
Chapter 17

An Outline of the ICL 2900 Series

System Architecture

/. L. Keedy^

Summary The system architecture of the ICL 2900 Series is outlined

informally. Its central feature, the virtual machine concept, is described

and related to virtual storage, segmentation and paging. The procedural

approach is then discussed and its implementation by a stack mechanism is

described. Further sections outline the protection mechanisms, and the

instruction set and related features. Finally the virtual machine approach

is related to global system activities.

The paper has been written such that it may be of interest to readers

without a specialist knowledge of computer architecture.

Shortly after its announcement in October, 1974, the ICL 2900

Series^ was described in the popular computing press [Dom,
1974] as little more than a copy of the B6700/7700 systems. It is

easy to see how this happened, when one discovers that it is a

stack oriented machine with a segmented virtual memory which

makes extensive use of descriptors. In reality the implementation
of these techniques is very different in the two computer families,

and although a more serious attempt has been made to evaluate

these differences [Doran, 1973] this is to some extent unsatisfac-

tory since the author has, I believe, fallen into the same trap,

albeit more subtly, of viewing the ICL 2900 through the eyes of

someone thoroughly steeped in B6700 ideas. In fact, although the

ICL 2900 has features in common with the B6700, radical

differences exist, and some of the ICL 2900 features have more

affinity to other systems, such as MULTICS [Organick, 1972].

Before the similarities and differences between such systems and

the ICL 2900 Series can be fiiUy appreciated, it is highly desirable

that the ICL 2900 system architecture should first be understood

in its own right. The real novelty of the architecture lies in the way
in which its designers returned to first principles, and in the

simplicity and elegance of the result. In this paper I shall

therefore describe its architecture in a manner which attempts to

reflect the thoughts of its designers, aiming at a level of

description similar to Organick's description of the B6700 [Organ-

ick, 1973]. No attempt will be made to compare and contrast it

with other systems, and it is hoped that the paper will provide an

'Australian Computer Journal, vol. 9, no. 2, July 1977, pp. 53-62.

''References to the ICL 2900 Series in this paper are to the larger members
of the new ICL range, which should not be confused with the ICL 2903 or

the ICL 2904 computers.

intelligible overview to readers without specialist knowledge of

computer architecture.

1. The Virtual Machine

Faced with a problem to be solved using the computer, the user

formulates a solution in a high level computer language such as

COBOL or FORTRAN, and having satisfied himself of its

correctness he will regard the resultant program as "complete."
This is in one sense correct. His encoded algorithm will, if he has

done his job well, be logically complete. However, even after it

has been compiled, the user's program (or in more complex cases,

his sequence of programs which comprise a job) must co-operate
with other programmed subsystems (operating system, data

management software, library routines, etc.) to solve the user's

problem. The efficiency with which the problem is solved

depends to a considerable extent on how the whole aggregate of

necessary subsystems co-operates, and not merely on any one

subsystem. It follows that it will be advantageous for a computer
architecture to provide facilities for the efficient construction and

execution of such aggregates. The 2900 Series explicitly recogni-
ses these aggregates, caUing the environment in which each one

operates a "virtual machine."^ An aggregate itself is called a

"process image," its execution by a processor is a "process," and

its state of execution as characterised by processor registers is its

"process state."

In the following sections we shall develop the idea ofthe virtual

machine by considering its mainstore requirements, the dynamic

relationship between its components, its protection requirements
and its instruction set. But before we embark on this a few further

remarks are necessary.

The fundamental concept, that each job runs in its own virtual

machine containing all the code and data required to solve the

application problem, allows the programmer to suppose that he is

the sole user of the computer. But economic reality dictates that

the real machine must be capable of solving several problems

simultaneously, and this necessity for multiprogramming raises a

set of problems which could threaten to destroy the advantages of

the virtual machine approach. For example, how are the indepen-
dent virtual machines co-ordinated, synchronised and scheduled?

How, in view of high main storage costs, can separate process-

images be permitted to have a private copy of common subsys-

tems (e.g., the operating system)? How can virtual machines

communicate with each other? Such questions will be borne in

mind as we develop the concept of the virtual machine, and

subsequently we shall consider them more directly, in an attempt

^The term "virtual machine" has a wide variety of meanings in computer

jargon. In this paper it is used consistently in the special ICL sense

described here.

251



252 Part 2
I Regions of Computer Space Section 2 Memory Hierarchies and Multiple Processes

to show that the benefits and principles of the virtual machine are

not compromised by the secondary modifications which are

introduced to facilitate the efficient multiprogramming of several

processes in separate virtual machines.

2. The Segmented Virtual Store

The relatively high cost of main store when compared with other

storage devices, such as drums and discs, forces the computer
architect to consider how this essential system component can be

utilised with greatest efficiency. Amongst the more pressing

problems in this area are:

a The process-image, and possibly even the user program
alone, may exceed the size of available main store.

b Competition for main store by a number of programs may
exist (e.g. in a time sharing system).

c Efficient use of main store for variable length tables, etc.

The most promising technique for solving such problems is the

virtual storage concept, first used on the Atlas machines. In order

to ensure that the user's needs are satisfied we shall look at this

solution in the light of program structures.

The output of a compiler consists mainly of a series of logical

regions comprising an object program. Most third generation

architectures treat the object program as a single logical unit (e.g.

for protection purposes), but certain advantages accrue if the

logically separate regions, such as code sections and data areas,

which we shall for the moment call program segments, are

recognised as separate entities. For example, the separation of

code segments from data segments considerably simplifies the

production of "pure" reentrant code; this in principle allows

separate virtual machines to use a single real copy of common
code (e.g. operating system procedures) whilst allowing us to

retain the concept of a process image containing all the code

necessary to solve the user's problem. We shall see other

advantages of the architectural recognition of segmentation in due

course.

A characteristic feature of segments within a process-image is

their need to cross-reference each other, the obvious technique
for implementing this being to form an address consisting of

segment number plus displacement within segment. If we now
form for each virtual machine a "segment table" consisting ofa list

of entries (one per segment in the process-image), which map the

segments onto main store addresses, and make this available to

the hardware, then the hardware can calculate the exact main

store location ofany item cross-referenced by a "segment number

plus displacement" address. If a segment table entry also contains

a marker indicating whether the segment is present in main store,

or is temporarily held on a secondary storage device (e.g. a

drum), and a record of the length of each segment (see Fig. 1),

then we have the rudiments of a segmented virtual store. This

concept allows part or all of a process-image to reside temporarily

outside main store on some secondary storage device, and thus in

principle solves our problems of (a) a process-image which

exceeds the size of main store, and (fo) competition for main store

usage in a time-sharing environment. Our remaining problem (c)

of variable length segments can in principle be solved by allowing

the recorded segment length to be changed.

The hardware procedure for translating a "segment number

plus displacement" address (i.e. a virtual address) into a main store

address is as follows. If Pj indicates that segment i is not in

main store, the hardware causes an interrupt to allow the software

to read the segment into main store; otherwise the virtual address i

(segment number), j (displacement) is calculated as Ri -I-
j. A

further advantage of this scheme is that the test j >Li reveals

erroneous attempts to jump to non-existent code or to access

non-existent data beyond the upper bound of any segment.

Although this segmentation scheme is conceptually complete,
the practicalities of multiprogramming require the introduction of

certain modifications for the sake of efficiency. The existence of a

separate entry in each virtual machine's segment table for those

segments required in all virtual machines (e.g. operating systems



Chapter 17
{

An Outline of the ICL 2900 Series System Architecture 253

code) would not only be wasteful of space
—it would also add

significant overheads when moving such a segment around in the

virtual store, since each segment table in the system would have

to be updated. The solution adopted in the 2900 Series is to

recognise a second category of segment table, the "public"

segment table, containing an entry for each common or "public"

segment. Since only one copy of this table need exist (thus saving

space and allowing efficient movement of public segments) the

process-image of a job is defined by a combination of its local

segment table plus the one public segment table, and the

hardware tests the most significant bit of a segment number to

select the appropriate table (local segments are numbered 0-8191,

public segments 8191-16383).

A third class of segment is shared locally between certain but

not all virtual machines. Such segments, which are rather

misleadingly called "global segments" are particularly useful for

implementing real-time transaction processing on the 2900 Series.

To implement such global segments as public segments has the

undesirable side-effect that they would become accessible to

virtual machines not privileged to access them, by virtue of their

appearance in the public segment table. Since in practice global

segments are relatively rare, to include them in each appropriate
local segment table is unlikely to lead to a serious misuse of

storage space, but the updating of multiple entries when the

segment is moved, or when its length is changed, remains a

difficulty (especially as each virtual machine sharing the segment

may allocate to it a different segment number). The 2900 Series

therefore permits a third class of segment table, the "global"

segment table, which contains entries similar to other segment
table entries. However, the global tables are not ordered by

segment number, but are referenced via the local segment tables,

which for global entries contain an indirection marker and in place
of a segment's main store address the address of the appropriate

global segment table entry (see Fig. 2). In this way movements of

a global segment require that only the global segment table entry
be updated, whilst rapid access is achieved via the local segment
table.

We now have an addressing structure capable of mapping
virtual machines efficiently onto the storage hierarchy, but there

remains the practical question of economic main store manage-
ment. Since we have followed the most natural path by allowing
variable length segments (with the additional potential space

saving benefit of allowing the length of a segment to vary at

execution time), we are forced to come to terms with the

well-known problem of the "external" fragmentation of main
store. This is illustrated in Fig. 3, which shows a map of a main
store containing segments and holes left by segments no longer in

main store; there is clearly enough free space for the new
segment, but it cannot be loaded because the holes are not

contiguous.

The 2900 Series designers examined the various solutions to



254 Part 2
I Regions of Computer Space Section 2

I
Memory Hierarchies and Multiple Processes



Chapter 17 An Outline of the ICL 2900 Series System Architecture 255

totality of code and data required to solve his problem. It is

essential that the virtual machine, the environment for executing

such a process-image, provides mechanisms enabling efficient

dynamic co-operation between the various subsystems comprising
the process image.

Inter-subsystem calls are really only a special case of calls

between code routines within the process-image, the more

general case being the subroutine or procedure call, which

appears in one form or another in all the major high level

languages. The question may now be restated as: how can

subroutine/procedure calls be flexibly and efficiently incorporated

into the architectural model?

A relatively complex subroutine needs its own variables and

work areas. If it is to be used recursively such work areas must be

created on each entry to the subroutine. It also needs a mecha-

nism for linkage with the calling code, which may also supply it

with parameters. Such a subroutine is called in 2900 terminology a

"procedure," and is implemented with the aid of a last-in first-out

hardware assisted stack.

Each stack is held as a separate segment' and is controlled by
four registers (see Fig. 7):

a Stack Segment Numbers (SSN)—the base address of the

stack.

b Stack Front (SF)—the address of the next free location in

the stack.

c Local Name Base (LNB)—the start address of the name-

space for the current procedure or lexical level.

d Extra Name Base (XNB)—can be used for example to

'Thus a virtual machine may support several stacks, and therefore several

(co-operating) processes.

SF.

LNB.

XNB *-

SSN.

Worl<space for currently

active procedure

\\\\\\\\\\\\\\\

address the start ofa previous lexical level in the stack or as

an ofi"-stack pointer.

A procedure call takes place in two stages
—a software pre-call

sequence and a hardware call instruction. The software stores the

current LNB value at the address held in SF, raises SF to leave

space free for linkage data, stores the parameters at the new top of

stack, and raises LNB to point to the next lexical level. The
hardware call instruction then inserts the linkage data and in the

normal case begins executing the new procedure (see Fig. 8). This

procedure now has access to its parameters via LNB and to a new

workspace starting at SF. It is free to call further procedures (or

itself recursively) or to call the hardware exit instruction, which

causes the stack to be collapsed back to the previous local name

space, and the calling procedure will then be resumed at the

instruction following the call instruction.^

4. Main Store Protection

One of the main functions ofa computer architecture is to provide
mechanisms which ensure that procedures have appropriate
access to the data and code segments necessary for the execution

of their task, but are not permitted to interfere with other

segments in an unauthorised way. Such a requirement appears at

two levels, within a virtual machine and between virtual machines.

Let us consider first the avoidance of interference within a

single virtual machine. The most obvious example of the need for

this is to prevent an untested user program from corrupting the

other subsystems in its virtual machine.

The inadequacies of the traditional solution to this problem—
the recognition of two classes of program (privileged software and

unprivileged programs)—become obvious if we consider a "com-'

pile and go" system such as BASIC with the compiler itself

'There is, of course, a simple "jump and link"instruction (which stores a

return address at the top of the stack) for use in implementing more trivial

subroutines.

SF

LNB

SSN



256 Part 2
1 Regions of Computer Space Section 2

|
Memory Hierarchies and Multiple Processes

running as an unprivileged program: in this situation the compiler

is unnecessarily endangered by the executing program. At the

other extreme one could envisage a totally safe system in which

each procedure has its own data class, and is only permitted to

access data areas of this class; but the overheads in such a system

would be high.

The intermediate solution selected for the 2900 Series architec-

ture provides protection at the segment level (since this type of

object is already known to the hardware) and associates with a

process a 4 bit Access Control Register (ACR), allowing a range

0-15 of protection classes. Each segment table entry has an

associated "read access key" (RAK) and "write access key" (WAK).

Only if RAK 3= ACR is the procedure permitted to read a

segment, or if WAK & ACR to write a segment. Likewise a

segment can only be executed if a further marker in the segment
table entry, the "execute permission bit" (EPB) is set.

The access control register is contained within the "program
status register"(PSR), as is also a one-bit register known as PRIV,

which in fact controls access to the PSR (and therefore to ACR).

Under normal circumstances PRIV is reset, thus prohibiting

changes to ACR (which reflects the protection level of the current

procedure).

However if the procedure attempts to call another procedure

which executes with a different ACR value, reference is made

(either by hardware, or by a software interrupt routine running

with PRIV on) to a software-created system call table to validate

whether the call is permitted. If so ACR is assigned the value

associated with the called procedure, PRIV is reset and the

procedure is entered. Since PSR is stored on procedure entry as

part of the linkage data, the hardware exit instruction can

normally reload ACR with the appropriate value on returning to

the calling procedure.'

By limiting the privilege of changing ACR to the lowest level of

interrupt software access to segments within the same process

image is properly controlled within sixteen levels of privilege
—

this being sufficient to provide a highly structured operating

system with several levels remaining for user programs. The one

apparent loophole in the scheme, the possibility that a less

privileged level passes as a parameter to a more privileged level a

manufactured but valid address to which it is not permitted

access, is overcome by the provision of a special hardware

"validate" instruction, which the called routine uses to find out

'This description refers to calls which reduce ACR value (i.e. increase

privilege), and to the corresponding returns. Calls which increase ACR
value (i.e. reduce privilege) and corresponding returns involve the

creation of an additional stack to ensure that on-stack data is not available

to non-privileged code; such calls are generally avoided, because of the

overheads involved in creating a new stack.

what type of access (if any) the ACR level of the calling routine has

to data at the address supplied. This is possible because the

linkage information in the stack contains the ACR value of the

calling routine, which can be checked against the WAK and RAK
values in the segment table entry for the address to be validated.

For obvious reasons the architecture must also provide a

mechanism to ensure that certain instructions (e.g. instructions

controlling input-output devices) are not misused, and this is also

achieved by testing the PRIV bit in the PSR.

Finally, the question of store protection between virtual

machines (i.e. prohibiting interference between user jobs) is

automatically solved by the addressing structure. Any address

used within a virtual machine is transformed into a real address by
means of the virtual machine's own segment tables. It is simply

impossible to access a location not contained in these segment
tables.

5. The Instruction Set

The instruction set for the 2900 Series was designed specifically

with the needs of high-level languages in mind, and its objectives

include efficiency of compilation and execution, reliability of

execution, and compactness of object code. In order to achieve

these objectives the 2900 Series instruction set interlocks closely

with descriptors, registers and the stack in manipulating the basic

data formats.
-

Although the segmentation protection scheme provides a fair

degree of execution reliability (e.g. by ensuring that data is not

"executed" as code, that code and read-only data cannot be

corrupted, etc.), this is oriented to ensuring non-interference

between different subsystems and programs. In order to provide a

means of detecting execution errors within a single high-level

language program or subsystem (e.g. an attempt to access an array

element beyond the array boundaries, or to perform an indexed

jump beyond the boundaries of a specific code module) the 2900

Series employs "descriptors," which associate with a virtual

address a description of the object addressed.^ Descriptors, which

provide other facilities in addition to run-time error checking, are

in four standard formats each consisting of 32 bits for the

description plus 32 bits for the address:

"Bits; 8-bit bytes in EBCDIC and packed decimal formats; 32 or 64 bit

words containing logical or fixed-point numerical values; 32, 64 or 128 bit

words for floating-point numbers; 32, 64 or 128 bit words containing?, 15,

or 31 digit signed decimal integers.

'Unlike MULTICS or B6700 descriptors, the ICL 2900 descriptor mecha-

nism is internal to an address space, rather than a means of defining the

address space.



Chapter 17
\

An Outline of the ICL 2900 Series System Architecture 257

Vector Descriptors contain a size field indicating whether a

data element is 1, 8, 32, 64 or 128 bits in length; a bound
field containing a count of elements; a bound-check inhibit

indicator; and a scale bit which indicates whether address

modifiers are to be scaled in accordance with the size field.

The vector descriptor can be used to address individual

primitive data items (such as an integer variable) or single

dimension arrays of primitive elements. Provision for multi-

dimensional arrays is in the form of dope-vectors consisting

of triplets, each describing a dimension.

String Descriptors describes rows of bytes, e.g. character

strings, and hold an indication of the string length.

Descriptor Descriptors point to other descriptors and thus

provide an indirect addressing facility.

Code Descriptors consist of normal code descriptors, system
call descriptors, and escape descriptors. Normal code

descriptors serve as operands for procedure call instructions

not requiring a change of privilege, and for exit instructions

not requiring an increase in privilege. System call descrip-

tors contain instead of an address a pair of indices which

reference a System Call Table entry (see Sec. 4); they are

used as operands for procedure calls requiring a change of

privilege and for exits requiring an increase of privilege.

Escape descriptors, however, may be interchanged with any
other descriptor as an exceptional means of by-passing
nonnal code sequencing rules. On detection of an es-

cape descriptor as an instruction operand the hardware

causes entry to the code routine whose address is held in

the escape descriptor, without executing the instruction

for which it serves as an operand. The escape routine

might typically monitor the use of a particular table or

procedure, or instigate the loading into virtual store of

some exception procedure not normally required (e.g. an

error routine). A special mechanism is available to allow

an escape routine, having placed the "correct" descriptor
in a register, to cause the original instruction to be exe-

cuted "correctly," and thence return to the normal code

sequence.

In considering what form the register set should take, it was

evident almost from the beginning that special purpose registers

with dedicated functions would be more suitable than inter-

changeable general purpose registers for a "high level language
machine" such as the 2900 Series. The problem with the latter is

that compiler-writers, not being in a position to predict in advance

the dynamic execution of programs to be compiled, are forced into

following a set of conventions, which may be wasteful but which

certainly distorts any theoretical advantages of having general

purpose registers. On the other hand dedicated registers, if

carefully designed, provide an appropriate tool for the compiler
writer. At the same time they allow the hardware designer to

optimise his implementation on the basis of the known purposes

of the registers.

The 2900 Series provides the compiler-writer with both a

dedicated set of registers and a virtually infinite number of

on-stack locations which in practice serve as registers.
'

In addition

to the four stack registers already described (SSN, SF, LNB,
XNB) the following registers are "visible" to each process-image in

unprivileged mode: a variable length accumulator (ACC) whose

size (32, 64 or 128 bits) is controlled by a 2-bit register ACS; an

index modifier (B) used mainly for address modification; a

descriptor register (DR) used for addressing operands; a program
counter (PC); a real-time clock (RTC); an overflow indicator (OV);

a condition code (CC); and a program mask (PM) used to inhibit

specific program interrupts.^

There are 113 fiinctions in the instruction set, providing

facilities for arithmetic, character manipulation, logical opera-

tions, instruction sequencing, etc. Most instructions operate on

two operands, one of which (normally a register holding data or a

descriptor) is usually implied by the function. The other operand

may be a string whose descriptor is held in DR or may be specified

in the operand field of the instruction (e.g. as a literal, a

displacement from a stack register, etc.). The size ofan instruction

is 16 or 32 bits, depending on the method of specifying the

operand rather than on the function code. Similarly function codes

are not dependent on the length of the accumulator, so that the

same functions are used, for example, in single precision and

double precision floating point operations. To illustrate how the

interplay of descriptors, registers and the stack results in efficient

and compact object code which can be efficiently compiled from

high level languages, we take three brief examples: arithmetic,

array handling and character spring manipulation.

The stack is of course particularly well suited to the evaluation

of arithmetic expressions by means of "reverse Polish" notation,

and typical sequences such as "store accumulator value at top of

stack, raise top of stack pointer, load new value into accumulator,"

or "add (multiply etc.) accumulator value and top of stack value,

lower top of stack pointer" are efficiently compacted into single

instructions.

Array handling will typically consist of a logical subscript value

'Since the more powerful machines have a slave-store dedicated to the

stack, this statement is true not only logically but also in terms of phys-

ical speed.

^In reality ACS, OV, CC and PM are visible parts of the invisible

(privileged) register PSR (program status register) which also contains

ACR and PRIV. Other invisible registers include SSR (system status),

LSTB and PSTB (base registers for the local and public segment tables), an

interval timer (IT) and an instruction counter (IC). The totality of registers

is called the "image store."



258 Part 2
I
Regions of Computer Space Section 2

| Memory Hierarchies and Multiple Processes

held in the B register operating on an array addressed by a vector

descriptor. A single hardware instruction is able to check that the

subscript does not exceed the bound of the array, and to find the

start address of the logical element required by scaling the

subscript (using the size field in the descriptor). Special functions

also exist for performing efficient index arithmetic on multi-

dimensional arrays.

Since the 24-bit length field of a string descriptor (rather than

the instruction itself) can determine the length of store-to-store

operations for character manipulation, long operations can always

be performed as single instructions', and need not be broken

down into sequences of shorter operations (say 256 bytes in

length), as on some machines.

These examples not only illustrate the tendency in the 2900

Series instruction set to efficiency and compactness of the object

code produced, but point also to simpfifications in the compilation

phase by reducing the necessity for performing arbitrary tasks

such as top of stack pointer manipulation, subscript scaling and

character string length checkup.

6. The System as a Collection of Virtual Machines

Whilst not ignoring the problems raised by multiprogramming,
the previous discussion has looked at the architecture largely from

the view point of a single virtual machine. The emphasis now

changes as we consider such questions as: How is the allocation of

real resources (e.g. processor time, mainstore) to virtual

machines controlled? How are external interrupts (e.g. peripheral

interrupts) handled? How is the use of shared data segments

synchronised? In other words, how can virtual machines be forced

to co-operate with each other?

The answer must be: these tasks are carried out by one or more

subsystems. We shall call them collectively the "Kernel." But how
can the Kernel be integrated into the architectural model

described above without distorting it beyond recognition?

One possibility would be to provide the Kernel with its own

special virtual machine—an apparently attractive solution if we
take external interrupts into account. But since the data necessary

for handling interrupts (e.g. a peripheral request table) originates

from procedure calls in other virtual machines, the solution in fact

implies radical modifications to the architecture.

The alternative solution, to consider the Kernel as a component

part of every virtual machine, also requires modifications but

these are more in the spirit of our fiindamental principles. The

'Such operations can be interrupted by hardware and subsequent!)'

resumed, thus ensuring that time critical interrupts are not delayed, and

that virtual store interrupts arising from non-presence in main memory of

(part of) one or both operands, can be serviced in mid-instruction.

Kernel will itself be held in public code segments in order that it

can operate in any virtual machine, and will make use of public

data segments to store information relating to such ftmctions as

scheduling. Some mechanism for synchronising the use of these

shared data areas will of course be required to maintain the

integrity of the data, and since the model has not placed
restrictions on the use of public and global data segments this

synchronisation problem can in fact arise in subsystems outside

the Kernel. For this reason and because it does not solve the

problem for a system with multiple processors, the use of

non-interruptible code execution does not adequately solve the

problem of synchronisation. The 2900 Series designers therefore

included a variant of the semaphore solution [Dijkstra, 1968a].

The semaphore is an integer associated with a resource to

ensure that it is allocated exclusively to one process at a time, and

takes the values:

—
1 Resource free

Resource in use—no waiting processes

1 Resource in use—one waiting process

n(>0) Resource in use—n waiting processes

Assuming that processes co-operate by accessing shared

tables, etc. via a semaphore (it is to their advantage to do so),

then the mutual exclusion problem is limited to testing and

updating the semaphore itself; this is solved by providing two

non-interruptible hardware instructions—"increment and test"

(which adds one to the semaphore and sets a condition code

indicating its new status)
—and "test and decrement" (which

sets a condition code showing the status of the semaphore
then decrements it by one).

"Increment and test" allows a process to request use of the

semaphored resource and test whether the request was successful

(condition code zero) or whether the process was merely added to

the count of waiting processes (condition code positive).

"Test and decrement" allows a process to relinquish a sema-

phored resource which has been allocated to it, and to test

whether the other processes are waiting (condition code positive).

The missing link in this scheme, the ability of a process

relinquishing the resource to advise a waiting process, is supplied

by an event system which permits waiting processes to suspend on

an "event" and relinquishing processes to cause the event.

Control of the event system is of course a function of the

Kernel, and the scheme can be used independently of sema-

phores, to provide a general purpose synchronising facility. For

example a user program can associate an event with a peripheral

access request, and so be informed by event of the request

termination. A process may cause an event, test for occurrence of

an event, suspend on events, or nominate an interrupt routine to

be entered on the occurrence of an event. The flexibiUty of the



Chapter 17
|

An Outline of the ICL 2900 Series System Architecture 259

event system is further improved by the provision of a primitive

message passing facihty (e.g. an indication of the success or failure

of the peripheral request), thus creating a powerful mechanism for

virtual machine synchronisation and communication.

There remains now the question of interrupt handhng by the

Kernel. Since we have defined the Kernel as a component of all

process-images, it is evident that external interrupts will be

accepted, and the initial decoding performed, in the currently

active virtual machine. An attractive implementation of this is to

treat interrupts as forced procedure calls, thus automatically

storing the interrupted process state in the stack and at the same

time creating a new working space for the interrupt routine.

Unfortunately this solution runs into difficulties with interrupts

whose purpose is to signify that there is no more space in

main store at the top of the stack. Thus virtual store interrupts (and

all interrupts of higher priority) are directed to a special stack

known to the hardware, which, however, operates in all other

respects like a normal stack.

Conclusion

The features of the 2900 Series system architecture described in

this article are not peculiar to a particular model within the 2900

Series, but provide the basis at an architectural level for a

compatible range of models, varying considerably in power and

cost. This is achieved by means of two interfaces—the "Kernel

Interface" which embodies the general architectural model, and

the "Primitive Level Interface" which defines the instruction set

and associated features. Neither of these interfaces can be

regarded as a purely hardware interface, since the cost and power

objectives of a particular model in the range will determine what

is economic to implement as hardware, what as microprograms,
what as software, etc.

The Kernel cannot be regarded as an operating system—it does

not even provide a logical facility for communication between the

operator and either the system or user programs—but is rather a

primitive layer of software which provides further levels of

software (operating systems, data management systems, etc.) with

a consistent abstraction of the architectural model, regardless of

the implementation details of individual computers in the range.

Thus the Kernel Interface guarantees to the higher levels of

software that resources (whether hardware resources such as

peripheral channels or software resources such as events) are

handled in a uniform manner and within the virtual machine

framework provided by the lower level.

The Primitive Level Interface corresponds approximately to a

hardware instruction set, but like the Kernel Interface, its

description does not imply its mode of implementation. Thus it is

to be expected that for smaller models in the range some functions

(e.g. floating point operations) might be implemented in the

Kernel software. Similarly whilst the larger models will use

special rapid storage locations to implement registers, at the lower

end registers might be implemented in ordinary main store

locations. The importance of these two interfaces is that taken

together they create an abstract machine which provides an

efficient and reliable environment for the compilation and execu-

tion of user programs written in high level languages.

References

Dijsktra [1968a]; Doran [1975]; Dom [1974]; Keedy [1976];

Organick [1972]; Organick [1973].


