Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsul... more Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we expl...
Dairy products are among the most popular nutritious foods in the world. Understanding the relati... more Dairy products are among the most popular nutritious foods in the world. Understanding the relationship between the composition, process, and structural properties at different scales (molecular, microscopic, and macroscopic) is fundamental to designing dairy products. This review highlights the need to analyze this relationship from different scales as an essential step during product design through a multiscale approach.
Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug... more Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and ...
The effects on the texture, rheology, and microstructure of costeño-type artisan cheese caused by... more The effects on the texture, rheology, and microstructure of costeño-type artisan cheese caused by the substitution and reduction of NaCl and the increase in cooking temperature during cheese production were studied using a multiscale approach that correlates responses at the macroscopic and microscopic levels. The decrease in the NaCl content, the partial substitution by KCl, and the increase in the cooking temperature before the serum drainage showed physicochemical, textural, and rheological differences between the cheeses. The microstructure was not affected by the reduction in salt or by modifications in the cheese making. The cheeses with an increase in the cooking temperature before the whey drainage stage and reduced NaCl by 5% and 7.5% (Q2 and Q3, respectively) showed similarity with the physicochemical composition and textural attributes of the control cheese (QC). Overall, this study contributes to the design of cheeses with specific functionalities through multiscale mode...
One of the main routes to ensure that biomolecules or bioactive agents remain active as they are ... more One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico...
The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in moder... more The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts’ surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs ...
Nutraceutical formulations based on probiotic microorganisms have gained significant attention ov... more Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, h...
Nanomedicine is entering a high maturity stage and is ready to reach full translation into the cl... more Nanomedicine is entering a high maturity stage and is ready to reach full translation into the clinical practice. This is because of the ample spectrum of applications enabled by a large arsenal of nanostructured materials. In particular, bimetallic patchy core/shell nanoparticles offer tunable surfaces that allow multifunctional responses. Despite their attractiveness, major challenges regarding the environmental impact and biocompatibility of the obtained materials are yet to be solved. Here, we developed a green synthesis scheme to prepare highly biocompatible patchy core/shell magnetite/silver nanoparticles for biological and biomedical applications. The magnetite core was synthesized by the co-precipitation of ferric chloride and ferrous chloride in the presence of NaOH. This was followed by the patchy silver shell’s growth by a green synthesis approach based on natural honey as a reducing agent. A purification process allowed selecting the target patchy nanoparticles and remov...
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular... more CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson’s disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson’s disease to highlight the main biological pathways that become disrupted in Parkinson’s disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative researc...
One of the main challenges in gene therapy is the transport of genetic material into target cells... more One of the main challenges in gene therapy is the transport of genetic material into target cells. This is mainly due to the need for overcoming several obstacles like rapid genetic material degradation by the physiological environment, low endosomal escape, and limited cell uptake. A meaningful way to increase the efficacy of genetic material delivery is to incorporate magnetite nanoparticles to transport biomolecules with high biocompatibility and relative ease of handling. Moreover, magnetite offers the possibility of controlled fate by magnetic fields and excretion as ferritin. This study aims to develop a nanostructured platform for the immobilization and intracellular release of nucleic acids for gene therapy applications. The system also co-immobilized the potent cell-penetrating protein OmpA (outer membrane protein A). The delivery of the conjugated material was first transiently tested in vitro in the presence of reducing agents via spectrofluorimetry. This was achieved by ...
Several biological barriers are generally responsible for the limited delivery of cargoes at the ... more Several biological barriers are generally responsible for the limited delivery of cargoes at the cellular level. Fullerenols have unique structural features and possess suitable properties for interaction with the cells. This study aimed to synthesize and characterize a fullerenol derivative with desirable characteristics (size, charge, functionality) to develop cell penetration vehicles. Fullerenol was synthesized from fullerene (C60) solubilized in toluene, followed by hydroxylation with hydrogen peroxide and tetra-n-butylammonium hydroxide (TBAH) as a phase transfer catalyst. The obtained product was purified by a Florisil chromatography column (water as the eluent), followed by dialysis (cellulose membrane dialysis tubing) and freeze-drying (yield 66%). Subsequently, a silane coupling agent was conjugated on the fullerenol surface to render free amine functional groups for further covalent functionalization with other molecules. Characterization via UV–VIS, FTIR-ATR, Raman, DLS,...
Gene therapy has been considered a promising strategy for treating several inherited diseases and... more Gene therapy has been considered a promising strategy for treating several inherited diseases and acquired complex disorders. One crucial challenge yet to be solved to ensure the nanomaterials’ success in delivering gene therapies is their ability to escape from endosomes. To address this issue, we previously developed magnetite nanoparticles conjugated with the antimicrobial peptide Buforin II, which showed potent translocating and endosomal escape abilities in several cell lines. In this work, we propose developing new cell-penetrating nanoplatforms by interfacing graphene oxide (GO) with powerful translocating peptides to take advantage of already tested and unique peptides as well as the distinctive interactions of GO with the phospholipids of membranes and endosomes. GO was prepared by the modified Hummers’ method through the oxidation of graphite sheets. Next, the functionalization of GO was carried out by rendering pendant amine groups to the GO surface. Thermogravimetric ana...
Gene therapy has been used as a potential approach to address the diagnosis and treatment of gene... more Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver ...
Important institutions, such as the World Health Organization, recommend reducing alcohol consump... more Important institutions, such as the World Health Organization, recommend reducing alcohol consumption by encouraging healthier drinking habits. This could be achieved, for example, by employing more effective promotion of non-alcoholic beverages. For such purposes, in this study, we assessed the role of experiential beer packaging sounds during the e-commerce experience of a non-alcoholic beer (NAB). Here, we designed two experiments. Experiment 1 evaluated the influence of different experiential beer packaging sounds on consumers’ general emotions and sensory expectations. Experiment 2 assessed how the sounds that evoked more positive results in Experiment 1 would influence emotions and sensory expectations related to a NAB digital image. The obtained results revealed that a beer bottle pouring sound helped suppress some of the negativity that is commonly associated with the experience of a NAB. Based on such findings, brands and organizations interested in more effectively promoti...
Proceedings of 2nd International Online-Conference on Nanomaterials
The delivery of bioactive compounds is often improved by their encapsulation within systems based... more The delivery of bioactive compounds is often improved by their encapsulation within systems based on different materials, such as polymers and phospholipids. In this regard, one of the most attractive vehicles are liposomes, which can be produced by the self-assembly of phospholipids in aqueous buffered systems. Encapsulation of therapeutic magnetite nanoparticles (MNPs) within liposomes can be accomplished by direct translocation of their lipid bilayer by surface conjugation of potent translocating peptides (and proteins) such as Buforin-II and OmpA. Here, we put forward the notion that to achieve reproducibility and optimize this process, it is possible to develop microfluidic systems that use flow-focusing methods to manipulate the interaction of suspended MNPs (ferrofluids) with the liposomes. With that in mind, we have developed an in silico approach to predict the performance of microfluidic devices specifically designed for the encapsulation process. This was done by running ...
Proceedings of 2nd International Online-Conference on Nanomaterials
Nowadays, nanoparticles (NPs) are used to make safe and more effective biomedical technologies fo... more Nowadays, nanoparticles (NPs) are used to make safe and more effective biomedical technologies for applications in highly targeted therapeutics and drug-delivery vehicles. This helps avoid low cellular penetration and accumulation of the drug in intracellular endosomal compartments that are not of interest to a particular therapy. A way to enhance therapeutic efficiency is through nanoparticle loading systems. This study aims to develop low molecular weight (LMW) and high molecular weight (HMW) chitosan and type B gelatin NPs. To enhance cell penetration, the NPs were interfaced with the translocating peptide Buforin II. The obtained nanobioconjugates were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), confocal microscopy, and transmission electron microscopy (TEM). Their size and surface zeta potential were estimated via DLS (Zetasizer Nano). Furthermore, to visualize their endosomal escape, the NPs were marked with the fluoroph...
Proceedings of 2nd International Online-Conference on Nanomaterials
Magnetite nanoparticles (MNPs) have been considered for several applications in drug delivery. Ho... more Magnetite nanoparticles (MNPs) have been considered for several applications in drug delivery. However, the main challenge is to assure high cell-penetration levels, especially when dealing with cargoes that show limited membrane passing. A strategy is to encapsulate the MNPs into liposomes to form magnetoliposomes (MLs) capable of fusing with membranes to achieve high delivery rates. MLs have therefore been used as carriers in the biomedical field due to their ability to release active molecules that can be used in treatments of diverse diseases. There are several techniques to produce such encapsulates, however, the main challenge is that the process often leads to an important fraction of non-encapsulated MNPs. Purification of such a fraction is challenging because of the small size difference between the particles and the MLs and the reduced magnetic responsiveness. Seeking to obtain pure MLs with potential use in the medical field, the following study presents finite element si...
Proceedings of 2nd International Online-Conference on Nanomaterials
The encapsulation of biomolecules and microorganisms into liposomes is useful for several biologi... more The encapsulation of biomolecules and microorganisms into liposomes is useful for several biological and biomedical applications. For instance, it is possible to encapsulate pharmacological compounds to increase properties such as therapeutic effectiveness, circulation times, and biocompatibility. Here, we are interested in encapsulating yeast cells expressing translocating peptide molecules on their surfaces. This is with the final intention of separating yeasts with translocating activity from those with other types of membrane activities. To accomplish this, we designed a microfluidic system for the synthesis of giant liposomes (100–150 µm in diameter) based on the droplet generation of double emulsions (water-in-oil-in-water) as templates. Giant liposomes were selected here due to their size, lipid structure (unilamellar), and the ability to control the internal content, which closely mimics, albeit in a more simplified manner, the structural organization of living cells. The mi...
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to... more One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-spa...
Los problemas asociados a la producción masiva de porquinaza en las granjas porcícolas se asocian... more Los problemas asociados a la producción masiva de porquinaza en las granjas porcícolas se asocian al mal olor, a la propagación de patógenos y a la contaminación de fuentes hídricas y suelos. Como una solución sostenible se implementó un biodigestor con el fin de aprovechar el biosol producido por biodigestión anaerobia de porquinaza y promover la economía circular en la reserva El Verjón. Para evidenciar el uso potencial del biosol como mejorador de suelos se preparó y adicionó a un cultivo de rábanos rojos —Raphanus sativus—. Los resultados obtenidos sugirieron que el uso del biosol como fertilizante es adecuado, puesto que el peso de los rábanos fue similar a la muestra con fertilizante comercial, y con el biosol se desarrollaron raíces más largas. Los rábanos sembrados con biosol presentaron una forma esférica, mientras que los rábanos con fertilizante comercial tomaron una forma elíptica alargada. No obstante, el fertilizante comercial permitió un mejor crecimiento de las hojas...
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsul... more Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we expl...
Dairy products are among the most popular nutritious foods in the world. Understanding the relati... more Dairy products are among the most popular nutritious foods in the world. Understanding the relationship between the composition, process, and structural properties at different scales (molecular, microscopic, and macroscopic) is fundamental to designing dairy products. This review highlights the need to analyze this relationship from different scales as an essential step during product design through a multiscale approach.
Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug... more Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and ...
The effects on the texture, rheology, and microstructure of costeño-type artisan cheese caused by... more The effects on the texture, rheology, and microstructure of costeño-type artisan cheese caused by the substitution and reduction of NaCl and the increase in cooking temperature during cheese production were studied using a multiscale approach that correlates responses at the macroscopic and microscopic levels. The decrease in the NaCl content, the partial substitution by KCl, and the increase in the cooking temperature before the serum drainage showed physicochemical, textural, and rheological differences between the cheeses. The microstructure was not affected by the reduction in salt or by modifications in the cheese making. The cheeses with an increase in the cooking temperature before the whey drainage stage and reduced NaCl by 5% and 7.5% (Q2 and Q3, respectively) showed similarity with the physicochemical composition and textural attributes of the control cheese (QC). Overall, this study contributes to the design of cheeses with specific functionalities through multiscale mode...
One of the main routes to ensure that biomolecules or bioactive agents remain active as they are ... more One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico...
The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in moder... more The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts’ surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs ...
Nutraceutical formulations based on probiotic microorganisms have gained significant attention ov... more Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, h...
Nanomedicine is entering a high maturity stage and is ready to reach full translation into the cl... more Nanomedicine is entering a high maturity stage and is ready to reach full translation into the clinical practice. This is because of the ample spectrum of applications enabled by a large arsenal of nanostructured materials. In particular, bimetallic patchy core/shell nanoparticles offer tunable surfaces that allow multifunctional responses. Despite their attractiveness, major challenges regarding the environmental impact and biocompatibility of the obtained materials are yet to be solved. Here, we developed a green synthesis scheme to prepare highly biocompatible patchy core/shell magnetite/silver nanoparticles for biological and biomedical applications. The magnetite core was synthesized by the co-precipitation of ferric chloride and ferrous chloride in the presence of NaOH. This was followed by the patchy silver shell’s growth by a green synthesis approach based on natural honey as a reducing agent. A purification process allowed selecting the target patchy nanoparticles and remov...
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular... more CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson’s disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson’s disease to highlight the main biological pathways that become disrupted in Parkinson’s disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative researc...
One of the main challenges in gene therapy is the transport of genetic material into target cells... more One of the main challenges in gene therapy is the transport of genetic material into target cells. This is mainly due to the need for overcoming several obstacles like rapid genetic material degradation by the physiological environment, low endosomal escape, and limited cell uptake. A meaningful way to increase the efficacy of genetic material delivery is to incorporate magnetite nanoparticles to transport biomolecules with high biocompatibility and relative ease of handling. Moreover, magnetite offers the possibility of controlled fate by magnetic fields and excretion as ferritin. This study aims to develop a nanostructured platform for the immobilization and intracellular release of nucleic acids for gene therapy applications. The system also co-immobilized the potent cell-penetrating protein OmpA (outer membrane protein A). The delivery of the conjugated material was first transiently tested in vitro in the presence of reducing agents via spectrofluorimetry. This was achieved by ...
Several biological barriers are generally responsible for the limited delivery of cargoes at the ... more Several biological barriers are generally responsible for the limited delivery of cargoes at the cellular level. Fullerenols have unique structural features and possess suitable properties for interaction with the cells. This study aimed to synthesize and characterize a fullerenol derivative with desirable characteristics (size, charge, functionality) to develop cell penetration vehicles. Fullerenol was synthesized from fullerene (C60) solubilized in toluene, followed by hydroxylation with hydrogen peroxide and tetra-n-butylammonium hydroxide (TBAH) as a phase transfer catalyst. The obtained product was purified by a Florisil chromatography column (water as the eluent), followed by dialysis (cellulose membrane dialysis tubing) and freeze-drying (yield 66%). Subsequently, a silane coupling agent was conjugated on the fullerenol surface to render free amine functional groups for further covalent functionalization with other molecules. Characterization via UV–VIS, FTIR-ATR, Raman, DLS,...
Gene therapy has been considered a promising strategy for treating several inherited diseases and... more Gene therapy has been considered a promising strategy for treating several inherited diseases and acquired complex disorders. One crucial challenge yet to be solved to ensure the nanomaterials’ success in delivering gene therapies is their ability to escape from endosomes. To address this issue, we previously developed magnetite nanoparticles conjugated with the antimicrobial peptide Buforin II, which showed potent translocating and endosomal escape abilities in several cell lines. In this work, we propose developing new cell-penetrating nanoplatforms by interfacing graphene oxide (GO) with powerful translocating peptides to take advantage of already tested and unique peptides as well as the distinctive interactions of GO with the phospholipids of membranes and endosomes. GO was prepared by the modified Hummers’ method through the oxidation of graphite sheets. Next, the functionalization of GO was carried out by rendering pendant amine groups to the GO surface. Thermogravimetric ana...
Gene therapy has been used as a potential approach to address the diagnosis and treatment of gene... more Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver ...
Important institutions, such as the World Health Organization, recommend reducing alcohol consump... more Important institutions, such as the World Health Organization, recommend reducing alcohol consumption by encouraging healthier drinking habits. This could be achieved, for example, by employing more effective promotion of non-alcoholic beverages. For such purposes, in this study, we assessed the role of experiential beer packaging sounds during the e-commerce experience of a non-alcoholic beer (NAB). Here, we designed two experiments. Experiment 1 evaluated the influence of different experiential beer packaging sounds on consumers’ general emotions and sensory expectations. Experiment 2 assessed how the sounds that evoked more positive results in Experiment 1 would influence emotions and sensory expectations related to a NAB digital image. The obtained results revealed that a beer bottle pouring sound helped suppress some of the negativity that is commonly associated with the experience of a NAB. Based on such findings, brands and organizations interested in more effectively promoti...
Proceedings of 2nd International Online-Conference on Nanomaterials
The delivery of bioactive compounds is often improved by their encapsulation within systems based... more The delivery of bioactive compounds is often improved by their encapsulation within systems based on different materials, such as polymers and phospholipids. In this regard, one of the most attractive vehicles are liposomes, which can be produced by the self-assembly of phospholipids in aqueous buffered systems. Encapsulation of therapeutic magnetite nanoparticles (MNPs) within liposomes can be accomplished by direct translocation of their lipid bilayer by surface conjugation of potent translocating peptides (and proteins) such as Buforin-II and OmpA. Here, we put forward the notion that to achieve reproducibility and optimize this process, it is possible to develop microfluidic systems that use flow-focusing methods to manipulate the interaction of suspended MNPs (ferrofluids) with the liposomes. With that in mind, we have developed an in silico approach to predict the performance of microfluidic devices specifically designed for the encapsulation process. This was done by running ...
Proceedings of 2nd International Online-Conference on Nanomaterials
Nowadays, nanoparticles (NPs) are used to make safe and more effective biomedical technologies fo... more Nowadays, nanoparticles (NPs) are used to make safe and more effective biomedical technologies for applications in highly targeted therapeutics and drug-delivery vehicles. This helps avoid low cellular penetration and accumulation of the drug in intracellular endosomal compartments that are not of interest to a particular therapy. A way to enhance therapeutic efficiency is through nanoparticle loading systems. This study aims to develop low molecular weight (LMW) and high molecular weight (HMW) chitosan and type B gelatin NPs. To enhance cell penetration, the NPs were interfaced with the translocating peptide Buforin II. The obtained nanobioconjugates were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), confocal microscopy, and transmission electron microscopy (TEM). Their size and surface zeta potential were estimated via DLS (Zetasizer Nano). Furthermore, to visualize their endosomal escape, the NPs were marked with the fluoroph...
Proceedings of 2nd International Online-Conference on Nanomaterials
Magnetite nanoparticles (MNPs) have been considered for several applications in drug delivery. Ho... more Magnetite nanoparticles (MNPs) have been considered for several applications in drug delivery. However, the main challenge is to assure high cell-penetration levels, especially when dealing with cargoes that show limited membrane passing. A strategy is to encapsulate the MNPs into liposomes to form magnetoliposomes (MLs) capable of fusing with membranes to achieve high delivery rates. MLs have therefore been used as carriers in the biomedical field due to their ability to release active molecules that can be used in treatments of diverse diseases. There are several techniques to produce such encapsulates, however, the main challenge is that the process often leads to an important fraction of non-encapsulated MNPs. Purification of such a fraction is challenging because of the small size difference between the particles and the MLs and the reduced magnetic responsiveness. Seeking to obtain pure MLs with potential use in the medical field, the following study presents finite element si...
Proceedings of 2nd International Online-Conference on Nanomaterials
The encapsulation of biomolecules and microorganisms into liposomes is useful for several biologi... more The encapsulation of biomolecules and microorganisms into liposomes is useful for several biological and biomedical applications. For instance, it is possible to encapsulate pharmacological compounds to increase properties such as therapeutic effectiveness, circulation times, and biocompatibility. Here, we are interested in encapsulating yeast cells expressing translocating peptide molecules on their surfaces. This is with the final intention of separating yeasts with translocating activity from those with other types of membrane activities. To accomplish this, we designed a microfluidic system for the synthesis of giant liposomes (100–150 µm in diameter) based on the droplet generation of double emulsions (water-in-oil-in-water) as templates. Giant liposomes were selected here due to their size, lipid structure (unilamellar), and the ability to control the internal content, which closely mimics, albeit in a more simplified manner, the structural organization of living cells. The mi...
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to... more One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-spa...
Los problemas asociados a la producción masiva de porquinaza en las granjas porcícolas se asocian... more Los problemas asociados a la producción masiva de porquinaza en las granjas porcícolas se asocian al mal olor, a la propagación de patógenos y a la contaminación de fuentes hídricas y suelos. Como una solución sostenible se implementó un biodigestor con el fin de aprovechar el biosol producido por biodigestión anaerobia de porquinaza y promover la economía circular en la reserva El Verjón. Para evidenciar el uso potencial del biosol como mejorador de suelos se preparó y adicionó a un cultivo de rábanos rojos —Raphanus sativus—. Los resultados obtenidos sugirieron que el uso del biosol como fertilizante es adecuado, puesto que el peso de los rábanos fue similar a la muestra con fertilizante comercial, y con el biosol se desarrollaron raíces más largas. Los rábanos sembrados con biosol presentaron una forma esférica, mientras que los rábanos con fertilizante comercial tomaron una forma elíptica alargada. No obstante, el fertilizante comercial permitió un mejor crecimiento de las hojas...
Uploads
Papers by Luis H Reyes