
Intersection of Two Lines
Tamas Kis | tamas.a.kis@outlook.com | https://tamaskis.github.io

CONTENTS

1 Intersection of Two Lines 2

1.1 Different Forms of a Line . 2

1.2 Converting to Point-Slope Form . 3

1.3 Intersection of Two Lines . 4

1.3.1 Line 1 Nonvertical + Line 2 Nonvertical + Not Parallel . 5

1.3.2 Line 1 Vertical + Line 2 Nonvertical . 5

1.3.3 Line 1 Nonvertical + Line 2 Vertical . 5

1.3.4 Vertical + Collinear . 6

1.3.5 Nonvertical + Collinear . 6

1.3.6 Vertical + Parallel . 6

1.3.7 Nonvertical + Parallel . 6

1.4 Algorithm . 7

Copyright © 2021 Tamas Kis

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

LICENSE

https://tamaskis.github.io

2 Section 1 Intersection of Two Lines

1 INTERSECTION OF TWO LINES

1.1 Different Forms of a Line

Vertical Line Form

A line in vertical line form is defined as

x = x1 (1)

Note that a vertical line has an undefined slope and passes through the point (x1, 0).

Slope-Intercept Form

A line in slope-intercept form is defined as

y = mx+ b (2)

wherem is the slope of the line and b is the y-intercept, i.e.

y(b) = 0

Point-Slope Form

A line in point-slope form is defined as

y − y1 = m(x− x1) (3)

wherem is the slope of the line and (x1, y1) is a point on the line. Since (x1, y1) is a point on the line, we know (from

the slope-intercept form of Eq. (2)) that

y1 = mx1 + b

where b is the y-intercept. To find b, we can simply rearrange the above equation.

b = y1 −mx1 (4)

Two Point Form

Two points can completely specify a line that passes through both of them. Therefore, a line in two point form is

defined as a set of two ordered pairs:

{(x1, y1) , (x2, y2)} (5)

The slope of the line passing through the two points can be calculated as

m =
y2 − y1
x2 − x1

(6)

Now that we have the slope, m, we can also find the y-intercept, b, using point-slope form, selecting (x1, y1) as our
point. From Eq. (4),

b = y1 −mx1

Substituting Eq. (6) into the equation above,

b = y1 −
(
y2 − y1
x2 − x1

)
x1 (7)

1.2 Converting to Point-Slope Form 3

1.2 Converting to Point-Slope Form

Algorithm 2 (to find the intersection of two lines) in the next section will depend on the two lines both being in point-

slope form. Therefore, in this section, we develop Algorithm 1 to put a line in any form into point-slope form. To do

this, we make use of all the equations from Section 1.1, and we also note that each form of a line requires a different

number of variables to define it:

1. vertical line form: defined by 1 variable (x1)

2. slope-intercept form: defined by 2 variables (m and b)
3. point-slope form: defined by 3 variables (m, x1, and y1)
4. two point form: defined by 4 variables (x1, y1, x2, and y2)

Algorithm 1: get_point_slope
Converts a line of any form to point-slope form.

Inputs:

• ` ∈ R,R2,R3, or R4 - vector defining the line

Procedure:
1. Input given in vertical line form (` =

[
x1

]
).

if ` ∈ R

x1 = `
y1 = 0
m = NaN

end

2. Input given in slope-intercept form (` =
[
m b

]
).

if ` ∈ R2

x1 = 0
y1 = `2
m = `1

end

3. Input given in point-slope form (` =
[
x1 y1 m

]
).

if ` ∈ R3

x1 = `1
y1 = `2
m = `3

end

4. Input given in two point form (` =
[
x1 y1 x2 y2

]
).

if ` ∈ R4

4 Section 1 Intersection of Two Lines

m =
`4 − `2
`3 − `1

if |m| = ∞

x1 = `1
y1 = 0
m = NaN

else

x1 = `1
y1 = `2

end
end

5. Return the results.

return x1, y1,m

Outputs:
• x1 ∈ R - x-coordinate of point on line
• y1 ∈ R - y-coordinate of point on line
• m ∈ R - slope of line

Note:
• If the line is vertical, the the function returns x1 = x1, y1 = 0, andm = NaN
since a vertical line passes through the point (x1, 0) and has an undefined slope.

• In step 4, to define if a line is vertical, we check for an infinite slope because of

how many programming languages perform division by 0. However, since

rigorously the slope of the line is undefined, we use NaN to define the slope of a

vertical line.

1.3 Intersection of Two Lines

Consider the following two lines given in point-slope form:

Line 1: y − y1 = m1 (x− x1)

Line 2: y − y2 = m2 (x− x2)

Our goal is to find the intersection of these two lines, (xint, yint). However, there are seven cases we must consider,

which can be categorized into three groups:

1. Single intersection point.

(a) Line 1 nonvertical + line 2 nonvertical + not parallel (Section 1.3.1).

(b) Line 1 vertical + line 2 nonvertical (Section 1.3.2).

(c) Line 1 nonvertical + line 2 vertical (Section 1.3.3).

2. Infinite number of intersection points (collinear lines).

(a) Vertical + collinear (Section 1.3.4).

(b) Nonvertical + collinear (Section 1.3.5).

3. Intersection at infinity (parallel lines).

(a) Vertical + parallel (Section 1.3.6).

(b) Nonvertical + parallel (Section 1.3.7).

1.3 Intersection of Two Lines 5

1.3.1 Line 1 Nonvertical + Line 2 Nonvertical + Not Parallel

This is the most common case, where the two lines are not parallel, not collinear, and

neither is vertical.

If the two lines intersect at (xint, yint), then

yint − y1 = m1 (xint − x1) (8)

yint − y2 = m2 (xint − x2) (9)

Solving Eqs. (8) and (9) for yint,
yint = y1 +m1 (xint − x1) (10)

yint = y2 +m2 (xint − x2) (11)

Equating Eqs. (10) and (11),

y1 +m1 (xint − x1) = y2 +m2 (xint − x2)

Solving for xint,

xint =
(m1x1 −m2x2)− (y1 − y2)

m1 −m2
(12)

To obtain yint, we can use either line. We choose to use line 1.

yint = y1 +m1 (xint − x1) (13)

1.3.2 Line 1 Vertical + Line 2 Nonvertical

If line 1 is vertical, then its equation is given by

x = x1 (14)

Since line 2 is not vertical but line 1 is, the intersection must occur at

xint = x1 (15)

The point-slope form of line 2 is

y − y2 = m2(x− x2)

At the intersection point,

yint − y2 = m2(xint − x2) (16)

Solving for yint,

yint = y2 +m2(xint − x2) (17)

1.3.3 Line 1 Nonvertical + Line 2 Vertical

If line 2 is vertical, then its equation is given by

x = x2 (18)

Since line 1 is not vertical but line 2 is, the intersection must occur at

xint = x2 (19)

The point-slope form of line 1 is

y − y1 = m1(x− x1)

At the intersection point,

yint − y1 = m1(xint − x1) (20)

Solving for yint,

yint = y1 +m1(xint − x1) (21)

6 Section 1 Intersection of Two Lines

1.3.4 Vertical + Collinear

If both lines are nonlinear, then the point-slope forms given by Algorithm 1 will havem1 = m2 = NaN and x1 = x2.

While collinear lines don’t have a single intersection point, in this case we can specify

xint = x1 = x2 (22)

For yint, we can just say
yint = NaN (23)

1.3.5 Nonvertical + Collinear

If the two lines are nonvertical and collinear, we know thatm1 = m2. Consider putting the two lines in slope-intercept

form:
y = m1x+ b1

y = m2x+ b2

If both lines are the same (i.e. they are collinear), then the y-intercept, b should be the same for both (i.e. b1 = b2 = b).
Substituting (x, y) = (x1, y1) into the top equation and (x, y) = (x2, y2) into the bottom equation,

y1 = m1x1 + b

y2 = m2x2 + b

Solving both equations for b,
b = y1 −m1x1

b = y2 −m2x2

Thus, if (y1 −m1x1) is the same as (y2 −m2x2), and if m1 = m2, then the two lines are nonvertical and collinear.

In this case, there is no intersection, so the intersection point is given by

xint = NaN (24)

yint = NaN (25)

1.3.6 Vertical + Parallel

If both lines are vertical, then we know m1 = NaN and m2 = NaN, and that the equations of the lines are given by

x = x1 and x = x2. If the two lines are also parallel, then x1 6= x2. Since parallel lines intersect at infinity,

xint = ∞ (26)

yint = ∞ (27)

1.3.7 Nonvertical + Parallel

If the two lines are nonvertical and parallel, we know thatm1 = m2. Consider putting the two lines in slope-intercept

form:
y = m1x+ b1

y = m2x+ b2

If the two lines are parallel, then the y-intercept, b should be different for both. Substituting (x, y) = (x1, y1) into the
top equation and (x, y) = (x2, y2) into the bottom equation,

y1 = m1x1 + b1

y2 = m2x2 + b2

1.4 Algorithm 7

Solving both equations for b,
b1 = y1 −m1x1

b2 = y2 −m2x2

Thus, if (y1 −m1x1) is different than (y2 −m2x2), and if m1 = m2, then the two lines are nonvertical and parallel.

Since parallel lines intersect at infinity,

xint = ∞ (28)

yint = ∞ (29)

1.4 Algorithm

Algorithm 2: line_intersection
Finds the intersection of two lines.

Inputs:
• `1 ∈ R,R2,R3, or R4 - vector defining the line 1

• `2 ∈ R,R2,R3, or R4 - vector defining the line 2

Procedure:
1. Convert both lines to point-slope form (Algorithm 1).

[x1, y1,m1] = get_point_slope(`1)

[x2, y2,m2] = get_point_slope(`2)

2. Case #1: line 1 nonvertical + line 2 nonvertical + not parallel.

if (m1 6= NaN) and (m2 6= NaN) and (m1 6= m2)

xint =
(m1x1 −m2x2)− (y1 − y2)

m1 −m2
yint = y1 +m1 (xint − x1)

3. Case #2: line 1 vertical + line 2 nonvertical.

else if (m1 = NaN) and (m2 6= NaN)

xint = x1

yint = y2 +m2 (xint − x2)

4. Case #3: line 1 nonvertical + line 2 vertical.

else if (m1 6= NaN) and (m2 = NaN)

xint = x2

yint = y1 +m1 (xint − x1)

5. Case #4: vertical + collinear lines.

else if (m1 = NaN) and (m2 = NaN) and (x1 = x2)

xint = x1

yint = NaN
Warn the user that the two lines are collinear.

8 Section 1 Intersection of Two Lines

6. Case #5: nonvertical + collinear lines.

else if (m1 = m2) and ((y1 −m1x1) = (y2 −m2x2))

xint = NaN
yint = NaN
Warn the user that the two lines are collinear.

7. Case #6: vertical + parallel lines.

else if (m1 = NaN) and (m2 = NaN) and (x1 6= x2)

xint = ∞
yint = ∞
Warn the user that the two lines are parallel.

8. Case #7: nonvertical + parallel lines.

else if (m1 = m2) and ((y1 −m1x1) 6= (y2 −m2x2))

xint = ∞
yint = ∞
Warn the user that the two lines are parallel.

end

9. Return the results.

return xint, yint

Outputs:
• xint ∈ R - x-coordinate of line intersection
• yint ∈ R - y-coordinate of line intersection

	1 Intersection of Two Lines
	1.1 Different Forms of a Line
	1.2 Converting to Point-Slope Form
	1.3 Intersection of Two Lines
	1.3.1 Line 1 Nonvertical + Line 2 Nonvertical + Not Parallel
	1.3.2 Line 1 Vertical + Line 2 Nonvertical
	1.3.3 Line 1 Nonvertical + Line 2 Vertical
	1.3.4 Vertical + Collinear
	1.3.5 Nonvertical + Collinear
	1.3.6 Vertical + Parallel
	1.3.7 Nonvertical + Parallel

	1.4 Algorithm

