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Abstract—JavaScript is both a popular client-side program-
ming language and an attack vector. While malware developers
transform their JavaScript code to hide its malicious intent
and impede detection, well-intentioned developers also transform
their code to, e.g., optimize website performance. In this paper,
we conduct an in-depth study of code transformations in the
wild. Specifically, we perform a static analysis of JavaScript files
to build their Abstract Syntax Tree (AST), which we extend with
control and data flows. Subsequently, we define two classifiers,
benefitting from AST-based features, to detect transformed sam-
ples along with specific transformation techniques.

Besides malicious samples, we find that transforming code
is increasingly popular on Node.js libraries and client-side
JavaScript, with, e.g., 90% of Alexa Top 10k websites containing
a transformed script. This way, code transformations are no
indicator of maliciousness. Finally, we showcase that benign code
transformation techniques and their frequency both differ from
the prevalent malicious ones.

Index Terms—Web Security, JavaScript, Obfuscation, Minifi-
cation, Empirical Study

I. INTRODUCTION

JavaScript is a scripting language, which has become one
of the core technologies of the Web platform. In particular,
it is used as a client-side programming language by almost
97% of all websites [47]. Initially, JavaScript was invented
to create sophisticated and interactive web pages. However,
as it is executed in users’ browsers, it also provides a basis
for attacks. On the one-hand, JavaScript offloads the work
to the client-side, meaning that it should be lightweight and
fast to reduce loading times. Specifically, saving bandwidth
will improve website performance. To this end, developers
transform their code to reduce its size, e.g., by shortening the
length of variables, inlining functions, and various optimiza-
tion shortcuts [17], [32]. We use the term minification to refer
to the transformation techniques aiming at reducing code size.
Overall, developers can also choose to protect code privacy
and intellectual property. For this purpose, there are some
additional code transformations, which, e.g., make reverse-
engineering harder without downgrading the performance too
much. On the other hand, to perform malicious activities,
attackers would like to evade detection. For this purpose, they
transform their code too, to hide its malicious intent or at least
make it harder to analyze, e.g., string manipulations, encoding,
and logic structure obfuscation. With the term obfuscation, we
refer to techniques, which aim at hindering code analysis.

This way, both benign and malicious JavaScript use code
transformations but for different purposes. Due to their

inherently different objectives, these transformations leave
different traces in the source code syntax. In particular,
the Abstract Syntax Tree (AST) represents the nesting of
programming constructs. Therefore, regular (meaning non-
transformed) JavaScript has a different AST than transformed
code. Specifically, previous studies leveraged differences in
the AST to distinguish benign from malicious JavaScript [5],
[9], [14], [15]. Still, they did not discuss if their detectors
confounded transformations with maliciousness or why they
did not. In particular, there are legitimate reasons for well-
intentioned developers to transform their code (e.g., perfor-
mance improvement), meaning that code transformations are
not an indicator of maliciousness.

In this paper, we conduct an in-depth empirical study
of code transformations in the wild. Contrary to Skolka et
al. [44], who performed an analysis of transformed code on
the most popular websites, we do not focus solely on client-
side JavaScript, but we also consider library code from npm
and malicious JavaScript, for a comparative analysis. Contrary
to their approach, we do not target the tools leveraged to
modify the code. Instead, we dive into the specific techniques
used to transform it to, e.g., highlight any differences in
terms of techniques or usage frequency between benign vs.
malicious code transformations, based on the ten techniques
that we monitor. At the same time, we perform a longitudinal
analysis of code transformations in the wild to study at large-
scale the evolution of these techniques, depending on time
or on specific trends. Since these transformation techniques
mostly work at code level, e.g., to make it harder to reverse-
engineer, we seek to directly analyze the patterns that specific
transformations leave in the code structure. To directly work
at code structure level, we chose to perform a static analysis
of JavaScript files, also motivated by its speed and high code
coverage. Specifically, we enhance the traditional AST with
control and data flow information to abstract the source code,
without losing its semantics. Next, we extract specific features
from the AST, which are either typical of regular JavaScript or
of a given transformation technique. Finally, we leverage two
random forest classifiers, first to predict whether a given script
is transformed or not, and second–in the case of a transformed
script–to detect the specific techniques developers used.

In particular, we highlight the fact that code transforma-
tions are popular in the wild, both for websites (68.60% of
the extracted scripts), npm packages (8.7% of the extracted



scripts), and malicious JavaScript (29-73%). Specifically, web-
sites are getting more transformed over time, meaning that
web developers seem to be more concerned about bandwidth
and loading times, i.e., are increasingly working on improving
website performance. On the contrary, malicious JavaScript are
more ephemeral, so that we rather observe trends specific to
a month. Still, the transformation techniques used by benign
developers are not changing, neither over time nor between
client-side and library-based JavaScript, whereas malicious
JavaScript uses different patterns. Specifically, the most pop-
ular benign transformation techniques relate to minification,
mostly basic techniques, while the prevalent malicious ones
include identifier and string obfuscation and aggressively mini-
fying the code. Besides different transformation techniques, we
also note that the remaining techniques that we monitor have
differing usage frequency depending on whether the files are
benign or malicious.
To sum up, our paper makes the following contributions:
• We abstract JavaScript files through their AST enhanced

with control and data flows. Based on features we extract
from the AST, we train two classifiers: while the first one
distinguishes regular from transformed code, the second one
can recognize the specific transformation techniques used.

• We evaluate our approach on a labeled dataset of regular
and transformed JavaScript, also combining different trans-
formation techniques.

• We perform a large-scale and comparative analysis of code
transformations in the wild, where we target client-side,
library-based, and malicious JavaScript.

• Finally, we conduct a longitudinal analysis of code transfor-
mations to study their evolution over time.

For reproducibility reasons, our source code is available [31].

II. TRANSFORMING JAVASCRIPT CODE

This section first provides an overview of JavaScript ob-
fuscation and minification techniques. Then, we select state-
of-the-art systems to transform JavaScript code. Finally, we
present the specific transformation techniques on which we
focus in this paper.

A. Code Transformation Techniques

Obfuscation makes code harder to understand, both for
human analysts and automatic tools. Several categories of code
obfuscation can be found in the wild [19], [26], [51]:
• Randomization obfuscation consists in randomly insert-

ing or changing elements of a script without altering its
semantics, e.g., whitespace or comments random-
ization. Also, variable and function names can be ran-
domized, e.g., to hinder manual analysis; we refer to this
technique as identifier obfuscation.

• Data obfuscation regroups string and number manipulation
techniques. For example, strings can be split, concatenated,
or reversed so that they do not appear in plain text. Similarly,
characters can be substituted, e.g., by running a regular
expression replace on a string. Also, standard or custom

encoding (such as ASCII, Unicode, or hexadecimal), encryp-
tion and decryption functions hinder a direct understanding
of the code. We refer to these techniques as string ob-
fuscation. Similarly, with integer obfuscation,
a number does not appear in plain text but is, e.g., computed
with arithmetic operators. Further techniques also enable
to hide data. For example, with obfuscated field
reference, the bracket notation is privileged over the
dot notation to access an object property (as it enables to
compute an expression, whereas dot notation only considers
identifiers [34]). In addition, data can be fetched from
a global array (global array) or rewritten, so that it
does not contain any alphanumeric characters anymore [36]
(no alphanumeric).

• Logic structure obfuscation directly targets the code logic,
such as manipulating execution paths, e.g., by adding condi-
tional branches. Another technique consists in adding irrele-
vant instructions (dead-code injection) or changing
the program flow, e.g., by moving all basic blocks in a
single infinite loop, whose flow is controlled by a switch
statement [23] (control-flow flattening).

• Dynamic code generation leverages the dynamic nature of
JavaScript to generate code on the fly, e.g., with eval.

• Environment interactions is specific to web JavaScript.
In this case, statements can be scattered across an HTML
document using multiple < script > blocks. Similarly, the
payload could also be stored within the DOM and extracted
subsequently so that it is not directly discernible.

• Code protection regroups techniques to protect code pri-
vacy and intellectual property, e.g., by impeding reverse
engineering. Specifically, we focus on self-defending,
which makes the code resilient against formatting and
variable renaming [24]. In addition, we consider debug
protection, which makes it harder to use features from
the Developer Tool, for Chrome and Firefox [24].

On the contrary, minification aims at reducing code size,
e.g., saving bandwidth improves website performance. Basic
techniques consist of deleting whitespaces and comments
(while obfuscation randomly added them to hinder the anal-
ysis), shortening variable names, and removing dead-code
(minification simple). More advanced techniques di-
rectly modify the logic structure of the code, e.g., by elimi-
nating unreachable or redundant code, inlining functions [17],
or replacing an if statement with the conditional operator
shortcut [32] (minification advanced).

B. Code Transformation Tools

To transform JavaScript code, we focus on several tools:
• obfuscator.io [24] is a highly configurable JavaScript ob-

fuscator. For example, it includes several string obfuscation
methods, self-defending, and control-flow flattening [23].

• JSFuck [27] is an obfuscator, which rewrites JavaScript
code without any alphanumerical characters by only keeping
the six following characters: ”[”, ”]”, ”(”, ”)”, ”!”, and ”+”.

• gnirts [2], which obfuscates strings in JavaScript code
(cf. Section II-A), without using encoding escape.
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• custom-encoding, our approach to obfuscate strings,
with encoding.

• JavaScript Minifier [8], which minifies samples, e.g., by
shortening variable names and removing whitespaces.

• Google closure compiler [16], which minifies JavaScript.
It can perform more advanced optimizations, such as dead-
code elimination, functions inlining, and constant folding.
We specifically selected (or implemented) these tools be-

cause they are configurable, meaning that for a given file,
we could choose the specific code transformation technique(s)
to use. Contrary to Skolka et al. [44], the tool used to
perform the transformation is not relevant to us. Therefore,
we did not consider two different tools performing the same
transformation the same way.

C. Transformation Technique Selection

Based on the previous state-of-the-art tools to trans-
form JavaScript code, along with their configuration set-
tings, we can focus on the detection of the 10 follow-
ing techniques: identifier obfuscation, string
obfuscation, global array, no alphanumeric,
dead-code injection, control-flow flatten-
ing, self-defending, debug protection, mini-
fication simple, and minification advanced.

Since we can leverage the previous tools to transform
JavaScript code using one or several techniques, we are able
to build a ground-truth dataset. This way, we can evaluate
our classifier on the detection of specific techniques.1 Also,
we can still recognize techniques, which we do not monitor,
as transformed, even though we do not name the specific
technique, e.g., obfuscated field reference.

III. TRANSFORMED CODE DETECTION

In this section, we present our approach, implemented in
Python, to detect and analyze transformed code. First, we ab-
stract input code with its AST, enhanced with control and data
flows, and tokens. Second, we leverage the fact that regular and
transformed code have a different structure (AST). This way,
we extract specific features, which are typical of regular code
or of specific transformations. Third, we define two multi-
task detectors to a) detect transformed code and b), in the
case of transformed code, predict the specific transformation
techniques used. Fourth, we present our experimental approach
to train our two detectors. Finally, we evaluate the performance
of these two detectors on different ground-truth datasets.

A. Source Code Abstraction

To detect and analyze code transformations, we chose to
perform a static analysis of JavaScript files to directly work
at code level. In particular, the AST is a tree abstraction
of the syntactic structure of the code. As it represents the
way programmatic and structural constructs are arranged in
a given file, different code transformations have a dissimilar
AST. For example, the string obfuscation technique,

1We discuss limitations of our approach, which can recognize only these
known techniques, in Section V-A

which consists in splitting a string into several variables and
concatenating them later on, will be characterized, e.g., by
an unusually high number of variable declarations and binary
expressions (to represent the ”+” operator).

We use the AST generation of the open-source JavaScript
static analyzer JSTAP [14], which augments the traditional
AST from Esprima [18] with control and data flows. In
particular, control flows enable to reason about conditions
that should be met for a specific execution path to be taken.
As for data flows, they represent the influence of a variable
on another. We propose several adjustments to the original
implementation. For example, we restrict flows of control to
nodes having an impact on program execution paths, meaning
statement nodes [11], CatchClause, and ConditionalExpres-
sion. Similarly, we only consider data flows on Identifier
nodes, i.e., there is a data flow between two Identifier nodes if
and only if a variable is defined at the source node and used
at the destination node. We also improve the way to handle
objects and scoping. For performance reasons, we set a two-
minute timeout to generate data flow edges. After that, we
consider the AST only enhanced with control flows. Finally,
we also leverage Esprima to collect lexical units (i.e., tokens).

B. Feature Set

After building the AST, enhanced with control and data
flows, and token information, we traverse the graph to extract
specific features. We consider two feature categories, namely
automatically selected features and hand-picked features.

First, we extract 4-gram features from the AST. It has indeed
been shown that n-grams are an effective means for modeling
reports [14], [15], [28]–[30], [39]. In fact, moving a window of
length four over the list of syntactic units extracted enables to
retain information about the code original syntactic structure.

Second, to determine features typical of specific transfor-
mation techniques, we performed an in-depth study of the
transformation techniques we presented in Section II-A. In the
following, we introduce a subset of the features we considered
(for reproducibility reasons, we made our source code avail-
able [31]). To distinguish regular from transformed code, we
leverage generic features, such as an AST depth and breadth
divided by a script number of lines. We also consider more in-
depth features, like the ratio of MemberExpression compared
to the number of unique Identifier nodes, the proportion of
CallExpression, Literal, and Identifier nodes, the presence or
absence of specific built-in functions, or the number of string
operations. Similarly, for the scripts reported as transformed,
we focus on the specific transformation techniques used. To
target minification, our feature set includes the average length
of Identifiers, the average number of characters per line, or the
proportion of ternary operators [32]. Regarding obfuscation
techniques, we consider, e.g., the ratio of dot to bracket
notations to access an object’s properties [34], the average size
of arrays/dictionaries, or the proportion of variables fetched
from these structures (by leveraging data flows).
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Finally, we construct a vector space such that each feature is
associated with one consistent dimension, and its correspond-
ing value is stored at this position in the vector. As a first
pre-filtering layer, we consider one vector space to analyze
files with the aim of distinguishing regular from transformed
JavaScript code. In the following, we use the term level 1 to
refer to this first step. For the samples reported as transformed,
we then construct a second vector space to detect the specific
transformation techniques used on these inputs (similarly, we
refer to this second step as level 2).

C. Detector Definition

The learning-based level 1 and level 2 detectors complete
the design of our approach. In both cases, we define a multi-
task system [6]. In particular, multi-task learning includes
both a multi-class and a multi-label system. With multi-
class classification, we consider more than two classes, e.g.,
for level 2: 10 transformation techniques. Still, each sample
can only be assigned to one class. On the contrary, with
multi-label classification, several labels can be assigned to a
given sample. Formally, a multi-task system with C different
classes is comparable to running C binary classifiers. Either
the classifiers can be evaluated independently, or they can
be arranged into a chain to account for possible correlations
between the classes. In the second case, all classifiers use
the same features, but the binary classifier at position P also
leverages the predictions of all classifiers with a position in
J0, P − 1K as an additional feature [38]. For both multi-task
classifiers, we use the Scikit-learn implementation [42].

First, to distinguish regular from transformed code, we
define a multi-task detector with the following classes: regular,
minified, and obfuscated. Since a file can be both obfuscated
and minified, or even have a first part regular and a second
part transformed (e.g., when a minified jQuery version is
added to a regular sample), level 1 can output several labels
for a given input. We consider that a file is transformed if
level 1 flagged it as obfuscated and/or minified. Second, for
transformed samples, we detect the specific transformation
techniques that developers used. As previously, we define a
level 2 multi-task system with the 10 classes from Section II-C.

D. Detector Training

Next, we train our two detectors with regular files and sam-
ples we transformed using the tools presented in Section II-B.

1) Regular File Collection: To train our detectors, we
first collected a set of regular JavaScript files from popular
GitHub projects [46] and popular JavaScript libraries or other
resources [7]. We removed files smaller than 512 bytes to keep
only those with enough features to be representative of a class.
For performance reasons, we chose to collect only samples
smaller than 2 megabytes (even though our static approach
can still analyze them). Also, to remove, e.g., JSON files, or
samples containing exclusively comments, we only consider

files with at least a conditional control flow node,2 a function
node,3 or a CallExpression node4 in their AST. Finally, we
manually verified a subset of our collected samples to ensure
that they are regular: of the 100 analyzed files, 99 are regular.
Overall, we collected 21,000 scripts.

2) Training Set: Next, we built our dataset of transformed
samples. For this purpose, we considered the previous 21,000
scripts and transformed them with one of the 10 techniques
presented in Section II-C, for all techniques. This way, we
transformed these 21,000 scripts 10 times. We stored these
10 transformed variants separately so that we do not mix
different techniques at this stage. To train our level 1 detector,
we first removed 5,000 regular samples, which we will use
as a validation set. Then, we randomly selected half of our
remaining regular set (i.e., 8,000 scripts), as many minified,
and as many obfuscated samples from the previously generated
pools. For the minified files, we represent the 2 minification
techniques equally (i.e., 4,000 files per category), and the
same applies to the 8 obfuscation techniques (1,000 files per
category). The process is similar for level 2, where we selected
2,000 samples for each of the 10 transformation techniques.

3) Validation Set: To optimize the predictions of our
learning-based detectors, we performed an empirical study to
evaluate several off-the-shelf systems. In particular, we com-
pared two multi-task classifier implementations: a) classifiers
chain [41] and b) classifiers independence assumption [43]
(cf. Section III-C). Both for level 1 and level 2, we randomly
built a new dataset (disjoint from the training set) and, in both
cases, the random forest classifier with the classifiers chain
approach performed best. In the following, we always refer to
this classifier for the learning based-detection.

E. Detector Accuracy

To evaluate the accuracy of our two detectors, we leverage
three different datasets. First, we consider the remaining
samples from Section III-D2 (disjoint from both training and
validation sets). Second, we analyze 35,000 files, which we
transformed with multiple techniques. Finally, we show that
our approach generalizes to samples transformed with a new
tool, namely the Daft Logic obfuscator [10], [12].

1) Test Set 1 - Remaining Samples: First, to evaluate the
level 1 detector, we consider the remaining 8,000 regular
samples from Section III-D2, as many minified, and as many
obfuscated. Overall, we accurately detect 7,892 files as regular
(98.65%), 7,985 as obfuscated (99.81%), and 7,977 as minified
(99.71%) so that we have a high detection accuracy of 99.41%.
In the remaining sections, we consider files obfuscated or
minified as transformed (accuracy: 99.69%), since we focus
on the specific transformation techniques at level 2.

For level 2, we randomly selected 2,000 samples from
Section III-D2, for each transformation technique (disjoint

2 DoWhileStatement, WhileStatement, ForStatement, ForOfStatement,
ForInStatement, IfStatement, ConditionalExpression, TryStatement, and
SwitchStatement

3 ArrowFunctionExpression, FunctionExpression, and FunctionDeclaration
4 including TaggedTemplateExpression
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Figure 1: Top-k score accuracy, depending on the threshold

from the previous sets). While we built this dataset with the
tools from Section II-B, we used only one configuration per
file. This way, we limited the number of multiple techniques
used on a single file. Still, some tools always perform a
specific technique in combination with others so that one
given sample can have up to three different labels. We first
measure the accuracy on this set by considering only the
correct predictions, i.e., both the labels predicted, and their
number must match the ground truth. We achieve an accuracy
of 86.95%, which we deem to be high, given that our detector
can make 1,023 different predictions.5 Due to the high number
of possible labels, another way of measuring the accuracy
consists of using the Top-k score [22]. In our case, we consider
that a Top-k prediction is correct when the k predictions with
the highest probability are part of the expected ground-truth
labels. For example, if we consider a multi-task detector D,
which can predict the following labels {A, B, C, D}, and a
file with the following ground truth [A, B, C]. If D makes the
following predictions: Top-1 = [B], Top-2 = [B, C], Top-3 =
[B, C, D], and Top-4 = [B, C, D, E], then only Top-1 and Top-2
are correct. Specifically, in our code transformation setting,
Top-1 accuracy is 99.63%, Top-2 90.85%, and Top-3 98.95%
(the remaining Top-k are 0%, as the ground truths have at
most 3 labels here). Thus, considering the k most probable
predictions of our classifier is an accurate way of detecting
the specific transformation techniques used in given samples.

2) Test Set 2 - Mixed Samples: Next, we show that our
detectors can also analyze files transformed with multiple
techniques (as we envision that samples from the wild mix
these techniques). To this end, we generated 35,000 new files,
which we transformed with the tools from Section II-B by
combining different configuration settings.

For level 1, we accurately detect 99.99% of the transformed
files, compared to 99.69% in Section III-E1. We assume that
mixing several techniques increases the proportion of features
typical of transformed scripts, hence a higher accuracy.

For level 2, we use the Top-k metric to evaluate the accuracy.
Contrary to Section III-E1, the ground truth may contain
between 1 and 7 labels. Figure 1a presents the evolution of the

5The number of predictions from our classifier follows the combination
without repetition distribution, knowing that, for a given file, our classifier
can predict k ∈ J1, 10K labels. Therefore, the number of possible predictions
is

∑10
k=1

(10
k
)
= 1, 023

detection accuracy when k increases, as well as the average
number of wrong and missing labels. From k = 7, we have an
artificial fast decline in terms of accuracy, as the ground truth
contains at most 7 labels. Still, for k = 8, our detector would
output 8 labels, possibly including labels with a very low prob-
ability of being correct. Therefore, we will only consider the
first k labels if they have a probability of being correct over a
threshold that we will determine. Our threshold should respond
to the following challenges: 1) minimize the number of wrong
labels, 2) maximize the number of detected techniques, and
3) maximize the accuracy. Specifically, choosing a very high
threshold (i.e., considering predictions only if they have a very
high confidence) would minimize the number of wrong labels
and maximize the accuracy. In turn, we would only be able
to detect a few transformation techniques. For example, even
with a threshold of 50%, we could only recognize 3 or 4
transformation techniques (see Figure 1c), while we would
like to recognize most of them. We empirically selected a
threshold of 10%. As represented in Figure 1b, with such a
threshold, we have less than 0.32 wrong labels on average and
can detect up to 7 transformation techniques with an accuracy
still over 89% (and over 99.84% for 1 and 2 techniques).

3) Test Set 3 - Daft Logic Samples: Finally, we show
that our detectors generalize to samples transformed with
another tool. For this purpose, we generated 10,000 new
samples, which we transformed with a popular obfuscator [44],
namely the Daft Logic obfuscator [10]–based on Dean Ed-
wards packer [12].6 Specifically, level 1 accurately recognizes
99.52% of the samples as transformed. As for level 2, our
Top-4 metric based on a threshold of 10% reports the follow-
ing techniques: minification advanced and simple, identifier
obfuscation, and string obfuscation, which is in line with the
transformations performed by the packer. In fact, our approach
generalizes, as it is not specific to a tool but recognizes generic
transformation techniques through syntactic patterns.

IV. LARGE-SCALE ANALYSIS OF TRANSFORMED CODE

In this section, we present the results of our large-scale
analysis of code transformations in the wild. We focus, in
particular, on benign JavaScript extracted from the most pop-
ular websites and the most popular npm packages. Next, we

6We chose not to consider this tool in Section II-B, as it combines several
techniques without providing a way for targeting specific ones at a time
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Table I: JavaScript dataset description

Source Creation #JS Class Section

Alexa Top 10k 2020 46,238 Benign Section IV-B1
npm Top 10k 2020 51,053 Benign Section IV-B2

DNC 2015-2017 4,514 Malicious Section IV-C
Hynek 2015-2017 29,484 Malicious Section IV-C
BSI 2017 36,475 Malicious Section IV-C

Alexa Top 2k * 65 2015-2020 327,164 Benign Section IV-D1
npm Top 2k * 65 2015-2020 482,834 Benign Section IV-D2

consider malicious JavaScript samples, which enables us to
highlight transformation technique differences depending on
the intent of the files. To avoid any bias due to our malware
collection being older than our benign samples, we also
perform a longitudinal analysis of benign code transformations
between 2015 and 2020. Finally, we summarize our findings
regarding the proportion of transformed code and specific
techniques used in benign vs. malicious samples.

A. System Setup

Our large-scale analysis of transformed code in the wild
rests on several datasets. For client-side JavaScript, we focus
on the most popular Alexa websites [1], which we statically
scraped, also including external scripts. We first focus on
Alexa Top 10k in September 2020 (Section IV-B1), before
considering Alexa Top 2k websites, one crawl per month
between May 2015 and September 2020 (i.e., on 65 months,
Section IV-D1). Given the fact that we statically extracted
JavaScript from the start pages of high-profile sites, we assume
this JavaScript collection to be benign. Similarly, for library-
based JavaScript, we consider the most popular npm packages,
based on their number of downloads [35] (first, Top 10k in
Section IV-B2, then, Top 2k over 65 months in Section IV-D2).
As previously, we assume them to be benign. Finally, we
also analyze malicious JavaScript from three different sources
(Section IV-C). In particular, we consider exploit kits provided
by Kafeine DNC (DNC) [25], the malware collection of Hynek
Petrak (Hynek) [20], as well as JScript-loaders from the Ger-
man Federal Office for Information Security (BSI) [4]. Based
on the classification of DNC, Hynek, and BSI, including, e.g.,
anti-virus systems, and a runtime-based analysis, we consider
that these files are malicious.

As our datasets contain both benign (client-side and library-
based) and malicious JavaScript, in the following sections,
we will highlight any transformation technique differences
depending on the intent of the scripts. Also, we will showcase
any evolution in the transformed code landscape between 2015
and 2020. Table I summarizes the content of our datasets.
Similarly to Section III-D1, we consider scripts between 512
bytes and 2 megabytes, containing at least a conditional control
flow node, a function node, or a CallExpression node. We
perform the following experiments with the level 1 and level 2
detectors, which we defined and trained in Section III-D.

B. Code Transformations in the Wild
In this section, we provide an in-depth study of the preva-

lence of code transformations in the wild. We first focus on
client-side JavaScript with Alexa Top 10k websites before
considering library-based code with npm Top 10k packages.

1) Alexa Top 10k Websites: In our first experiment, we
leverage our level 1 detector to classify JavaScript files ex-
tracted from the 10,000 most popular websites in September
2020. In particular, we found that code transformations (mostly
minification) are highly used, with over 89.4% of the websites,
which contain at least one transformed script. In fact, minifica-
tion is especially used to reduce loading times, thus to improve
website performance. A more in-depth study of the specific
scripts included by Alexa Top 10k websites suggests that
68.60% of them are transformed, with over 68.20% of them
reported as minified and 0.40% as obfuscated. To verify these
results, we randomly selected 400 files, which we manually
reviewed). In particular, out of the 100 files classified as
regular, we confirm that 83 are regular. Regarding transformed
samples, 96 / 100 are minified, 99 / 100 are obfuscated, and
100 / 100 are transformed. We noticed that manually assigning
a label to samples is not straightforward because they may
have been made harder to understand but without impeding
the analysis too much. In this case, we mostly reported them
as regular because they were, in general, solely using slight
identifier obfuscation. Also, we observed samples that could
be obfuscated, minified, and regular at the same time. In this
case, if one class was significantly prevalent, we assigned
the label of that class; otherwise, we considered multiple
labels. Overall, our manual analysis underlines the fact that our
system can detect transformed samples very accurately, while
it slightly over-approximates the number of regular instances.
As an additional verification step, we classified the dataset of
150,000 regular samples collected by Raychev et al. [37]. We
retain an accuracy of 98.65%, which highlights the accuracy
of our approach to detect regular samples too.

Contrary to our system, which detects 68.60% of the scripts
extracted from Alexa Top 10k as transformed, Skolka et
al. [44] found that 38% of the scripts extracted from the
100,000 most popular websites are transformed. Based on their
results, we verified whether a website rank could influence the
probability of it containing a transformed script. For Alexa
Top 10k, we arranged the sites by groups of 1,000, ordered
by popularity. We found that, while 72.35% of the scripts
belonging to Alexa Top 10k, but not to Alexa Top 9k, are
transformed, almost 80% of the Top 1k are transformed.7 As
a further comparison step, we extracted scripts belonging to
Alexa Top 100k, but not to Alexa Top 90k, and reported
64.72% as transformed. These observations suggest that there
is a link between website popularity and code transformations.
Also, and contrary to our approach, Skolka et al. limited
their analysis to files smaller than 40 kB (vs. 2 MB for us),

7These results differ slightly from Alexa Top 10k because, for Alexa
Top 10k, we consider unique scripts, while in this setting, the scripts are
unique per 1,000 website sampling but may appear in the ten samplings,
which increases the weight of, e.g., widespread minified libraries
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Figure 2: Transformation technique probability of being used
in a transformed script from Alexa Top 10k

for performance reasons. Based on W3Techs report [48], we
downloaded 120 minified versions of the most popular libraries
and found that 87 (73%) of them have a size over 40 kB.
For this reason, we assume that we reported more files as
transformed than previous work for two reasons. First, we con-
sidered websites that are more popular, which we showed to be
more transformed. Second, our design choices enabled us to
analyze bigger files, which can be, e.g., minified libraries; thus,
increasing the proportion of transformed samples detected.

Next, we focus on the samples reported as transformed.
With our level 2 detector, we determine which techniques
are the most prevalent. For this purpose, we computed the
average probability of a given technique being used, based
on our detector confidence score. Since the predictions are
independent, the sum of their confidence is not necessarily
100%. As indicated in Figure 2, and as expected, minification
is highly used on the most popular websites, to reduce loading
times. We observe, in particular, basic minification techniques
(45.96%), e.g., variable shortening and whitespace deletion,
but also more advanced ones (40.24%), e.g., offered by the
Google closure compiler. Regarding the remaining transfor-
mation techniques we monitored, they are seldom used with
a usage probability below 5.72% (identifier obfuscation) and
even below 1.94% for the other techniques. Therefore, and as
already observed at level 1, the transformed Alexa scripts are
mostly minified, to improve website performance.

2) npm Top 10k Packages: As a second experiment, we
focus on library-based JavaScript. To the best of our knowl-
edge, such a study has not been performed before. We
consider the 10,000 most downloaded npm packages, total-
ing between 332,946,417 (Top 1) and 136,395 (Top 10k)
downloads between August and September 2020. Our level 1
detector reports only 8.7% of the scripts as transformed
(8.46% minified and 0.25% obfuscated), which is almost 8
times less than for Alexa. While Alexa samples are mostly
minified, e.g., to reduce loading times and save bandwidth,
it may not be necessary for npm packages. For example,
when used with Node.js, node runtime has direct access
to the node_modules folder. As no network access is
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Figure 3: Transformation technique probability of being used
in a transformed script from npm Top 10k
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Figure 4: Evolution of the prevalence of transformed code in
npm Top 10k packages depending on package popularity

required, transforming the code to, e.g., save bandwidth does
not apply. Transformation techniques are rather applied to
protect intellectual property (e.g., for proprietary packages),
backward compatibility (which induces some transformations
to use new syntax on older runtimes), or when the packages
can directly be loaded in the Web. Overall, we found that
15.14% of the 10k most popular packages contain at least one
transformed script, which is almost 6 times less than for Alexa.

Next, with level 2, we dive into the specific transformation
techniques used on npm packages. Figure 3 sums up our main
findings. As before, the two most prevalent techniques are re-
lated to minification, both basic (58.34%) and more advanced
techniques (36.57%). As for Alexa, we computed these scores
based on our detector’s confidence for each prediction. Simi-
larly to Alexa, we observe that when npm package developers
transform their code, it is mostly with the aim of reducing its
size. Still, we only report 8.7% of the scripts as transformed
(compared to 68.60% for Alexa), meaning that minification is
overall not very widespread on npm popular packages. Still,
and contrary to Alexa, we observe that transformed scripts tend
to be completely transformed, while Alexa samples combine
regular with transformed code. In particular, out of the 100
minified Alexa samples we manually reviewed, 11 also include
regular code, while we observed no such cases for npm.
For this reason, we assume that our detector has a higher
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Figure 5: Transformation technique probability of being used in a malicious transformed sample

confidence in the prediction of npm minified samples (58.34%
for minification simple) than of Alexa (45.96%).

Finally, we focus on the prevalence of code transformations
depending on the rank of the considered packages. Similarly
to the Alexa experiment, we split our 10k packages into 10
groups of 1k, ordered by popularity. As indicated in Figure 4,
the 1k most popular packages are between 2.4 and 4.4 times
less likely to contain transformed code than the remaining
Top 10k packages. By diving into the specific transformation
techniques used, we find that, while minification is the most
prevalent technique, Top 1k packages equally use basic and ad-
vanced minification techniques (49% and 47%, respectively),
while the Top 5k and Top 10k significantly privilege simpler
techniques (58%) over more complex ones (37%).

C. Code Transformations in Malicious JavaScript

Previously, we showcased that both client-side and library-
based benign JavaScript code can be transformed. Specifically,
we focussed on the specific transformation techniques used
and showed that their usage is similar between Alexa and
npm, and that, in both cases, the most prevalent techniques
are related to minification, for performance reasons. As a
comparison, in this section, we focus on the transformation
techniques used by malicious JavaScript samples.

The case of malicious JavaScript is slightly different from
Alexa and npm Top 10k, as we cannot download popular
malware for September 2020. In particular, our malicious
JavaScript samples have been collected between 2015 and
2017 by DNC, Hynek, and BSI (Section IV-A). To avoid any
bias due to a) the older character of our malware compared
to the benign files and b) their collection over a two-year
time-frame, we provide a comparative longitudinal study of
benign code transformations in client-side and library-based
JavaScript (between 2015 and 2020) in Section IV-D. In the
current section, we analyze our malicious JavaScript datasets
with our level 1 and level 2 detectors.

1) Level 1 Detector: First, and contrary to what we were
expecting, most of our malicious samples are not necessarily
detected as transformed. In particular, we classify only 28.93%
of the BSI samples, 65.94% of DNC, and 73.07% of Hynek
as transformed. We assume that these results differ across our

three datasets, as they were provided by three different enti-
ties, which collected different kinds of malicious JavaScript,
e.g., exploit kits vs. JScript-loaders. Given these results, we
manually reviewed 100 randomly selected malicious instances
recognized as regular and 100 as transformed (equally split
across our three sources). Of the 100 regular files, we confirm
that 25 are regular (the malicious logic stays in the open for 23,
and 2 use conditional compilation [33], which Esprima parses
as a large comment). Of the remaining ones, 57 are rather
transformed but solely rely on identifier obfuscation, meaning
that their syntactic structure looks very regular (i.e., only
variable names are randomized). As for the 18 remaining ones,
it was complicated for us to decide on a label because they
generated code dynamically. Specifically, for each sample, we
observed a few non-human readable fixed strings, which sub-
sequently flew into eval. Regarding the transformed samples,
our predictions are correct for 97 of them, while 3 are rather
regular as their malicious logic is mostly staying in the open.

Overall, we assume that two reasons are responsible for
the observed low transformed rates. First, malware samples
are not necessarily completely transformed. For example, to
evade detection, malware authors can combine a small and
slightly obfuscated payload with a significantly larger amount
of regular code. Due to the majority of the code being regular,
our system would (correctly) classify the code as regular.
Second, malicious actors can leverage specific transformation
techniques, e.g., identifier obfuscation, to generate syntacti-
cally identical, but SHA-1 unique, malicious instances [15],
which are broadcast in waves, one unique malicious script per
victim, to, e.g., impede signature-based detection. This way,
we observe similar classification results inside a wave (as a
wave contains syntactically similar malicious instances), while
the remaining samples may be very different. In particular,
the proportion of transformed samples is very different from
a month, and even a malware source, to another.

2) Level 2 Detector: For the malicious samples previously
detected as transformed, we focus now on the specific transfor-
mation techniques they use. Out of the 100 samples classified
as transformed that we manually reviewed, we stress that 97
are indeed transformed (and the 3 remaining ones are partially
transformed but the malicious logic still apparent) so that we
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Figure 6: Evolution of the proportion of transformed scripts

are not introducing a bias in the following results. Figure 5
sums up our main observations. As the number of samples
collected each month is not constant, we indicate the number
of files next to each tested month in the x-axis. Also, we chose
to separate the malware per source to avoid any transformation
technique bias due to different providers, which collected
different types of JavaScript files, e.g., exploit kits for DNC
vs. JScript-loaders for BSI. We would also like to stress that
malware is ephemeral, i.e., we are not comparing the same
malware over time but different malicious waves, which may
be independent or stem from different attackers.

Compared to Alexa Top 10k (Figure 2) and npm Top 10k
(Figure 3), where level 2 reported minification as the most
prevalent transformation technique with a probability between
36-59%, malicious transformation techniques are both differ-
ent and have a differing probability than for benign client-
side and library code. Specifically, for our three malicious
JavaScript sources, the most popular transformation technique
is identifier obfuscation, with an average usage probability
between 25-37%, compared to below 6.2% for benign scripts.
Additional popular techniques include string obfuscation and
minification advanced, which both have an average usage
probability between 17-21%, compared to below 3.3% (string
obfuscation) and over 36.5% (minification advanced) for be-
nign inputs. For DNC, minification simple is also widespread
(average usage of 22% vs. over 45.96% for benign scripts),
which our manual analysis confirms. As for the remaining
obfuscation techniques, dead-code injection, control-flow flat-
tening, and global array appear between 5-10% of the time,
which is again superior to their benign usage of mostly 1%.
This way, we showcased that while both benign and malicious
JavaScript files use transformation techniques, the former priv-
ilege minification to improve performance, e.g., by reducing
loading times. In contrast, the latter favor other transformation
techniques, combined with aggressive minification, to make
malicious JavaScript code harder to understand and analyze.

D. Longitudinal Analysis of Code Transformations in the Wild

As a comparison with malicious samples that were collected
between 2015-05 and 2017-10, we perform a longitudinal
analysis of code transformations on benign samples. We focus
on Alexa Top 2k websites and npm Top 2k packages, which
we collected between 2015-05 and 2020-09.
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Figure 7: Transformation technique probability of being used
in a transformed script from Alexa Top 2k over time

1) JavaScript From Alexa: First, we leveraged the Wayback
Machine from the Internet Archive [21], [45] to collect the
2,000 most popular Alexa websites the first of each month
between 2015 and 2020. As indicated in Figure 6, we ob-
serve a steady augmentation of the proportion of transformed
scripts over time. By diving into the specific transformation
techniques (Figure 7), we infer that this augmentation is solely
due to a minification usage increase (from 38.74% in 2015 to
47.02% in 2020 for minification simple, while minification
advanced slightly decreases from 43.77% to 40%). Therefore,
we observe that web developers have become more concerned
with the performance of their websites over time and are
increasingly trying to save bandwidth and loading times. As
for the remaining transformation techniques, they are staying
more constant over time. For example, identifier obfuscation
slightly decreases from 8.23% to 6.21%, while the other
techniques have a usage probability under 2.4%, on average,
meaning that benign websites do not really use them in
practice. These results are also in line with our observations
from Figure 2, even though we cannot directly compare Alexa
Top 10k with the Top 2k websites.

2) JavaScript From npm Packages: Similarly, we collected
the 2,000 most popular npm packages (based on the number of
downloads at the end of each month) between 2015 and 2020.8

Contrary to Alexa, npm packages are more ephemeral so that
we are not necessarily comparing the same packages over time.
In particular, we distinguish three phases in Figure 6. From
2015-05 to 2016-04, we classified on average 7.4% of the
extracted scripts as transformed. The corresponding very high
relative standard deviation of 24.22% indicates that data is
spread out, which we explain by the fact that, on average,
only 76.7% of the most popular npm packages on a given
month are still popular on the next month. On the contrary,
from 2016-05 to 2019-05, we observe a more consistent
trend with 17.95% of the scripts classified as transformed,
with a small relative standard deviation of 5.9%, and almost
93% of the packages are common between two consecutive

8We collected the packages to download from https://api.npmjs.org/
downloads/point/{period}[/{package}], for example, https://api.npmjs.org/
downloads/point/2018-05-01:2018-05-01/supports-color

9

https://api.npmjs.org/downloads/point/{period}[/{package}]
https://api.npmjs.org/downloads/point/{period}[/{package}]
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Figure 8: Transformation technique probability of being used
in a transformed script from npm Top 2k over time

months. Similarly, from 2019-06 to 2020-09, we also observe a
consistent trend of 15.17% of transformed scripts and 87.48%
of common packages. We manually reviewed a subset of
our predictions (for the different phases), where we retain a
high accuracy with 50 / 50 files accurately classified as regular
and 47 / 50 files accurately classified as transformed (more
precisely as minified). We could not infer any relationships
between the number of transformed scripts and the increas-
ing/decreasing popularity of npm minifiers, though. We rather
assume that the three phases we observed are typical of the
ephemeral state of npm packages, which depend on current
trends. Still, our observed 7-18% of transformed script rate
confirms our observation from Section IV-B2 in the sense that
npm packages mostly do not abuse code transformations as
they do not need to, e.g., reduce bandwidth or loading times.

Regarding specific transformation techniques, as shown in
Figure 8, we observe the same three stages as previously for
the two most prevalent techniques, namely minification simple
and advanced (with an average probability of 58.62% and
34.28%, respectively), as well as for the less popular identifier
obfuscation technique (9.71%). As for the less common ones,
they rather stay consistent over time, with probabilities mostly
below 3%. This way, we do not observe a specific evolution
in the transformed code landscape of npm packages over
time. While the most prevalent transformation technique stays
minification, its usage depends on current package trends.

E. Summary of Code Transformations

In the previous sections, we confirm that both benign and
malicious JavaScript use code transformations. In particu-
lar, the most prevalent technique for both client-side and
library-based benign code is minification. While we detected
minification in 68.20% of the scripts extracted from websites,
we found only 8.46% of minified npm files. In fact, web
developers choose to optimize website performance to save
bandwidth and loading times, whereas it does not apply to
npm packages, which generally do not need any network ac-
cess. As for malicious JavaScript samples, they abuse and
combine many transformation techniques including, but not
limited to, aggressive minification. While we also reported on

benign obfuscated files, e.g., with identifier obfuscation, our
detector predicted this technique with an average usage below
6.2% for benign scripts (both Alexa and npm), compared
to over 25-37% for our malicious samples. Similarly, the
probability that malicious files use string obfuscation lies
between 17-21%, compared to less than 3.3% for benign
scripts. This highlights the fact that the main reason for
transforming malicious samples is to make them harder to
understand. While benign code can also be transformed to
impede its analysis, this is less prevalent than for malicious
samples. As for the remaining obfuscation techniques that we
monitored, benign developers have a probability of using them
below 3%, whereas more than half of the techniques have a
usage probability between 5-10% in malware.

Regarding the evolution of the transformed code landscape
over time, we noticed that both client-side and library-based
JavaScript tend to get more transformed. For example, the
linear increase of minification in websites suggests that web
developers are getting more concerned with website perfor-
mance over time. Regarding malicious JavaScript, the trend is
very different, as malware is ephemeral, so that we are not
comparing the same samples over time. Still, we note that the
three most popular malicious transformation techniques stay
the same over time, namely identifier and string obfuscation,
and aggressively minifying the code, as discussed previously.
This way, we quantified the fact that both benign and ma-
licious JavaScript samples are transformed. Still, developers
have different reasons that motivate the use of differing code
transformation techniques, with a different usage probability,
for benign vs. malicious JavaScript code.

V. DISCUSSION

In this section, we first examine the limitations our approach
might have before introducing potential improvements.

A. Limitations

We chose to perform a static analysis of JavaScript files to
directly see the traces left by different transformation tech-
niques in the files’ syntax. By design, we cannot analyze dy-
namically generated code nor transformation techniques used
at runtime, e.g., several eval unfolding layers. Similarly, we
cannot detect samples transformed with HIDENOSEEK [13],
as it rewrites malicious JavaScript to reproduce an existing
benign syntax, which does not leave any trace in the code
structure. Still, we are not trying to infer the behavior of a
script but to study transformation traces directly accessible in
its syntax. In particular, we chose to focus on ten transforma-
tion techniques, which we selected based on the transformation
capabilities of available JavaScript minifiers and obfuscators.
For this reason, our level 2 detector is limited to the ten
techniques we monitor (while we discussed additional existing
techniques in Section II-A). Still, our level 1 detector can
recognize samples as transformed, even if they use techniques
that we do not monitor. Similarly, our approach is not limited
to the tools we considered to generate our training sets but
generalizes to other tools, as it is tailored to recognize generic
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transformation techniques through syntactic patterns. This is
confirmed in Section III-E3 and with our manual analyses in
Sections IV-B1, IV-B2, and IV-C.

B. Potential Improvements

In this paper, we measure the prevalence of JavaScript code
transformations in the wild. In particular, we showcase that
both benign and malicious JavaScript transform their code,
meaning that code transformation is no indicator of mali-
ciousness. In particular, we show that specific techniques and
their usage probability differ between benign and malicious
scripts. For this reason, we believe that our large-scale analysis
and measurement study are useful to the community and will
contribute to implementing new malware detection systems.
To this end, we could consider patterns that are solely present
in malicious files to reduce the number of false positives due to
benign obfuscated samples. However, this extension is outside
the scope of this paper, and we leave it for future work.

VI. RELATED WORK

In this paper, we perform a large-scale analysis of code
transformations in the wild. While obfuscation has been
analyzed before, we provide an in-depth study of specific
transformation techniques and highlight the fact that code
transformations used in malicious code differ from the preva-
lent benign transformation techniques. We first present works
related to transformed JavaScript before focussing on mali-
cious JavaScript and finally on obfuscation beyond JavaScript.

Detecting Transformed JavaScript — In the literature, several
approaches have been proposed to recognize transformed, or
at least obfuscated, JavaScript code. Specifically, Kaplan et
al. [26] introduced NoFus, their bayesian classifier trained over
the AST to distinguish obfuscated from non-obfuscated code.
Similarly, with JSOD, Blanc et al. [3] proposed an anomaly-
based detection system over the AST to detect obfuscated
scripts including readable patterns. Likarish et al. [30] defined
specific features based on detecting obfuscation to recognize
malicious JavaScript. With JStill, Xu et al. [52] leveraged the
fact that malicious JavaScript code has to be deobfuscated
before performing its intended behavior. Thus, they detected
obfuscation given specific deobfuscation functions. Similarly,
Sarker et al. [40] rely on the fact that obfuscation aims at hid-
ing a script’s behavior, meaning that if the results of a dynamic
analysis differ from a static analysis, then the script’s behavior
is obfuscated. Still, none of these approaches focus on the
specific transformation techniques that developers use nor on
benign vs. malicious transformation techniques. While Xu et
al. [51] analyzed the usage of some obfuscation techniques,
they manually reviewed 100 malicious samples. In contrast,
our approach is automated and can analyze JavaScript code
from the wild at scale. Finally, Skolka et al. [44] performed an
empirical study of transformed code on the Web. In particular,
they focus on the tools that developers used to obfuscate or
minify their code, while we dive into (and detect) the specific
transformation techniques. Besides, they analyzed client-side
JavaScript, while we also consider library-based code with

npm, and malicious samples, to identify any difference in
the transformation process, depending on the intent of the
JavaScript samples, as well as their evolution over time.

Detecting Malicious JavaScript — Code transformations,
more specifically obfuscation, should not be confounded with
maliciousness. In the following, we present some tools that
statically detect malicious JavaScript inputs. Rieck et al. intro-
duced CUJO [39], which contains a static detector leveraging
n-grams upon lexical units. With ZOZZLE, Curtsinger et al. [9]
combined a Bayesian classifier with features extracted from
the AST to detect malicious JavaScript. Similarly, Fass et al.
proposed JAST [15], an n-gram approach based on features
from the AST. Later, they introduced JSTAP [14] to go beyond
the syntactic structure and consider control and data flows.

Detecting Obfuscation — Finally, code transformations are
not limited to JavaScript. Specifically, Wermke et al. [50]
focussed on software obfuscation on Android applications,
while Wang et al. [49] studied software obfuscation techniques
on mobile applications from Apple App Store.

VII. CONCLUSION

This paper measures the prevalence of JavaScript code trans-
formations in the wild. In particular, both well-intentioned and
malware developers use code transformations on JavaScript.
Due to the inherently different intent of their scripts, they
transform their code for different reasons, e.g., performance
improvement vs. analysis impediment. These different expec-
tations from code transformations naturally lead to distinct
techniques, which leave different traces in the source code
syntax. In this paper, we study how code transformations
used in malicious JavaScript code differ from transformations
typically used in benign scripts, and how code transformations
evolve over time. To this end, we define a learning-based
pipeline to 1) distinguish regular from transformed scripts and
2) recognize the specific transformation techniques used.

In practice, code transformations are widespread, both for
malicious and benign JavaScript, e.g., 89.4% of Alexa Top 10k
websites contain at least a transformed script. In addition, we
observe that client-side JavaScript is getting more transformed
(minified) over time, meaning that web developers are getting
more concerned about reducing loading times and improving
website performance. In contrast, the most popular transfor-
mation techniques used by malicious JavaScript do not change
over time. Finally, we showcase that transformation techniques
used by malicious JavaScript differ from the prevalent benign
techniques, which are all the more common between client-
side and library-based code.
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