.

(IIc) Using just the crude bound ∀i : Pi(0, v) ≤ 1/U then and

B(1/S̄Smax) ≤ 2
T∑
i=1

i

U
+

4

U
(1 + 1/ log2(S̄/2ε)) = O

(
log2 U

U

)
Since Bε ≥ 1/|S| then B(1/S̄Smax) = Θ∗(1/U).

We can conclude from Theorem 2.2 that

Emin{d : ∃i, j, Xi = Yj = d} = (1 +O∗(1/
√
U))

U2

4

Pr ( 6 ∃i, j, Xi = Yj ≤ d) = exp
(
−4d/U2(1 +O∗(1/

√
U))
)

4 Collision Times

The Kangaroo walk travels an average distance S̄ in each step, and so naturally the expected
distance traveled until collision will be roughly S̄ times larger than the expected run time. In fact,
it is exactly that much larger.
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Corollary 4.1. Given an increasing transitive Markov chain on Z with mixing distance D(ε), run
two independent instances of the walk with starting states Y0 < X0 = 0. The expected time until a
collision is:

Emin{i : ∃j, Xi = Yj} ≤ 1 + S̄

(√
1 +Bε + 1

S̄

√
D(ε) + Smax

1− 2ε

)2

.

Emin{i : ∃j, Xi = Yj} ≥ S̄

(
max{0, 1−

√
Bε}

1 + ε

)2

.

The corollary can be restated entirely in terms of time. Define the intersection mixing time
T (ε) to be the smallest integer with

∀i ≥ T (ε), ∀Y0 ≤ X0 :
1− ε
m
≤ Pr (∃j : Xi = Yj) ≤

1 + ε

m
.

Theorem 4.2. Given an increasing transitive Markov chain on Z with intersection mixing time
T (ε), run two independent instances of the walk with starting states Y0 < X0 = 0. The expected
time until a collision is:

Emin{i > 0 : ∃j, Xi = Yj} ≤ 1 + S̄

(√
1 +BT +

√
T (ε)/S̄

1− ε

)2

,

where BT is the expected number of collisions before time T (ε).

The proof requires only fairly straightforward changes from that of Theorem 2.2. We do not
use this form and so we omit the proof.

Proof of Corollary 4.1. Let T = min{i : ∃j, Xi = Yj} be the time of the first collision, and
D = XT −X0 the distance traveled by the X walk until collision. Theorem 2.2 bounds ED. It is
natural to expect that ET = (ED)/S̄. We show that this is true.

A random variable Zt is a Martingale if E[Zt+1 | Z0, Z1, . . . , Zt] = Zt. The optional stopping
theorem says that if T is a bounded stopping time and Zt a Martingale then EZT = EZ0. This
says that no strategy for stopping the process in finite time can do better than stopping at time 0.

The process Zt = (Xt −X0)− tS̄ is a Martingale. By the optional stopping theorem, ∀n ≥ 0 :
EZmin{T ,n} = Z0 = 0, so that

EXmin{T ,n} = X0 + (Emin{T , n})S̄ .

Since Xi is increasing then EXmin{T ,n} ≤ EXT = ED, and so by Dominated Convergence this in-
creasing bounded sequence has limit limn→∞ EXmin{T ,n} = EXT . Likewise limn→∞ Emin{T , n} =
ET . It follows that

EXT = X0 + (ET )S̄

⇒ ET =
EXT −X0

S̄
=

ED
S̄

.

5 Catching Kangaroos

Our primary reason for studying collision time and distance was to give a rigorous proof of the
time-complexity of Pollard’s Kangaroo Method for discrete logarithm. We describe the algorithm
in more detail here and then give our proof.
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5.1 Pollard’s Kangaroo Method

We describe here the Distinguished Points implementation of van Oorschot and Wiener [4] because
it is more efficient than Pollard’s original implementation in [5].

Problem: Given g, h ∈ G, solve for x ∈ [a, b] with h = gx.

Method: Pollard’s Kangaroo method (distinguished points version).

Preliminary Steps:

• Define a set P ⊂ G of “distinguished points,” with ω(1) of every
√
b− a distinguished. Our

analysis requires only that log3(b− a) of every
√
b− a be distinguished.

• A set of jump sizes S = {s0, s1, . . . , sm} with probability distribution p : S → [0, 1]. We
analyze Pollard’s suggestion to use powers of two: S = {2k}mk=0 with m ≈ log2

√
b− a +

log2 log2

√
b− a− 2 chosen so that average S̄ =

∑
s∈S s p(s) ≈

√
b−a
2 .

• A hash F : G→ S giving pseudo-random jumps such that ∀g ∈ G : Pr (F (g) = s) ≈ p(s).

The Algorithm:

• Let Y0 = a+b
2 , X0 = x, and d0 = 0. Observe that gX0 = hgd0 .

• Transitions Yj+1 = Yj +F (gYj ) and Xi+1 = Xi +F (gXi). Observe that if di+1 = di +F (hgdi)
then Xi+1 = x+ di+1.

• If gYj ∈ P then store the pair (gYj , Yj − Y0) with an identifier T (for tame). Likewise if
gXi = hgdi ∈ P then store (gXi , di) with an identifier W (for wild).

• Once some distinguished point has been stored with both identifiers T and W , say gXi = gYj

where (gXi , dj) and (gYj , Yj − Y0) were stored, then

Yj ≡ Xi ≡ x+ di mod |G|
=⇒ x ≡ Yj − di mod |G| .

The Xi and Yj walks are often called the “wild” and “tame” kangaroos, respectively.
We will make rigorous the following commonly used heuristic: If X0 ∈ [a, b] is a uniform random

value then E |Y0−X0|/S̄ = (b−a)/(4S̄) steps are required for the smaller of X0 and Y0 to reach the
larger value. Subsequently each kangaroo visits a 1/S̄ fraction of states, so ∀j : Pr (∃i : Xi = Yj) ≈
1/S̄, and an average of S̄ states are visited by the tame kangaroo until collision with the wild one.
By symmetry the wild kangaroo also visits S̄ states. So if walks are incremented simultaneously,
Xi → Xi+1 and Yi → Yi+1, then in total each walk visits (b−a)/(4S̄) + S̄ states. This is minimized
when S̄ =

√
b− a/2, for a total of

√
b− a steps per kangaroo.

5.2 Analysis of the Kangaroo Method

We now turn our attention to the analysis of the Kangaroo Method. It is typically assumed that
all transitions X → X + s with s ∈ {2k}dk=0 are equally likely. However, some non-uniformity is
needed to have exactly S̄ =

√
b− a/2 and so we state a result which allows non-uniformity.

In order to apply Corollary 4.1 we require an upper bound on collision distance D(ε) and collision
number Bε.
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Lemma 5.1. Consider a Kangaroo walk with step sizes S = {2k}mk=0 and transition probabilities

γ

m + 1
≥ p(s) ≥ γ−1

m + 1
,

for some constant γ ≥ 1. Then

D((m + 1)−1) ≤ 14γ3.5 (m + 1)5 S̄ .

Proof. The methods developed in Section 3.3 will be used, so when we write (Ib) then this is step
(Ib) in Section 3.3. We encourage the reader to review our application of this method to the uniform
distribution in Section 3.4.

It is easier to construct a stopping time on the slower “lazy” walk X̃ with X̃0 = X0, p̃(s) = p(s)/2
and p̃(0) = 1/2. This is just the kangaroo process slowed in time by a factor of two. Although
slowing the walk doubles mixing time, it does not effect the sequence of distinct states visited by
the walk, and so the mixing distance will be unchanged.

(Ia) Run walk X̃ as follows: given X̃i choose s ∈ S with probability p(s), half the time set
X̃i+1 = X̃i + s and half the time set X̃i+1 = X̃i. Let T1 be the first time every s ∈ S \ {2m} has
been chosen at least once. Let δs ∈ {0, s} be the step size taken the first time s ∈ S is chosen,
so that Pr (δs = 0) = Pr (δs = s) = 1/2. Then δ =

∑
s∈S\{2m} δs is uniform in [0, 2m), and if

D1 = X̃T1 − X̃0 − δ then X̃T − X̃0 is a uniform sampler over interval [D1,D1 + 2m).
(Ib) Nothing to do. This step determines random T and D such that

∀d ≥ D : Pr
(
∃j ≥ T : X̃j − X̃0 = d

)
= 1/S̄ .

(Ic’) Let pmin = mins∈S p(s) and ∆(ξ) = log(m/ξ)
pmin

.

Pr (T1 > ∆(ξ)) = Pr

 ⋃
s∈S\{2m}

(s has not been chosen in ∆(ξ) steps)


≤

∑
s∈S\{2m}

Pr (s has not been chosen in ∆(ξ) steps)

≤ m (1− pmin)∆(ξ) ≤ ξ . (9)

Then Pr (T > TM ) ≤ ε/S̄ when M = 2Smax
S̄

log(S̄/ε) and tentative stopping times are separated by
at most ∆(S̄/2Smax) steps.

(Id) Finally, collision distance. Since Smax ≥ S̄ ≥ pmin Smax then

D(ε) ≤ 2
log(2mSmax/S̄)

pmin

(
Smax
S̄

)2

log(S̄/ε) S̄

≤ 2

p3
min

log
2(m + 1)

pmin
log

S̄

ε
S̄

≤ 2γ3 (m + 1)3 log(2γ(m + 1)2) (m log 2 + log(1/ε)) S̄ .

Finish the proof with the relation log(1 + x) ≤ x.

To apply Theorem 2.2 it remains only to show that B2/(m+1) is small, i.e. one collision is
unlikely to be quickly followed by another.
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Lemma 5.2. The kangaroo walk, as described in Lemma 5.1, has collision number

B1/(m+1) = Θ

(
1

m + 1

)
= om(1) .

Proof. This will be shown by applying Lemma 3.3 as sketched in Section 3.4.
(IIa) Determine T using Lemma 3.3. Since D((m +1)−1) ≤ 14γ3.5 (m +1)5 S̄ and ∆(ξ) ≤ ln(m/ξ)

pmin
then

T ≤ 2× 14γ3.5 (m + 1)5 +
1

2
(m + 1)2 log

(
14γ3.5 (m + 1)5 2m N

)
≤ 32γ3.5 (m + 1)5 +

1

2
(m + 1)2 logN .

(IIc) Begin by upper bounding maxu,v P
i(u, v).

Suppose P is uniform with p(s) = 1/(m + 1) for every s ∈ S. Then Pi(0, u) = ci(u)
(m+1)i

where

ci(u) ≤ 2(m+1) is the number of ways to write u as the sum of i non-distinct ordered elements of
S = {2k}mk=0. The binary expansion of u has at most i non-zero bits, each of is influenced only
by powers of two drawn from {2k}`k=`−i+1. So there are only i2 bits which can be involved in an
i-term summation to u. It follows that ci(u) ≤ (i2)i and so maxu,v P

i(v, u) = maxu P
i(0, u) =

Om((m + 1)−i).
In the non-uniform case Pi(u, v) ≤ γi ci

(m+1)i
= Om((m + 1)−i).

It follows from (IIc) that if k = 12 and N = (m + 1)2 then

1

m + 1
≤ Bε ≤

2γ

m + 1
+ 122 c2

(m + 1)2
+ T 2 c12

(m + 1)12
+

2

N

=
2γ

m + 1
+O((m + 1)−2) .

We now apply Corollary 4.1 to bound collision time for Pollard’s Kangaroo method. As noted
in our description of Pollard’s algorithm, for our analysis we require only that roughly log3(b− a)
points are distinguished points in every interval of

√
b− a, so a little-o fraction with relatively weak

uniformity requirement.

Proof of Theorem 1.1. The group elements
{
g(2k)

}m

k=0
can be pre-computed so that each step of a

kangaroo requires only a single group multiplication. It then suffices to count the number of group
multiplications as this is the number of steps of the walks in question.

As discussed in the heuristic argument of Section 5.1, an average of |Y0−X0|
S̄

steps are needed
to put the smaller of the starting states (e.g. Y0 < X0) within Smax = 2m of the one that started

ahead. More precisely, average step size is S̄ ≈
√
b−a
2 with a standard deviation of O∗(

√
b− a),

where O∗ indicates there may be extra logarithmic terms. In (1+ ε) |Y0−X0|
S̄

steps the walk will have

proceeded an expected distance of (1 + ε)|Y0 − X0| = ω((b − a)4/5) with probability 1, and have

standard deviation of O∗(
√
|Y0 −X0| 4

√
b− a) = o((b− a)4/5), and so (1 + o(1)) |Y0−X0|

S̄
steps suffice

with probability 1.
Assume now that |Y0−X0| < Smax, i.e. the rear walk has nearly caught up with the lead walk.

Then Corollary 4.1, with ε = (m + 1)−1, along with the bounds of Lemmas 5.1 and 5.2, shows an
upper bound on expected collision time of S̄ (1 + Θ(1/m)) and a lower bound of S̄ (1−Θ(1/

√
m)) .
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It remains to count the number of steps until a distinguished point has been reached. In step
(Ia) of the proof of Lemma 5.1 we construct a stopping time T1 which samples uniformly on some
interval [d, d+ Smax). The expected run time ET1 is a coupon collectors problem: each step of the
X̃ walk has probability ≥ 1

2γ
m

m+1 of sampling an element of S\{2m}, for an average of 2γ m+1
m steps

to sample one element from S \ {2m}, then 2γ m+1
m−1 steps to sample another element of S \ {2m},

etc., so that

ET1 ≤ 2γ
m−1∑
k=0

m + 1

m − k
= 2γ(m + 1)

m∑
k=1

1

k
≤ 2γ(m + 1)(1 + ln m) .

Interval [d, d+Smax) is length Smax = 2m ∼ 1
4

√
b− a log2

√
b− a with Ω(log3(b− a)) distinguished

points, so with probability Ω(log2(b−a)/
√
b− a) this is at a distinguished point. If not then repeat

the process. This requiresO(
√
b− a/ log2(b−a)) rounds ofO(γm log m) = O(log(b−a) log log(b−a))

steps each, for a total of o(
√
b− a) additional steps.

The theorem follows by adding together the time in the catch-up phase, the expected collision
time phase, and the distinguished points phase.

6 Resolution of a Conjecture of Pollard

Pollard conjectured in [6] that Theorem 1.1 also holds for powers of any integer n ≥ 2, as long as

S̄ ≈
√
b−a
2 . We now show his conjecture to be correct.

Theorem 6.1. Consider a Kangaroo walk with step sizes S = {nk}mk=0 and transition probabilities

γ

m + 1
≥ p(s) ≥ γ−1

m + 1

such that S̄ =
√
b−a
2 . Then Theorem 1.1 still holds.

Proof. We detail only the differences from the case when n = 2, considered in Section 5.2.
Once again consider the lazy walk X̃t which half the time does nothing.
(Ia) Once a generator s is chosen (n − 1) times then define ∆s ∈ {0, s, 2s, . . . , (n − 1)s} to be

the sum of the step sizes taken the first (n−1) times that s is chosen. Observe that Pr (∆s = ks) =(
n−1
k

)
/2n−1. “Accept” this with probability

(
n−1
k

)−1
, in which case we define δs = ∆s = ks.

So the probability that δs is defined after s is chosen (n − 1) times is n/2n−1. Otherwise let
∆s ∈ {0, s, 2s, . . . , (n − 1)s} be the sum of the step sizes taken the next (n − 1) times that s is
chosen, again check whether it’s time to set δs = ∆s, and if not repeat this procedure until δs
has been defined. Once every δs has been defined then the sum δ =

∑
s∈S\{nm} δs is a uniformly

random d digit number in base n. Let T1 denote the time when δ is finally defined.
(Ib) Nothing changes.
(Ic’) By equation (9), in j steps the probability that every generator s ∈ S \ {nm} has been

chosen at least once is at least

1−m(1− 1/γ(m + 1))j ≥ 1−me−j/γ(m+1) .

In αj steps the probability that each has been chosen at least α times is then at least

(1−m e−j/γ(m+1))α ≥ 1− αm e−j/γ(m+1) .
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As discussed in (Ia), once generator s is chosen (n− 1) times then we set δs = ∆s with probability
n/2n−1. So once s is chosen α = 2n−1 log(4γ(m + 1)2) times then δs is undefined with probability
at most (

1− n

2n−1

)α/(n−1)
≤ 1

4γ(m + 1)2
.

So once every s ∈ S is chosen α times then some δs is undefined with probability at most 1/4γ(m+1).
It follows that if j = γ(m + 1) log(αm · 4γ(m + 1)) then

Pr (T1 > αj) ≤ αm e−j/γ(m+1) +
1

4γ(m + 1)
≤ 1

2γ(m + 1)
.

(Id), (II), Lemma 5.2: The remaining changes are straightforward consequences of the change
in Pr (T1 > αj).
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