
What SWIFT can do
SWIFT can solve a variety of problems aimed at cosmological and astro-
physical applications. SWIFT’s features include:

• Hydrodynamics, using a variety of particle methods
• Planetary science, with e.g. multiple equations of state
• Dark Matter
• Neutrinos
• Gravity: self-gravity and external potentials
• Cosmology
• Radiative cooling
• Radiative transfer
• On-the-fly analysis: halo finding (FOF), power spectra
• And more!

To enable and use these features, SWIFT needs to be compiled accord-
ingly and corresponding flags need to be passed at runtime. Please con-
sult the instructions provided in the documentation for full details.

Getting The Code
The code is available from our GitLab (core developers) and GitHub (pub-
lic mirror) repositories. You can download it over https from the following
locations:

• https://github.com/swiftsim/swiftsim.git
• https://gitlab.cosma.dur.ac.uk/swift/swiftsim.git

Getting Help
Feel free to contact us on Gitter (gitter.im/swiftsim) or on our GitHub
(github.com/swiftsim/swiftsim) by creating an issue.

The code documentation is available on swiftsim.com/docs, and is also
shipped along with the code in the docs/RTD directory. This onboard-
ing guide is available online as well on swiftsim.com/onboarding.pdf

Initial Setup
We use autotools for setup. To get a basic running version of the code (the
executable binaries are found in the top directory), use:

./autogen.sh

./configure
make

MacOS Specific Oddities
To build on MacOS you will need to enable compiler warnings due to
an incomplete implementation of pthread barriers. DOXYGEN also has
some issues on MacOS, so it is best to leave it out. To configure:

./configure --enable-compiler-warnings \
--disable-doxygen-doc

When using the clang compiler, the hand-written vectorized routines
have to be disabled. This is done at configuration time by adding the flag
--disable-hand-vec .

Dependencies
To compile SWIFT, you will need the following libraries:

HDF5
Version 1.10.x or higher is required. Input and output files are stored as
HDF5 and are compatible with the GADGET-2 specification. A parallel-
HDF5 build and HDF5 >= 1.12.x is recommended when running over MPI.

MPI
A recent implementation of MPI, such as Open MPI (v3.x or higher), is re-
quired, or any library that implements at least the MPI 3 standard.

Libtool
The build system depends on libtool.

FFTW
Version 3.3.x or higher is required for periodic gravity.

ParMETIS or METIS
One is required for domain decomposition and load balancing.

GSL
The GSL 2.x is required for cosmological integration.

In most cases the configuration script will be able to detect the libraries
installed on the system. If that is not the case, the script can be pointed
towards the libraries’ location using the following parameters

./configure --with-gsl=<PATH-TO-GSL>

and similar for the other libaries.

Optional Dependencies
There are also the following optional dependencies:

libNUMA
libNUMA is used to pin threads.

TCmalloc/Jemalloc/TBBmalloc
TCmalloc/Jemalloc/TBBmalloc are used for faster memory allocations
when available.

Python
To run the examples, you will need python 3 and some of the standard
scientific libraries (numpy, matplotlib). Some examples make use of the
swiftsimio library, which is a dedicated and maintained visualisation and
analysis library for SWIFT.

GRACKLE
GRACKLE cooling is implemented in SWIFT. If you wish to take advantage
of it, you will need it installed.

HEALPix C library
This is required for making light cone HEALPix maps.

CFITSIO
This may be required as a dependency of HEALPix.

https://swiftsim.com/docs
https://github.com/swiftsim/swiftsim.git
https://gitlab.cosma.dur.ac.uk/swift/swiftsim.git
https://gitter.im/swiftsim
https://github.com/swiftsim/swiftsim
https://github.com/swiftsim/swiftsim
https://swiftsim.com/docs
https://swift.strw.leidenuniv.nl/onboarding.pdf
https://swiftsimio.readthedocs.io/en/latest/

Useful Configuration Flags
A description of the available options for all flags including the examples
below can be found by using ./configure --help .

--with-hydro=sphenix
There are several hydrodynamical schemes available in SWIFT. You can
choose between them at compile-time with this option.

--with-riemann-solver=none
Some hydrodynamical schemes, for example GIZMO, require a Riemann
solver.

--with-kernel=cubic-spline
Several kernels are made available for use with the hydrodynamical
schemes. Choose between them with this compile-time flag.

--with-hydro-dimension=3
Run problems in 1, 2, and 3 (default) dimensions.

--with-equation-of-state=ideal-gas
Several equations of state are made available with this flag.

--with-cooling=none
Several cooling implementations (including GRACKLE) are available.

--with-ext-potential=none
Many external potentials are available for use with SWIFT.

Runtime Options and Parameter Files
SWIFT requires a number of runtime options to run and get any sensible
output. For instance, just running the swift binary will not use any SPH
or gravity; the particles will just sit still!

A list of command line options can be found by running the compiled bi-
nary with the -h or --help flag:

./swift --help

You will also need to specify a number of runtime parameters
that are dependent on your compile-time configuration in a pa-
rameter file. A list of all of these parameters can be found in
examples/parameter_example.yml , and you can check out ex-

amples in the examples/ directory.

Running an Example
SWIFT provides a number of examples that you can run in the
examples/ directory. Many are detailed in their respective README

files, and contain python scripts (files with the suffix .py) to both gener-
ate initial conditions and plot results. The python scripts usually contain
their respective documentation at the top of the script file itself.

Sod Shock
In this example, we will run the 3D SodShock test. You will need to con-
figure and compile the code as follows:

./configure
make

Then to run the code, we first download and build the initial conditions:

cd examples/HydroTests/SodShock_3D
./getGlass.sh
python3 makeIC.py
../../../swift --hydro --threads=4 sodShock.yml

We can plot the solution with the included python script as follows:

python3 plotSolution.py 1

The argument 1 tells the python plotting script to use the snapshot with
number 1 for the plot.

Small Cosmological Volume
As a second example, we run a small cosmolgical volume containing dark
matter only starting at redshift 𝑧 = 50. Like for the Sod Shock example,
it suffices to configure (./configure) and compile (make) the code
without any extra flags.

After downloading the initial conditions, we run the code with cosmol-
ogy and self-gravity:

cd examples/SmallCosmoVolume/SmallCosmoVolume_DM
./getIC.sh
../../../swift --cosmology --self-gravity \

--threads=8 small_cosmo_volume_dm.yml

We can plot the solution with the included python script as follows:

python3 plotProjection.py 31

The plotProjection.py script requires the swiftsimio library.

An example containing both baryonic and dark matter is
examples/SmallCosmoVolume/SmallCosmoVolume_hydro . To

run with hydrodynamics, the --hydro flag needs to be provided as
well:

../../../swift --cosmology --self-gravity \
--hydro --threads=8 small_cosmo_volume.yml

Submission Script
Below is an example submission script for the SLURM batch system. This
runs SWIFT with MPI, thread pinning, hydrodynamics, and self-gravity.

#SBATCH --partition=<queue>
#SBATCH --account-name=<groupName>
#SBATCH --job-name=<jobName>
#SBATCH --nodes=<nNodes>
#SBATCH --ntasks-per-node=<nMPIRank>
#SBATCH --cpus-per-task=<nThreadsPerMPIRank>
#SBATCH --time=<hh>:<mm>:<ss>

srun -n $SLURM_NTASKS ./swift_mpi \
--threads=$SLURM_CPUS_PER_TASK --pin \
--hydro --self-gravity parameter_file.yml

https://swiftsimio.readthedocs.io/en/latest/

	What SWIFT can do
	Getting The Code
	Getting Help
	Initial Setup
	MacOS Specific Oddities

	Dependencies
	HDF5
	MPI
	Libtool
	FFTW
	ParMETIS or METIS
	GSL

	Optional Dependencies
	libNUMA
	TCmalloc/Jemalloc/TBBmalloc
	Python
	GRACKLE
	HEALPix C library
	CFITSIO

	Useful Configuration Flags
	--with-hydro=sphenix
	--with-riemann-solver=none
	--with-kernel=cubic-spline
	--with-hydro-dimension=3
	--with-equation-of-state=ideal-gas
	--with-cooling=none
	--with-ext-potential=none

	Runtime Options and Parameter Files
	Running an Example
	Sod Shock
	Small Cosmological Volume

	Submission Script

