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Abstract

The advent of transformer models in natural language processing (NLP),
particularly extensive transformer models with billions of parameters
often referred to as large language models (LLMs), have made signifi-

cant strides in question-answering (QA) tasks leading to the production

of more convincing natural language responses. Despite these advance-
ments, assessing the reliability of QA systems remains challenging due to
the intricate nature of language and the diverse array of question types
used. This complexity is further compounded by data privacy concerns
derived from the handling of training data and user information in pro-
prietary LLMs like ChatGPT, sparking discussions about the need for de-
centralized and open-source solutions. This research seeks to address these
concerns by investigating and comparing the efficiency of various open-
source transformer techniques within a practical QA context. The perfor-
mance of the models is assessed against ChatGPT3.5-turbo using a unique
approach. This involves the creation and labeling of a custom evaluation
dataset related to the cloud computing domain, specifically Kubernetes
technology and the implementation of novel Machine-Trained Evaluation
Score (MTES), called Estimated Human Label (EHL). The findings show
that among the open-source models studied, the GPT4All model, when
combined with optimal input, competes closely with ChatGPT3.5 in code
commands and situational type of questions, exceeding a 2.5 EHL score

in both cases. Furthermore, it is discovered that merely increasing the in-
put context size proved beneficial only for Flan-T5 and did not consistently
enhance the performance of other models. These insights underscore the
effectiveness of open-source models in QA tasks, significantly contributing
to the advancement and understanding of such systems.
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1. Introduction

In recent times, there has been considerable interest in Question Answering
(QA) systems, leading to their emergence as a prominent area of study in the
field of Natural Language Processing (NLP). These systems have become
essential components in applications involving human interaction, such as
customer service chatbots and virtual assistants like SIRI or Alexa [1], [2].

The main objective of a QA system is to generate articulate responses in
natural language that satisfactorily address the queries presented [3]. How-
ever, this objective extends beyond mere provision of answers explicitly
stated in the text. As posited by Saeidi et al. [4] and Mensio et al. [5], nu-
merous practical QA problems necessitate comprehending the text not only
for the direct answer but also for deriving the response using the system’s
background knowledge and guidelines provided within the text. This often
requires the system possessing reasoning capabilities and comprehension
of the deeper meanings and nuances within a query. This view is further
endorsed by Mohnish et al. [6] as they note that the raw response from a
QA system is often inadequate. Indeed, Strzalkowski et al. [7] observe that
users value extensive information over a mere direct answer, even when the
query is unambiguous.

Recently, modern NLP approaches such as transformer models have been
utilized to tackle the Question Answering task [8]-[10]. Unlike traditional
sequential models that process input elements one-by-one, transformer’s
self-attention enables the model to compute the importance of all input se-
quence elements relative to each other. By doing so, it can capture meaning-
ful relationships between distant elements, which is crucial for handling
complex language tasks [11], [12]. Moreover, Research by Izacard et al.
[13] demonstrates that incorporating supplementary knowledge through re-
trieval in the input of transformer models can lead to significant QA perfor-
mance improvements. While there have been attempts to explore the impact
of input passage characteristics on the effectiveness of responses generated
by modern QA systems [8], this field of research is still in the process of
development.

The progress in computational capabilities has ushered in an era of ex-
tensive transformer models with millions or even billions of parameters
[14]-[16]. Frequently known as Large Language Models (LLMs) [17], these
models are trained and fine-tuned on massive datasets, enabling them to
produce more convincing and fluid natural language due to their expanded
scope [18]-[20]. Proprietary LLMs have become robust solutions for NLP
tasks, delivering remarkable results [10], [13], [16], [21]. Specifically, since
2022, OPENAI’s ChatGPT 3 and its successors have garnered considerable



interest, witnessing one of the fastest growth rates in user bases in con-
sumer applications, with over 100 million active users [22]. However, is-
sues around data privacy have been raised, particularly regarding the train-
ing data [23] and how user information is handled [22]. Based on Chat-
GPT’s privacy policy [24], it gathers diverse data including user interac-
tions, browser configurations, IP addresses, and preferred content. It also
monitors users’ online activities across multiple websites over time. The
policy also indicates that in certain circumstances, personal data may be
divulged to third parties without prior warning, except where legally re-
quired. Additional privacy problems with ChatGPT have been underlined
by experts, such as glitches revealing users’ conversation histories [25]. The
CEO of OpenAl has acknowledged these issues and assured to address
them, yet vulnerabilities to cyber and differential privacy attacks have been
spotted [26]-[28], endangering users’ private information [22]. In light of
these issues, it is vital to focus on investigating decentralized methods and
building open-source (OS) solutions for NLP tasks that provide superior
privacy safeguards.

Assessing the effectiveness of QA systems is a challenging task due to
the intricacy of language, the wide range of question types employed for
testing, and the possibility of varying acceptable responses [1], [29]. Past
studies have mainly concentrated on evaluating QA systems by measuring
N-grams metrics between their answers and a designated "gold answer"
considered to be the correct response [9]. However, the assessment of QA
systems’ reliability remains uncertain due to their inherent complexity. Con-
sequently, determining the optimal approach for evaluating QA systems is
still unclear [1].

The aim of this research is to investigate and contrast the efficiency of
various OS transformer techniques, specifically the Extractive Pre-trained
Transformer (EPT), Generative Pre-trained Transformer (GPT), and Text-to-
Text Transfer Transformer (T5) within the context of a practical QA task.
These models will be evaluated against the most recent publicly available
LLM by OpenAl: ChatGPT3.5-turbo. The goal is to determine how well OS
models can compete against proprietary models. Additionally, this research
is interested in exploring the impact of modifying the input context size
on the quality of outputs generated by each model. The guiding research
questions (RQ) for this study are:

RQ1: Which OS transformer method, EPT, GPT, or T5, demonstrates
superior performance when answering the proposed domain questions in
overall and by each type of question?

RQ2: Can any of the studied OS transformer techniques compete in
terms of performance with ChatGPT3.5-Turbo when answering the pro-
posed domain questions in general and by each kind of question?

RQ3: Is increasing the size of the input context always beneficial for each
method in terms of performance?
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The selected domain for simulating a real-world QA task is cloud com-
puting, focusing on questions related to Kubernetes technology. The QA
system uses the entire Kubernetes public documentation, enriched by real-
time searches on Google, as its primary source of knowledge. To evaluate
the performance of each approach, a self-proposed Machine-trained evalua-
tion score (MTES) called estimated human label (EHL) is computed using a
Machine Learning (ML) classification model. This model is trained using N-
gram-based metrics, which analyze continuous sequences of n words. Ad-
ditionally, human experts labeled a self-proposed, carefully balanced dataset
that encompasses diverse question categories, including close-ended, open-
ended, conceptual, situational, command-based, comparative, procedural,
and multiple-answer questions. This research endeavors to contribute to
the advancement of QA systems powered by OS models and furnish valu-
able insights into the factors influencing their performance. By combining
human expertise and a MTES, it strives to offer meaningful findings and
improve our comprehension of QA systems.

1.1 Literature review

A QA system in the domain of information retrieval represents a task within
NLP that is designed to offer responses to queries posed by humans in natu-
ral language. It achieves this by either leveraging a well-structured database
or using a compilation of documents with unstructured data [30]-[33].

The quest for discovering appropriate responses in natural language
to provided questions has gained considerable focus in recent times [34]
Nonetheless, this concern is not a recent one, the field of NLP emerged in
the 1950s as the intersection of Artificial Intelligence and Linguistics [35].
The concept of QA originated during that era with Alan Turing’s "Imitation
Game" or "Turing Test," which aimed to facilitate human-machine interac-
tion through a natural language interface [36].

In the 1960s and 1970s, Early systems like BASEBALL [37] and LUNAR
[38] allowed users to retrieve information from databases using natural lan-
guage queries. However, they were limited by a lack of domain-specific in-
formation. As research progressed, linguistic analysis and statistical meth-
ods were incorporated to better understand question requirements [39], [40].

With the appearance of the web as a vast source of information, QA sys-
tems started using web data for answering questions in the 2000s [41], [42].
In 2016 Mishra et al.[43] expanded the knowledge base of QA systems using
linguistic and rule-based approaches to retrieve answers and emphasized
the utilization of the semantic web in QA tasks.

The attention mechanism, first proposed in 2015 by Bahdanau et al. [11],
has had a significant impact on computerized natural language processing.
This approach has been widely adopted across various NLP tasks, and its
effectiveness was further improved in 2017 with Vaswani et al. [12] introduc-
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tion of self-attention in transformer networks. Attention mechanism have
made possible to introduce a new generation of NLP neural algorithms such
as EPT [44], GPT [14], or T5 [15]. This breakthrough has revolutionized the
NLP field, providing a powerful new framework for natural language un-
derstanding tasks.

1.2 Theoretical framework

1.2.1 Question answering framework

The configuration of QA methods can differ across different systems, tai-
lored to the specific demands of each QA task. Nevertheless, a fundamental
operative framework for a QA system can be organized into two main com-
ponents: Knowledge Source and Question Answering Algorithms [1]

1.2.2 Knowledge source

A knowledge source in general is a repository that stores data related to
a QA system in a structured (databases), unstructured (free texts) or semi-
structured (such as XML-annotated texts) format [1], [45]. In terms of their
knowledge source, modern QA systems can be divided into two categories:
Open-domain question answering (ODQA) and closed-book question an-
swering (CBQA). ODQA systems, also known as Information Retrieval mod-
els, have the ability to access external texts or sources in order to retrieve rel-
evant context and generate answers based on the extracted information[46].
Indeed, Modern ODQA systems leverage the internet, specifically search
engines like Google Search, to consider the entire web as an extensive infor-
mation repository [47]. On the other hand, CBQA, also referred to as Knowl-
edge Based Question answering, aims to answer open-domain questions di-
rectly without relying on external knowledge sources. Instead, CBQA uti-
lizes the stored parametric knowledge within pretrained language models

(LMs) [16], [18], [48].

Recently, there has been a rise in a novel concept known as Generative
Question Answering [13], [49]. This approach involves enhancing large gen-
erative models like GPT and T5 models, which were initially utilized with-
out incorporating extra knowledge [14], [15], with a given source of knowl-
edge as input. This approach enables generative models to leverage their
strong ability in reading comprehension tasks [15].

1.2.3 Question answering algorithms

QA systems heavily rely on QA algorithms, which are crucial for effectively
processing the provided context (such as a passage, document, or para-
metric knowledge) and query, and subsequently generating the anticipated
answers [1]. In general, a QA algorithm consists of two essential compo-
nents: a knowledge retriever and an answering model. These components
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work together to retrieve relevant information and formulate appropriate
responses in QA systems [50].

1.2.3.1 Retriever

The main objective of a document retriever is to process a query and fetch
the most relevant documents. These retrieved documents are then ranked
according to their similarity score to the given query [1]. Several meth-
ods have been utilized in recent years to compute the cosine similarity be-
tween the query and a document corpus. These methods include TF-IDF
[51], Okapi Best Matching (BM25) [52], and dense embedding vectors gen-
erated by neural networks (e.g., Dense Passage Retrieval and sentence em-
beddings) [50], [53], [54]. Furthermore, when dealing with a large set of
knowledge documents, it has been beneficial to divide the documents into
shorter passages with some overlap to improve response performance [8].

1.2.3.2 Answering model

The primary purpose of the Answering model is to respond to a given ques-
tion by either extracting relevant information or generating a response in
the form of free text [50]. This model can take both the question and a given
knowledge source as input in order to provide an answer. The primary ob-
jective of these models is to encode the relationship between the question
and the given context, handle long-range dependencies during the answer
processing modules, and capture the concepts and hidden patterns of hi-
erarchical features in a comprehensive way, in order to produce accurate
responses [1].

1.2.3.2.1 Language models and large language models

Language Models (LMs), which are statistical models that assign prob-
abilities to word sequences, play a crucial role in various natural language
processing tasks [17]. Recent advancements in neural-network based LMs
have led to the development of large model architectures with millions or
even billions of parameters [14]-[16]. These models are trained on exten-
sive datasets, including nearly a terabyte of English text, and are commonly
referred to as Large Language Models (LLMs) [17]. The increased scale of
these models enhances their capacity to generate coherent and fluent natu-
ral language [18]-[20].

LLMs are usually assessed based on the quantity of parameters they
possess, with larger quantities often considered superior. The parameter
count serves as a reflection of the model’s size and complexity, enabling
it to handle, learn from, and create more data. Nonetheless, a higher pa-
rameter count demands greater computational and memory resources, and
introduces a higher likelihood of either overfitting or underfitting the data.
During training, these parameters are fine-tuned or revised through an op-
timization process which seeks to reduce the discrepancies between the pre-
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dicted and actual outputs. By modifying these parameters, the model’s effi-
ciency and precision in performing a specific task or in a particular domain
can be enhanced [55].

1.2.3.2.2 Transformer models

Transformer model uses a neural network architecture that relies on a
self-attention mechanism [12]. This allows the model to discern the rele-
vance of different text elements for a given task, letting it focus on specific
aspects of the text. In essence, attention determines the relative importance
of an input sequence for an output by applying a dynamically learned score
to each element of the input sequence.[56]

1.2.3.2.3 Extractive pre-trained transformer

Along with the architectural changes, pre-training has also played an
essential role in performance improvement [56]. While pre-training is ex-
tremely resource-intensive, the resulting model, which obtains a general
language representation, is often made publicly available to the NLP com-
munity. The same model can thus be fine-tuned on different downstream
tasks, which is cheap in training time and data size, therefore affordable
even in low-resource scenarios.

Bidirectional Encoder Representations from Transformers (BERT), is a
model based on the original transformer architecture that is pre-trained us-
ing two strategies: Masked Language Model (MLM) and Next Sentence Pre-
diction (NSP). MLM involves random masking of some input tokens and
then predicting these tokens based on their surrounding context. NSP, on
the other hand, is a binary classification task where the model determines
whether two sentences are consecutive or not. [44], [56]. This model dif-
fers from its predecessors by employing the Transformer’s architecture [12],
to interpret text both forwards and backwards, leading to a more nuanced
understanding of context [8]. BERT has influenced the development of sub-
sequent models, such as RoBERTa [57] and ALBERT [58], which have fur-
ther exploited BERT’s features. Pretrained transformer models have been
effectively fine-tuned and deployed for QA tasks in the past few years.[8],
[%].

Robustly optimized BERT approach (RoBERTa), is an EPT model strat-
egy that uses dynamic masking, full sentences without NSP (Next Sen-
tence Prediction) loss, larger mini-batches, and an expanded vocabulary for
training. It builds upon the BERT model, modifying key hyperparameters,
removing the next-sentence pretraining objective, and using much larger
mini-batches and learning rates. This implementation is similar to Bert-
Model, but with a minor tweak in embeddings, and a configuration suit-
able for RoBERTa pretrained models [57]. Among the various BERT models,
RoBERTa is recognized as one of the most stable, delivering the highest F1
and EM scores for extractive QA tasks [56].
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1.2.3.2.4 Text to text generation

Text-to-text generation is an encoder-decoder type of ML framework
used widely in diverse natural language processing tasks. They are con-
structed on transformer structures that utilize attention mechanisms [12].
A prime example of these models is Google’s T5, which revolutionizes all
NLP tasks by morphing them into text-to-text tasks, hence offering a stan-
dardized solution for a variety of tasks [15]. T5 simplifies its usage across
diverse tasks by redefining all NLP tasks in a text-to-text manner. T5 un-
dergoes training on a vast collection of text, aiming to forecast the ensuing
word in a sentence during its pre-training stage. This phase is succeeded by
a fine-tuning stage tailored for particular tasks, which permits the model to
assimilate from a broad spectrum of data before focusing on a distinct task,
thus achieving superior outcomes across numerous benchmarks.

FLAN-T5, a development of the T5 model, is a LLM that’s been specially
refined through instruction tuning [59]. Its enhancements deliver robust
zero-shot, few-shot, and ‘Chain of Thoughts’ capabilities. Leveraging the
strengths inherent in generative models, FLAN-T5 has been effectively uti-
lized in question answering tasks, demonstrating satisfactory performance

[13], [34].

1.2.3.2.5 Generative pretrained transformers

The use of generative pretrained transformers for text generation has
been widely recognized, particularly with models such as GPT [14], GPT-2
[60], and GPT-3 [16]. These models utilize a transformer framework and
operate using a dual-phase approach: first, pretraining, then fine-tuning.
During pre-training, they are taught on massive volumes of untagged text
to foresee the subsequent word in a string, allowing them to comprehend
contextual correlations. After this comes fine-tuning, where the models
are educated on specified tagged data for further tasks [14]. GPT models
have demonstrated exceptional performance in question-answering exer-
cises [48], with GPT-3 outperforming its predecessors in terms of contextual
enhancement [13], [21].

Currently, numerous recognized LLMs are in operation, with the biggest
ones having more than a hundred times the parameters of GPT-2 (1.5B).
Nonetheless, these models are typically the guarded intellectual assets of
big corporations, and are restricted behind a commercial API, accessible
only upon application, or completely unavailable for external use [61]. Lately,
there has been significant progress in making OS GPT models such as PT-
Neo (2.7B parameters) [62], GPT-J-6B [63], Pangu--13B [64], GPT-NeoX-20B
[61], LLama (7-65B parameters) [65] and the most recent GPT4All (6,7,13B)
[66]-[68] publicly and freely accessible.

1.2.3.2.6 Promt engineering

Prompt engineering is growing in significance as a necessary compe-

10
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tence for proficient interactions with LLMs [69]. Prompts serve as com-
mands to LLMs, guiding them to follow certain rules, automate functions,
and deliver specific quality and quantity of output. Moreover, prompts rep-
resent a unique kind of programming that facilitates the personalization of
the LLM’s responses and interactions. They can further optimize or fine-
tune an LLM’s performance in designated tasks [9].

1.2.3.2.7 Parameter-efficient fine-tuning

As LLMs continue to expand in size, complete fine-tuning becomes too
demanding to be executed on consumer-grade hardware. Moreover, the
costs associated with storing and deploying separately fine-tuned models
for each specific task become exceedingly high, given that these fine-tuned
models are identical in size to the original pretrained model. The purpose of
Parameter-Efficient Fine-tuning (PEFT) techniques is to mitigate these two
issues. [70]. PEFT is a strategy designed to facilitate the execution of a new
task by a model, through minimal adjustments. In this paradigm, a pre-
trained model undergoes fine-tuning through updates to a limited number
of added or chosen parameters. In simpler terms, PEFT strategies only ad-
just a small amount of additional model parameters while preserving most
of the pretrained LLMs” parameters, significantly reducing both computa-
tional and storage demands. [71] PEFT techniques allow for performance
levels comparable to full fine-tuning but require only a fraction of the pa-
rameters to be trainable [70].

Among the most commonly employed PEFT methods is the Low-Rank
Adaptation (LoRA) technique. LoRA permits the training of some dense
layers in a neural network indirectly by optimizing the rank decomposition
matrices of the dense layers’ alterations during adaptation, all while keep-
ing the pretrained weights static. [72]

1.2.3.2.8 Hugging Face OS hub

Hugging Face (HF) [73] functions as an extensive OS Deep Learning
model repository, acting essentially as a collaborative platform where dif-
ferent teams can distribute their pre-trained models [74], [75]. It houses the
broadest and most diverse range of pre-trained models and datasets, with
the count surpassing 60,000 [76]. HF is highly recognized for its develop-
ment of Transformers, an OS deep learning framework. This framework
provides APIs and tools for downloading top-tier pre-trained models and
further fine-tuning them to enhance performance.

1.2.4 Evaluation of QA systems

Numerous datasets have been devised to benchmark QA systems. These
datasets are diverse in their structure, content, number of questions, and
corresponding responses. The creation of a high-quality dataset specifically
for generative question answering is a vital progression that could con-

11
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siderably expedite the evolution of QA systems [1]. Popular QA datasets
can be categorized according to the type of target responses and formu-
lated queries. Questions can be sorted into different classifications primar-
ily based on their complexity, response nature, or necessary methods for
answering [43].

Furthermore, the richness of natural languages in terms of words and
synonyms allows for an almost limitless variety of output sentences, each
capable of encompassing diverse phrases with significantly different inter-
pretations. Given this broad range of language expressions, a QA system’s
generated output may feature various forms of ambiguities, such as lexical,
semantic, syntactic, and so forth [1].

In order to ascertain the quality of a QA system’s output (generated / predicted
answer), it needs to be assessed against a provided reference, also known as
ground truth, gold answer, or labeled response [77], [78]. Yet, due to the
complexity of natural language, the output is a structured entity rather than
a singular value, complicating the evaluation process. Consequently, a mul-
titude of evaluation scores have been proposed [77], [79]-[81]. These scores
can generally be divided into two groups [1]: Human Centric Evaluation
Scores (HCES) and Automatic Evaluation Score (AES).

1.2.4.1 Human centric evaluation score (HCES)

HCES metrics depend on a group of individuals, such as experts or spe-
cialists, to evaluate the results of a QA system using specific guidelines and
criteria, including the adequacy, fluency, and coherence of a text [1][1]. De-
spite being recognized as the premier evaluation method that delivers the
most reliable scores, HCES metrics are susceptible to human errors arising
from subjectivity and bias in judgement.

The implementation of HCES can take two forms: using a nominal scale
where an evaluator assesses each pair of predicted and expected questions
[9], or by ranking a set of question and answer pairs from highest to low-
est quality [10]. To validate the consistency of the evaluation or annota-
tions, HCES metrics are subjected to a reliability measure known as inter-
annotator agreement (IAA) [82]. Generally, a high IAA is preferred as it
measures the consensus among multiple evaluators regarding the quality
ranking of an output.

1.2.4.2 Automatic evaluation score (AES)

AES metrics utilize algorithms to automatically evaluate the performance or
quality of machine-generated outputs or predictions, thus removing the re-
quirement for human intervention. In the context of a Question-Answering
task, this involves the quantification of discrepancies or similarities between
the machine-generated response and the provided reference response. Ad-
ditionally, AES approaches are a more cost-effective alternative compared
to HCES, mainly because they don’t need domain specialists. AES metrics

12
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are particularly useful in large-scale tasks that have a dynamic element [83].
It's noteworthy that the scores derived from AES typically align well with
those given by human evaluators [78]. AES metrics do not necessitate any
prior training because its scores are independent of predetermined param-
eters. This parameter-free aspect makes it user-friendly, contributing to its
widespread popularity. There are several subcategories within this system,
determined by the level of operation among text units [1]:

¢ Based on characters.
¢ Based on words.

* Based on embeddings.

1.2.4.2.1 Exact match (EM)

The EM score assigns a value of one if the predicted answer (R) matches
exactly with the gold answer (A), and a value of zero if they are different. In
other words, EM is a binary score that only takes values of either 0 or 1.

1.2.4.2.2 F1-score

The Fl-score is designed to establish the harmonic mean, equally priori-
tizing recall and precision. It gauges the word correspondence between the
predicted answer and the actual (gold) answer in a more adaptable manner
than the EM approach, as it also facilitates a balance between precision and
recall. However, it doesn’t account for the similarity in semantic content
between two correct answers that are semantically different. The Fl-score is
computed as follows [1]:

Fl1—>2 Precision - Recall
N Precision + Recall

Where:
Recall — number of n-grams in alignment between A and R
B total count of n-grams in R
. number of matching n-grams between A and R
Precision =

total count of n-grams in A

1.2.4.2.3 Bilingual evaluation understudy (BLEU)

BLEU [84], is a commonly employed evaluation metric for machine-
generated translations that determines the quality of these translations by
comparing them to one or more reference translations. It quantifies a simi-
larity score by tallying the number of matching n-grams between the machine-

13
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produced and reference translations, with translations having more coin-
ciding n-grams getting higher scores. The process of obtaining the BLEU
score involves computing the precision of n-grams in the machine transla-
tion relative to the reference translations, imposing a brevity penalty, and
then calculating the geometric mean of these precision scores.

BP = min(1,exp(1 — g))

BLEU = BP - exp (Zwi : 108(771'))
i

Where: Length Penalty (BP) is the length penalty is a brevity penalty that
adjusts the BLEU score to favor translations or summaries that are closer
in length to the reference translations. Length of translation (r) and Length
of output (c) are the total length of the reference translations and machine-
generated outputs respectively. Precision (p) is calculated by dividing the
number of matching n-grams in the machine-generated output by the total
number of n-grams and weights (w) (usually 0.25) are assigned to each n-
gram size

1.2.4.2.4 Recall-oriented understudy for gisting evaluation (ROUGE)

The ROUGE metric was initially developed to evaluate the quality of
summarizing systems. The metric juxtaposes machine-generated summaries
with reference summaries to assess how effectively the generated summary
encapsulates significant information from the references. It uses calcula-
tions involving n-gram overlap, word sequences, and various other features
for this purpose. The frequently utilized metrics are ROUGE-N, measuring
n-gram overlap, and ROUGE-L, identifying the longest common sequences
of words, irrespective of their order [85].

1.2.4.2.5 Metric for evaluation of translation with explicit ordering (ME-
TEOR))

METEOR, in contrast to BLEU, is grounded in the harmonic mean with
a greater emphasis on recall over precision. It is explicitly structured to
operate at the sentence level rather than the corpora level [1]. METEOR
serves as a measurement tool for assessing machine-generated translations
by comparing them with reference translations, factoring in both precision
and recall. The METEOR score is derived by tallying matching unigrams,
applying stemming, assessing word order similarity, and integrating preci-
sion, recall, and word order through a weighted harmonic mean. [86].

14
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p_ @
|w|
w
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c 3
Penalty = 0.5 - <w_)

n

Where : (w) is the number of mapped unigrams in A that are also found in
R, ( w1 )is the total number of unigrams in A and ( |w’| ) is the total num-
ber of unigrams in R. (c) is the number of chunks and (w;,) is the number of
mapped unigrams.

1.2.4.2.6 Sentence Transformers

Sentence Transformers is a Python-based framework offering cutting-
edge embeddings for sentences, text, and images. It includes Sentence-
BERT (SBERT), a modified version of the pre-trained BERT network, which
leverages siamese and triplet network structures to generate semantically
significant sentence embeddings that can be compared using cosine similar-
ity. Sentence Transformer is intended to serve as an encoder for sentences
and brief paragraphs. It takes an input text and produces a dense vector of
a certain dimensionality that encapsulates semantic information. Sentence
vectors’ cosine similarity can be computed and employed for various tasks
such as information retrieval, clustering and evaluation of QA systems[1],
[87].

1.2.4.3 Machine-trained evaluation scores (MTES)

While there have been numerous endeavors to create automated evaluation
metrics for machine translation with the goal of lessening or eliminating
the need for human assessment, the automatic evaluation of QA systems
remains a complex task. This is attributed to the fact that traditional word-
overlap metrics such as BLEU or ROUGE are deemed biased and don’t align
well with human evaluations. HCES can be costly, labor-intensive, and of-
ten necessitate domain expertise, rendering them unsuitable for tasks gen-
erating large data outputs or exhibiting dynamic behavior [1] In order to
address these challenges, MTES combines HCES and AES with the aim of
automatically assessing the score of a predicted response by comparing it to
a gold-standard answer. It achieves this by implementing prediction mod-
els that utilize AES metrics as input parameters and human labels as output
[1]. This approach highlights the existence of a certain level of correlation
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between various AES metrics and human judgment in question answering
scenarios [9].
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2. Data

2.1 Source of knowledge data

The proposed knowledge source for the QA system consists of an unstruc-
tured text file primarily comprising the complete Kubernete’s documenta-
tion. In addition, real-time search queries are conducted on Google to ad-
dress any potential questions that are not covered in the original Kuber-
nete’s documentation file [47]. A systematic web scraping process is exe-
cuted to extract the complete Kubernete’s documentation from it’s official
documentation website[88]. This process involves collecting text data from
706 web links, which are then merged into a single text file, resulting in a
plain text document with a total of 5,495,422 characters. Real-time Google
searches are performed using the preprocessed incoming question as the
search input. The complete textual information from the top three search
results (if available) is extracted and appended to the foundational Kuber-
nete’s documentation text file.

Following the text cleaning guidelines of Anandarajan et al. [89], the
incoming question and the combined knowledge text file undergo the fol-
lowing preprocessing steps: conversion to lowercase, removal of HTML
tags, elimination of NLTK English stopwords, removal of double spaces,
and elimination of line breaks. These preprocessing steps ensure that the
data is in a suitable format for utilization by the QA system.

2.2 Evaluation dataset

To comprehensively assess the different QA system methods examined in
this project, a balanced dataset encompassing various types of questions is
constructed [1], [43]. This dataset consists of 28 queries concerning Kuber-
netes technology, a collection sourced from typical job interview questions,
frequently asked questions on Stack Overflow[90], and straight from Kuber-
netes documentation. Each item in the dataset comprises a question, its cat-
egory, and a reference answer. The quality of questions and answers is veri-
fied by cloud engineer professionals. They also rephrase them to prevent ex-
act matches with internet searches, aiming to create a more realistic QA task
where the question may not be identical to those existing in the knowledge
database. The dataset consists of four questions and respective answers in
each of these seven categories: close-ended, open-ended, conceptual, sit-
uational, command-based, comparative, procedural, and multiple-answer.
The complete proposed evaluation dataset is available in Appendix A.
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3. Models

3.1 Deep Set: RoBERTa-base-Squad2

RoBERTa, among different BERT models, is considered to be one of the most
consistent, providing top-tier results for extractive question-answering as-
signments. However, the RoBERTa model requires a diverse and extensive
set of question and answer training examples for accurate implementation
in QA tasks [56]. To overcome this limitation, the EPT model “deepset/roberta-
base-squad2” from the HF hub [73] is chosen as the OS EPT answering
model for this project. This model has a total size of 497mb and consists of
123M parameters. It is pre-trained on the SQuAD dataset [91], which com-
prises over 100,000 examples of questions formulated by crowdworkers on
various Wikipedia articles [91]. Due to its extensive range of examples, the
SQuAD dataset serves as a powerful benchmark for training and evaluating
general-purpose extractive QA ML models.

3.2 Google: Flan-t5-x1

The “google/flan-t5-x1” model, which is a generative T5 fine-tuned by Google
and available through the HF hub [73], is selected as the OS T5 response
model for this project for two primary reasons. Firstly, it achieves an op-
timal balance between size, complexity, and the computational resources
required. Secondly, it has proven its effectiveness in question-answering
tasks by showcasing commendable performance [13], [34][11,12]. This Flan-
T5 checkpoint model has a size of 11.4 GB and boasts a total training com-
plexity encompassing 3 billion parameters.

3.3 Nomic Al: GPT4All-LoRa (7B)

The GPT model “nomic-ai/gpt4all-lora”, available in the HF hub [73], is
chosen for this experiment as the OS GPT response model due to its ability
to work fully locally and independently, without any API key connection.
This feature ensures the handling of user data is free from privacy concerns,
setting it apart from the majority of publicly and freely accessible power-
ful GPT models. GPT4All-LoRa model is a fine-tuned version of a LLaMA
7B instance, trained via the PEFT - LoORA method on a million carefully se-
lected prompt-response pairs, with the GPT-3.5-Turbo OpenAl API utilized
as the response model [66]. The entire GP4All model occupies 26.94 GB and
embodies a complexity of 7 billion parameters.
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3.4 Open Al: ChatGPT 3.5-turbo

3.4 Open Al: ChatGPT 3.5-turbo

ChatGPT 3.5-turbo, which is OpenAl’s most capable model accessible to the
public, has a training complexity of 175B parameters. It has been specifically
optimized for chat applications using reinforcement learning techniques,
where reward models are trained through human comparisons [92]. This
proprietary benchmark model has been opted for comparison purposes in
this study because it consistently delivers outstanding results [10], [13], [16],
[21] and has experienced a recent surge in popularity [22].

3.5 Sentence transformer: all-MiniLM-L6-v2

The model “sentence-transformers/all-MiniLM-L6-v2” from the HF hub [73]
is grounded in SBERT [87] and has been trained on a corpus of 1.17 billion
sentence pairs. This model translates sentences and paragraphs into vec-
tors in a 384-dimensional dense space, making it beneficial for various tasks
such as semantic searches and clustering. In this project, the model is essen-
tial as it serves as the core component of the knowledge retriever for the QA
systems. Additionally, it plays a significant role in the evaluation process
for comparing answers. The selection of this model is based on its ability
to perform semantic extraction tasks, prioritizing the semantic implications
rather than solely relying on word frequency. This characteristic reduces
the susceptibility to repetitive themes and concerns, particularly when over-
lapping parameters are introduced or unintentional duplication of content
occurs within the knowledge source.
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4. Methodology

This study consists of two main stages. The initial phase focuses on the
approach and methodology employed to address the task of QA. The sub-
sequent phase is dedicated to assessing the effectiveness of these method-
ologies with a proposed evaluation framework.

4.1 Suggested QA system

The methodology employed in this work follows the QA system framework
proposed by Farea et al. [1]. The QA system encompasses three steps. The
initial step is the extraction of relevant knowledge, responsible for provid-
ing a useful context that aids the answering model in responding to the
presented question. This process can be adjusted by altering various pa-
rameters, which results in different context lengths and compositions. The
following step involves producing a response using a specified QA model.
Several models and hyperparameters can be employed at this stage. Post-
processing of the model’s response may also be required to ensure that the
final answer is coherent and clear. The last step involves the construction
of an interface that acts as a bridge between users and the QA system. This
allows for an interactive exchange of information where the user can pose
questions and receive answers. Figure 4.1 provides a diagrammatic repre-
sentation of this proposed QA system framework.

4.1.1 Retrieval of knowledge

Considering the vast amount of knowledge available (surpassing 5M char-
acters) and the limitations of existing response models in terms of context
size, it is necessary to employ a retrieval operation to identify the specific
passages that are most likely to contain relevant information for responding
to the given question. This process begins by dividing the knowledge source
into segments or chunks. Various variables can influence the final context
to be extracted, including the selected length of each segment (measured
in character count) and the indicated degree of overlap between segments.
The latter is crucial in capturing any potential answers that might be split
across segments.

After the enriched knowledge source has been partitioned, the next step
involves identifying the most relevant segments for answering the question.
In this stage, the Sentence Transformer model, specifically "all-MiniLM-L6-
v2," calculate the sentence embeddings for each segment and the processed
query. To enhance computational efficiency, the sentence embeddings for
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4.1 Suggested QA system

User's raw question Processed query Internet search Enriched source Selected top n Answering model Model raw response Final response
of knowledge passages

Knowledge base
(Kubernetes documentation)

Figure 4.1: The flow diagram of the proposed QA System framework. Initially,
a user submits a question that is then refined to enhance its quality. Follow-
ing this, the improved question is employed to scour the internet for pertinent
information. This data is incorporated into the original system’s knowledge
base to create a more comprehensive knowledge resource. This enriched in-
formation source is then divided into various segments, and the sentence em-
beddings of these segments, along with the question, are calculated. The most
relevant segments (top-n most similar to the question) are chosen and inte-
grated to serve as input context along with the refined user question for the
response model. Finally, the response from the model is cleaned to ensure it’s
quality and is presented as the system’s ultimate response.

the knowledge base are computed only once initially, while the embeddings
for the internet passages are recalculated each time the query is modified.
Subsequently, all sentence embeddings are combined, and the segments are
ranked based on their cosine similarity with the query embeddings. The

" "

number of top "n" segments chosen also can be adjusted to generate differ-
ent combinations of context. Once the top "n" segments have been obtained,
they are merged into a single text block that serves as the context for the
response model. This context block is prone to contain the answer to the

user’s question, as it is semantically associated with the given question.

4.1.2 Answering model

In this stage, both the query and the extracted relevant context are inputted
into the answering model. GPT and T5 models require an additional prompt
that guides how to utilize the context and question for formulating a re-
sponse. Figures: 4.2, 4.3 and 4.4 illustrates the utilization of such prompts.
The choice of model and specific hyperparameters are the variables in this
scenario. RoBERTa and T5 use default settings, while for GPT models, the
‘temperature’ parameter is set to 0 based on the Ippolito et al. [93] study.
This study suggests that a lower temperature value generates grammati-
cally correct and deterministic text, indicating less randomness or variabil-
ity in the responses. After receiving the unprocessed text output from the
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Prompt: Use the following pieces of context to answer the question at the
end. If you don’t know the answer, just say that you don’t know, don’t try
to make up an answer

Context: {context}

Question: {question}

Answer:

Figure 4.2: The prompt employed to correlate the context and query in the
input of the Flan - T5 model. This particular prompt has been found to be the
most effective with this model. An extra assertion has been incorporated to
avoid the system generating inaccurate (hallucinatory) answers.

model, a cleaning operation is performed to remove any double spaces, line
breaks, and non-alphanumeric characters to ensure the quality of the re-
sponse.

Prompt: Use the following pieces of context to answer the question at the
end.

### Context: {context}

#Ht Question: {question}

### Response:

Figure 4.3: The prompt that is used to link the context and the question in the
input of the GPT4All model. This prompt has been identified as the most ef-
fective for this model as it triggers the largest percentage of provided answers.
The usage of the triple "#symbol, specified for this model, is also highlighted.

Prompt: You are a chatbot Your purpose is to assist users in how to use
Kubernetes Use the following pieces of context to answer the question at
the end. If you don’t know the answer, just say that you don’t know, don’t
try to make up an answer

Context: {context}

Question: {question}

Expand with your own knowledge the answer and try to give examples if
required.

Answer:

Figure 4.4: The prompt utilized for coupling the context with the question in
the input of ChatGPT 3.5-turbo model. By integrating the role of being a chat-
bot and broadening responses, it greatly increases the percentage of successful
answers while mitigating hallucination effects.

4.1.3 Interface

In order to establish a communication bridge between users and the QA
system, an interface is developed using the Gradio Python library for this
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4.1 Suggested QA system

project. Gradio is an efficient tool for demonstrating ML models through
an accessible web interface. Figure 4.5 offers a glimpse of the constructed

interface.

GPT4AIl Chatbot

@ What is kubernetes?
@ Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications.
& What is the difference between Docker Swarm and Kubernetes in terms of complexity?

@ The main difference between Docker Swarm and Kubernetes lies in their levels of complexity. While both platforms have similar features such
as auto-scaling and load balancing, Kubernetes is considered much more complex than Docker Swarm due to its advanced capabilities and

Clear chat

= Examples

What is kubernetes?  What does GKE stands for?  Which command is used for producing keys and CSRs for all control-plane certificates and kubeconfig files?
What are the three modes of Pod Security Admission? ~ What is the difference between Docker Swarm and Kubernetes in terms of complexity?

What are the steps for setup a Kubernetes cluster using Kubeadm?

How could a multinational company with an extensively distributed system, comprising of numerous data centers, virtual machines, and a vast workforce involved in diverse
tasks, utilize Kubernetes to maintain consistent task management?

-

Figure 4.5: A snapshot of the built interface. It shows a textbox for user
queries, an interactive chat-like display presenting the system’s responses,
and examples of the types of questions that can be posed to the system.
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4.2 System evaluation:

This research utilizes a thorough process, modeled after the work of Chen et
al. [9], to assess the effectiveness of each approach. However, it goes a step
further by incorporating a ML model designed to calculate the estimated
human label (EHL) MTES, the process is illustrated in Figure 4.6.

Firstly, responses from each model are generated using various context
input combinations. From these generated responses, a subset is selected
and labeled by human experts based on specified guidelines. Following
this, the AES metrics for this subset are computed, and a ML model is
trained using these metrics as predictors and the label as the response vari-
able. This is done with the intention of creating a model that can score the
remaining responses in a way that mimics human scoring (EHL). Finally, a
comprehensive evaluation of these outcomes is conducted.

ER= t =
=
I I O o B |||I

C ion of all subset Subset human AES from subset Trainin ML for ML human label Results
models responses extraction labeling calculation human labeling prediction in all the presentation
pi r

Figure 4.6: Flow diagram of the evaluation process conducted.

4.2.1 Combinations’ responses

To evaluate the performance variations of each model with different context
sizes, certain retriever parameters are adjusted to generate different input
combinations. The modified parameters include the size of the passage,
which could be 1000, 2000, 4000, or 8000 characters, and the number of top-
n passages that are most similar to the query. For the latter, the top 1, 3, 5, or
10 passages could be selected. The generated input combinations max out
at 12,000 characters, coming close to the fixed limit of 4096 input tokens for
ChatGPT 3.5-turbo.

The overlap of characters between passages is fixed to 100 characters,
this value has been determined as the optimum in previous research [8].
After setting these different retrieval combinations, an iterative procedure
is conducted to answer the evaluation dataset previously suggested in Ap-
pendix A with each QA model. This procedure creates a set of answers for
every combination of context and model, yielding a total of 1036 responses.
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4.2 System evaluation:

4.2.2 Human labeling

After generating the responses, they are consolidated into a unified dataframe.
From this combined dataframe a portion consisting of 157 questions and an-
swers, which equates to approximately 15% of the total generated from all
combinations, is selected through stratified sampling in order to maintain
the original proportion of question categories. Then the subset’s generated
responses are classified with the aid of two experts in the field of cloud
technology. The classification scale ranges from 0 indicating a question that
has been answered incorrectly, to 3 marking a perfectly answered question.
Complete instructions for this labeling process can be found in Appendix B.
To ensure consistency in the classification, an IAA calibration is carried out
beforehand to ensure both annotators are using comparable standards. The
distribution of responses assigned to each label is displayed in table 4.1.

Label Number of answers
0 66
1 18
2 19
3 58

Table 4.1: The distribution of assigned labels along the subset of responses.

4.2.3 AES calculation

After the subset has been categorized, various AES metrics between the ref-
erence answers and the machine-generated responses are computed. These
include BLEU, ROUGE1, ROUGE2, ROUGEL, cosine similarity of Sentence
Embeddings, METEOR, F1, and EM. The outcome of this process is a dataset
that includes the question, the reference and generated answers, the human-
provided label, and the computed AES metrics.

4.24 EHL MTES

While the aggregated dataset might appear ready to form a ML model for
label prediction, it's not immediately usable. This is predominantly due to
the disparity in the number of label categories, as depicted in 4.1. To correct
this, the SMOTE (Synthetic Minority Over-sampling Technique) approach
is employed. This ML algorithm aids in counteracting imbalances within
datasets by generating artificial samples from the lesser-represented class,
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thereby achieving uniform class distribution. It does this by selecting a sam-
ple from the minority class, finding its closest neighbors, and interpolating
between them to create synthetic samples [94].

After equalizing the dataset, a basic correlation analysis is undertaken
to determine if the AES metrics are significant predictors of the labels. The
Pearson correlation coefficient (r) between different AES predictors and la-
bels is shown in table 4.2. A random forest classification (RFC) model, with
each tree limited to a maximum depth of 10, is then trained using the bal-
anced data. For a preliminary assessment of the RDC, a cross-validation
process is conducted with 10 folds, using accuracy as the evaluation metric.
The mean accuracy score across all cross-validation folds is 0.778.

To provide a more comprehensive assessment of the RFC model’s per-
formance, a separate test using a divided training and testing dataset is
implemented. The testing dataset accounts for 20% of the total data. The
accuracy of the model in this test dataset is 0.8 and figure 4.7 illustrates the
corresponding confusion matrix. Finally, a manual review of some classified
samples is carried out to check the consistency of the outcomes

AES metric r
Sentence Embeddings

cosine similarity 0.59
METEOR score 0.54

F1 score 0.44
ROUGE1 score 0.44
ROUGE2 score 0.41
ROUGEL score 0.38
BLEU score 0.28
exact match 0.23

Table 4.2: The ranked Pearson correlation coefficients between the candidate
predictors and the human label scores.

4.2.5 Prediction and assessment over all combinations

Once the classification model has been developed and validated to deliver
reliable and acceptable predictive outputs, it is then used to make estima-
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4.2 System evaluation:

Confusion Matrix

True label

0 1 2 3
Predicted label

Figure 4.7: Confusion matrix of the RFC model on the test dataset.

tions on the labels of the remaining data in the original, full dataset. Upon
generating these predictions, each system’s output can be prepared for thor-
ough analysis. This process involves evaluating the performance based on
the estimated metrics derived from label estimations. Therefore, these esti-

mations not only serve to give an outlook on unseen data but also provide
a tangible measure of the systems’ performance.
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5. Results

With the introduction of the EHL MTES, a comprehensive evaluation can
be conducted on various models and their potential combinations. Fig-
ure 5.1 illustrates the average performance of each model in answering the
evaluation dataset. The overall analysis reveals that the proprietary model,
ChatGPT 3.5-turbo, outperforms all other models with an average EHL of
2.61 along all the combinations tested. Among the OS models, GPT4All ex-
cels slightly over Flant T5 with an EHL of 1.42 and 1.31 respectively, while
RoBERTa demonstrates the lowest performance with an average EHL of less
than 0.5.

Average EHL for each model

Models
[ RoBERTa-base-Squad?2
= Flan-T5-xl
[ GPT4All-LoRa (7B)
2.0 EE Chat GPT 3.5-turbo

2.5 1

1.5

Mean EHL

1.0

0.5 A

0.0 T

Model

Figure 5.1: The Bar graph showing the average performance of each model
over the evaluation dataset, measured using the RFC model.

Moreover, table 5.1 provides the results for all possible combinations
of inputs and models. The EPT model, RoBERTa, achieves a maximum
mean EHL score of 0.64 across the dataset. As for the text-to-text genera-
tion model, Flan T5, the average maximum EHL is 1.71. The GPT model,
GPT4All, reaches a maximum EHL of 2.14 with one of its combinations.
However, it should be noted that this model was unable to achieve a 100%
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response rate. On the other hand, the proprietary model, ChatGPT3.5-turbo,
demonstrates an impressive average EHL performance of 2.82 at its maxi-
mum. Although each model reaches its peak performance under different
input configurations, the combination that exhibits the most reliable perfor-
mance overall across all models is the use of a chunk size of 2000 characters
with 3 concatenated context pages. This combination achieves an average
EHL score of 1.6 for all models and provides a 97% response rate. Appendix
C, shows the responses of the best combination for each model along the

evaluation dataset.

Model-Input
combination

RoBERTa-base-
Squad2

Flan-T5-xI

GPT4All-LoRa (7B)

ChatGPT
3.5-turbo

Average

Chunk size: 1000
context pages: 1

Chunk size: 1000
context pages: 3

Chunk size: 1000
context pages: 5

Chunk size: 1000
context pages:10

Chunk size: 2000
context pages: 1

Chunk size: 2000
context pages: 3

Chunk size: 2000
context pages: 5

Chunk size: 4000
context pages: 1

Chunk size: 4000
context pages: 3

Chunk size: 8000
context pages: 1

Mean EHL: 0.43
Answered: 100%

Mean EHL: 0.61
Answered: 100%

Mean EHL: 0.43
Answered: 100%

Mean EHL: 0.64
Answered: 100%

Mean EHL 0.57
Answered: 100%

Mean EHL: 0.5
Answered: 100%

Mean EHL: 0.43
Answered: 100%

Mean EHL: 0.36
Answered: 100%

Mean EHL: 0.32
Answered: 100%

Mean EHL: 0.29
Answered: 100%

Mean EHL: 1.18
Answered: 100%

Mean EHL: 1.14
Answered: 100%

Mean EHL: 1.36
Answered: 100%

Mean EHL: 1.36
Answered: 100%

Mean EHL: 1.25
Answered: 100%

Mean EHL: 1.54
Answered: 100%

Mean EHL: 1.5
Answered: 100%

Mean EHL: 1.18
Answered: 100%

Mean EHL:1.71
Answered:100%

Mean EHL:0.86
Answered:100%

Mean EHL: 1.69
Answered: 93%

Mean EHL:2.14
Answered: 75%

Mean EHL: 1.86
Answered: 75%

Mean EHL: 0.81
Answered: 57%

Mean EHL: 1.6
Answered: 71%

Mean EHL: 1.56
Answered: 89%

Mean EHL: 1.31
Answered: 57%

Mean EHL: 1.87
Answered:82.1%

Mean EHL: 0
Answered: 11%

Mean EHL: 1.32
Answered: 57%

Mean EHL: 2.75
Answered: 100%

Mean EHL: 2.46
Answered: 100%

Mean EHL: 2.71
Answered: 100%

Mean EHL: 2.75
Answered: 100%

Mean EHL: 2.57
Answered: 100%

Mean EHL: 2.82
Answered: 100%

Mean EHL: 2.53
Answered: 100%

Mean EHL: 2.36
Answered: 100%

Mean EHL: 2.46
Answered: 100%

Mean EHL: 2.64
Answered: 100%

Mean EHL: 1.51
Answered: 98%

Mean EHL: 1.59
Answered: 94%

Mean EHL: 1.59
Answered: 94%

Mean EHL: 1,39
Answered: 89%

Mean EHL: 1.5
Answered:93%

Mean EHL: 1.6
Answered: 97%

Mean EHL: 1.44
Answered: 89%

Mean EHL: 1.44
Answered: 96%

Mean EHL: 1.12
Answered: 78%

Mean EHL: 1.28
Answered: 89%

Table 5.1: The average EHL score and the percentage of answered responses
for each potential model-input combination. The best result in terms of mean
EHL is highlighted in green, while the worst is in red.

Figure 5.2 illustrates the performance distribution when adjusting the in-
put variables of chunk size and context pages, revealing a certain degree
of variability. Both RoBERTa and ChatGPT models demonstrate their best
performance within a moderate context size range of 5000 and 6000 charac-
ters respectively. Flan-T5 models exhibit a positive correlation between per-
formance and context size, indicating bigger context sizes boost the model
performance. In contrast, the GPT4All models show a distinct performance
peak centered around a smaller context size of 3000 characters.

The effectiveness of each model in addressing various types of questions,
as measured using the EHL metric, is presented in figure 5.3. In terms of
overall performance, GPT3.5-turbo outperforms OS tools across all ques-
tion types. However, among the OS models, GPT4-All performs better on
average in comparison, situations with multiple answers, and open concept
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Results

Distribution of mean EHL per context size for each model

2.5 -

2.0

Mean EHL
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w
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0.0

Chat GPT 3.5-turbo RoBERTa-base-Squad?2 Flan-T5-xI GPT4All-LoRa
Model

Context size
[/ 1000 [3 2000 [3 3000 [ 4000 [3 5000 [@3 6000 [ 8000 [EEW 10000 EEE 12000

Figure 5.2: The distribution of average performance of each model for differ-
ent input context sizes.

questions, while Flan-T5 excels in close, command, and process questions.
Overall, the performance of the Roberta model is inferior compared to the
others, although it is comparable to OS models specifically in close ques-
tions.

The figure 5.3 also highlights the best results achieved by each model for
different question types. ChatGPT3.5-turbo demonstrates excellent perfor-
mance and surpasses the other models with a EHL of 3 in each question
class. However the gaps between ChatGPT3.5-turbo and the OS models
are relatively smaller, particularly in code commands and situations, where
GPT4-All exceeds 2.5 EHL. In fact, GPT4-All stands out as the most superior
OS model when considering the best possible model for each category.
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Average and maximum EHL per type of question for each model

3.0 1

2.5 1

2.0
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1.0 1

0.5 4

Close Code Commands  Multiple Open Concept Situation Comparison  Open Process
Type of question

[ (best) RoBERTa-base-Squad2 [ (average) RoBERTa-base-Squad2
= (best) Flan-T5-xI =3 (average) Flan-T5-x|

[ (best) GPT4All-LoRa I (average) GPT4All-LoRa (7B)
I (best) Chat GPT 3.5-turbo Il (average) Chat GPT 3.5-turbo

Figure 5.3: The average and best performance of each model for different
types of questions.
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6. Discussion

The outcomes of this study provide the point of departure for tackling the
research questions proposed at the beginning of this work.

6.1 Best OS model in the experiment

RQ1 is addressed based on the overall findings of the models presented in
figure 5.1, as well as the results categorized by question type shown in figure
5.3. GPT method surpasses EPT and T5 methods in terms of overall per-
formance when applied to this dataset using the self-devised EHL metric.
Regarding performance sorted by question type, the GPT models continue
to consistently exhibit superior results for most question categories, among
all tested combinations that exhibited the best performance. Nevertheless,
the most proficient TS5 models show substantial competitiveness across a
majority of question types, at times even rivaling the GPT’s performance
in areas such as closed, command, multiple answer, comparison, and open
process questions. Furthermore, it should be acknowledged that the GPT
model struggled to answer all the questions. In fact, the model with the
highest average EHL was only capable of returning an answer for 75% of
the questions, indicating it is the worst model in terms of response rate con-
fidence.

6.2 Comparison vs ChatGPT 3.5-turbo

The response to RQ2 can be found through the evaluation of the data from
figures 5.1 and 5.3. It can be discerned that the ChatGPT 3.5-turbo surpasses
all other analyzed OS models in terms of overall performance from a broad
perspective. However, when delving deeper and focusing specifically on
the combinations that have shown the best performance for each model, it
becomes clear that the difference in performance is considerably narrower.
Notably GPT4All model dramatically bridges this performance gap. This
becomes especially evident in the context of certain types of queries, which
include code-related commands, scenarios that explore open-ended con-
cepts, and various situational instances.

6.3 Impact of context size on performance

In terms of RQ3, The analysis of table 5.1 and figure 5.2 suggests that the in-
crease of the input context size does not consistently lead to enhanced per-
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formance across all models. Both RoBERTa and ChatGPT models achieve
their highest performance when the context size is within a moderate range,
specifically around 5000 and 6000 characters respectively. On the other
hand, GPT4All models exhibit their peak performance with a smaller con-
text size of approximately 3000 characters. Flan-T5 models are the only ones
that show a positive relationship between performance and context size,
suggesting that larger context sizes enhance these models” performance. It
is worth noting to mention that larger context sizes lead to decreased re-
sponse rates for GPT4All models.

6.4 Limitations

While this research offers a well-grounded operational and evaluation method-
ology for the QA system, it’s crucial to recognize various limitations that in-
duce inherent bias in the experiment outcomes. As a result, these should be
acknowledged in subsequent research and when interpreting this method-

ology.

6.4.1 Retrieval and knowledge source

While the use of dense vector representations (embeddings) is one of the
most effective ways to extract context, it’s important to acknowledge that
inaccuracies can occur in some cases, for instance when the necessary infor-
mation to answer a query isn’t correctly identified. This can subsequently
lead to errors in the context provided to QA models. Furthermore, the pre-
processing phase prior to extraction plays a significant role and warrants ex-
ploration. Analyzing various parameters like tokenization of words before
splitting, overlap, and punctuation removal can aid in optimizing perfor-
mance. Lastly, it’s essential to note that even though the knowledge source
is supplemented by information from the internet, it may not be compre-
hensive enough to address a query, or worse, it may contain unverified data
leading to incorrect or false responses. The techniques for retrieval and data
cleaning thus require attention.

6.4.2 QA models

There are several constraints associated with the utilization of QA models.
Firstly, some models offer the capability of integrating prompts, which are
instructions on how to format response outputs for improved results. How-
ever, the effectiveness of these prompts is heavily reliant on the fine-tuning
process, and different combinations can yield either superior or inferior per-
formance. Consequently, comprehensive research into prompt engineering
for each specific model is necessary to identify the most optimal combina-
tions.

Secondly, concerning the augmentation of models” knowledge with ex-
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ternal context, there is pre-existing training knowledge that is embedded in
these models. In the event of inconsistent data from these two sources, it
can create confusion within the model, which may result in the generation
of incorrect answers.

Finally, another restriction encountered when working with OS models
is the demand for computational power. Unlike proprietary LLMs which
come with sophisticated APIs and servers that handle all the required in-
frastructure to process user queries, OS models are typically tested locally.
Thus, the available computational power, particularly GPU RAM, could be
a limiting factor when exploring models with billions of training param-
eters. This might present a challenge for studies with limited budget or
access to competitive local or cloud-based infrastructure.

6.4.3 Evaluation

Potential sources of error exist within the evaluation process. The creation of
an evaluation dataset introduces bias related to the type of questions asked,
as well as the quantity and distribution of each class. This factor is present
when comparing models that excel in argumentation cases, such as is the
case with generative models compared to those that solely extract answers
directly from the text. Nonetheless, the balance of types can be adapted
according to the specific objective of the QA system’s application. Another
key factor is the accurate reference answer for a given question, which might
not always be correct since it is determined by the knowledge of the human
experts. Moreover, Multiple valid answers may exist for a specific question,
particularly for queries that require diverse approaches, like situational or
process-oriented inquiries. This challenge could be addressed by consider-
ing a set of multiple correct responses for some questions, but the inherent
characteristics of language will invariably introduce some degree of bias.

Furthermore, human error during the labeling process should also be
considered. Despite clear labeling guidelines and an IAA metric calibration
conducted among annotators in this experiment, the inherent human bias in
these activities remains inevitable. The human labeling error will also influ-
ence the EHL estimation with the ML model, particularly when considering
that AES metrics do not align perfectly with EHL. This misalignment could
result in inaccuracies in this metric’s estimation, as evidenced in the confu-
sion matrix in figure 9 and the model’s cross-validation results.
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7. Conclusion

The objective of this research was to evaluate the effectiveness of various
transformer methodologies for question-answering (QA) operations in the
field of cloud technology. The study aimed to analyze the performance of
open-source (OS) models compared to the proprietary model ChatGPT 3.5-
turbo while investigating the impact of input context size in output accu-
racy. The research questions were successfully addressed through a unique
approach that involved the creation of a custom evaluation dataset and the
development of a new Machine-trained evaluation score (MTES) called Es-
timated Human Label (EHL).

Based on the conducted analysis along different input-model combina-
tions, despite being the model with the lowest rate of response, GPT4All
model emerged as the most competitive among the proposed OS models in
terms of performance with an average EHL of 1.42 in all the tested combina-
tions. For the optimal input-model combinations, GPT4All demonstrated a
performance comparable to the proprietary model ChatGPT 3.5-turbo with
question types that exceeded an EHL of 2.5 such as code commands and
situations. Additionally, it was observed that increasing the input context
size does not consistently enhance performance across all models, just being
beneficial for Flan-T5.

However, it is important to acknowledge the intrinsic limitations of this
study, specifically the biases introduced by the retrieval process, the sources
of knowledge, the implementation of QA models, and the evaluation pro-
cess. These factors should be taken into account when interpreting the re-
sults, and caution should be exercised in considering them as absolute. The
proposed evaluation methodology opens up possibilities for future explo-
ration. Additional variables such as chunk overlap and model hyperparam-
eters could be examined, along with different techniques for knowledge re-
trieval and prompt result comparison. Emerging robust models requiring
high computational power, such as Falcon-40B, could also be considered for
further research.

In the context of growing privacy concerns related to proprietary mod-
els, investigating the performance of OS models in NLP tasks is crucial.
These OS models offer better data privacy safeguards and present a po-
tential alternative. The introduction of new evaluation metrics like EHL
shows promise in assessing QA system performance more effectively. The
practical applications of this study are evident in its ability to enhance QA
assistance platforms tailored to specific knowledge fields and provide valu-
able insights into the impact of context on performance, both of which are
vital for designing and improving future systems.
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Conclusion

This research makes a significant contribution to the advancement of QA
systems driven by OS models. By elucidating the variables that influence
their efficiency and combining human expertise with MTES, this investi-
gation establishes a foundation for a more comprehensive understanding
of QA systems. However, it also highlights the importance of ongoing re-
search and refinement, indicating that further work in this field is both es-
sential and holds great potential.
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Appendix A

N Class

Question

Reference Answer

1 | Close

Is the number of
arguments specified by
the configuration file
for a Pod fixed?

2 | Close

What does GKE stand
for?

Google Kubernetes Engine

3 | Close

Which mechanism
within the control
plane is utilized to
impose particular
configurations in the
Security Context?

Security profiles

4 | Close

How is called a
non-terminating loop
that regulates the state
of a system?

Control loop

Code

commands

Which specific
command is capable of
producing keys and
CSRs for all
control-plane
certificates and
kubeconfig files?

kubeadm certs generate-csr

Code
commands

Which command is
utilized to display
PersistentVolumes in a
sorted manner based
on their capacity?

kubectl get pv
—sort-by=.spec.capacity.storage

Code
commands

Which command is
utilized to retrieve the
logs for a pod that
were generated within
the last hour?

kubectl logs —since=1h

Code

commands

Why kubectlgetrc —
—namespace =" <
namespace_name > "
command is used for?

To list the replication controllers by
namespace.

9 | Multiple

Provide a catalog of
the different services
that are offered within
Kubernetes.

Cluster IP service, Load Balancer
service, Node Port service, and
External Name Creation service.
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Class

Question

Reference Answer

10

Multiple

What are the distinct
Kubernetes objects?

Pods, Deployments, Services,
ConfigMaps, Ingress, Secrets

11

Multiple

What are the three
modes of Pod Security
Admission?

Enforce, audit, warn

12

Multiple

Name the initial
namespaces from
which Kubernetes
starts?

Default, kube-system, kube-public

13

Open
concept

What is Kubernetes?

Kubernetes is an open-source
container orchestration platform
that automates the deployment,
scaling, and management of
containerized applications. It was
originally developed by Google
and is now maintained by the
Cloud Native Computing
Foundation (CNCF). Kubernetes
provides a robust and scalable
infrastructure for managing
containerized workloads across a
cluster of machines. It offers
features such as automated
container deployment, load
balancing, self-healing, storage
orchestration, and scaling. With
Kubernetes, developers and
system administrators can
effectively manage and scale
applications without manual
intervention, ensuring high
availability and efficient resource
utilization.

14

Open
concept

Define what is kubelet

The kubelet is a service agent that
controls and maintains groups of
pods by checking pod specification
using Kubernetes. The kubelet
runs on each node and allows
communication between a master
node and a slave node.

15

Open
concept

What is the
relationship between
Kubernetes and
Docker?

Docker builds the containers, and
these containers communicate
with each other via Kubernetes.
So, containers running on multiple
hosts can be manually linked and
orchestrated using Kubernetes.

16

Open
concept

What is a pod in
Kubernetes?

Pods are high-level structures that
wrap one or more containers.
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N Class Question Reference Answer
As the company’s goal is to shift
from their monolithic application
. i ices, th
In the scenario where a to rerosetvices t cy can end up
. building piece by piece, in parallel
company built on . . . S
T . and just switch configurations in
monolithic architecture
is experiencing issues the background. Then they can put
P 5195 each of these built-in microservices
due to the expansion of
. . . i on the Kubernetes platform. So,
17 | Situation their operations, how L .
they can start by migrating their
could they make the . . .
. services once or twice and monitor
transition to o
. . them to make sure everything is
microservices and .
. . .| running stable. Once they feel
deploy their services in S
. everything is going good, then
containers? .
they can migrate the rest of the
application into their Kubernetes
cluster.
"As all of us know that L.T.
departments launch thousands of
containers, with tasks running
across a numerous number of
nodes across the world in a
How could a L
o distributed system.
multinational company LT
. . In such a situation, the company
with an extensively .
o can use something that offers them
distributed system, o s
.. agility, scale-out capability, and
comprising numerous .
. DevOps practice to the
. . data centers, virtual ..
18 | Situation cloud-based applications.

machines, and a vast
workforce involved in
diverse tasks, utilize
Kubernetes to maintain
consistent task
management?

So, the company can, therefore, use
Kubernetes to customize their
scheduling architecture and
support multiple container
formats. This makes it possible for
the affinity between container
tasks that gives greater efficiency
with extensive support for various
container networking solutions
and container storage."
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N Class Question Reference Answer
In order to give millions of clients
the digital experience they would
expect, the company needs a
platform that is scalable and
responsive so that they could
. e uickly get data to the client
der a situat e .
Consider a situation website. Now, to do this, the
where a company .
. . company should move from their
desires to update its . .
private data centers (if they are
deployment methods .
using any) to any cloud
and create a platform .
that is hiehlv scalable environment such as AWS. Not
19 | Situation &Y only this, but they should also
and responsive. How . 4 .
do vou believe this implement the microservice
y architecture so that they can start
company can . .
. . using Docker containers. Once
accomplish this to
. . they have the base framework
meet the satisfaction of .
. ready, then they can start using the
their customers? ;
best orchestration platform
available, i.e., Kubernetes. This
would enable the teams to be
autonomous in building
applications and delivering them
very quickly.
Examples of standard Kubernetes
As a consultant for a security measures include defining
company that utilizes | resource quotas, support for
cloud infrastructure, auditing, restriction of etcd access,
what are some regular security updates to the
20 | Situation examples of environment, network
recommended security | segmentation, definition of strict
measures you would resource policies, continuous
suggest implementing | scanning for security
for Kubernetes? vulnerabilities, and using images
from authorized repositories.
Docker Compose deploys
multi-container Docker apps to a
‘ What distinguishes single se?rver, while Kubernetes isa
Compari- production-grade container
21 Docker Compose from .
son orchestrator that can run multiple
Kubernetes?

container runtimes, including
Docker’s, across multiple virtual
or physical machines.
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Class

Question

Reference Answer

22

Compari-
son

What's the difference
between Apache’s
Mesos and Google’s
Kubernetes?

Kubernetes and Apache Mesos are
both open-source systems for
managing containerized
applications in a cluster of
machines. Kubernetes is designed
to be a general-purpose
orchestration system, while Mesos
is designed to be a more
specialized cluster manager for
running distributed systems.

23

Compari-
son

What is the difference
between using
Kubernetes
Deployments vs
StatefulSets?

"In Deployment, you specify a
PersistentVolumeClaim that is
shared by all pod replicas. In other
words, a shared volume. The
backing storage must have
ReadWriteMany or
ReadOnlyMany accessMode if you
have more than one replica pod,
while in StatefulSet, you specify a
volumeClaimTemplates so that
each replica pod gets a unique
PersistentVolumeClaim associated
with it. In other words, no shared
volume. Here, the backing storage
can have ReadWriteOnce
accessMode."

24

Compari-
son

What is the difference
between Docker
Swarm and Kubernetes
in terms of complexity?

Docker Swarm is a lightweight,
easy-to-use orchestration tool with
limited offerings compared to
Kubernetes. In contrast,
Kubernetes is complex but
powerful and provides
self-healing, auto-scaling
capabilities out of the box.

25

Open
process

What is the procedure
for halting or pausing
a pod in Kubernetes?

"Kubernetes doesn’t support
stop/pause of the current state of
the pod and resume when needed.
However, you can still achieve it
by having no working
deployments, which is setting the
number of replicas to 0.

kubectl scale -replicas=0
deployment/<your-deployment>"
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N Class Question Reference Answer
I have established a
Scheduled Job in
Kubernetes that runs
fwice @ally based on its With: kubectl create job

Open predefined schedule. , ,

2 process However, I would like ~from=cronjob/<cronjob-name>
to initiate it manually <job-name> -n <namespace-name>
for testing purposes.

How can I achieve
this?
"1. Install container runtime on all
nodes - We will be using cri-o. 2.
Install Kubeadm, Kubelet, and
kubectl on all the nodes. 3. Initiate
Kubeadm control plane
configuration on the master node.
Open ‘S/\e]?l?t zreKLILeei;ceef;ZSfor 4. Save the node join command
27 | P P . with the token. 5. Install the Calico
process Cluster Using network plugin. 6. Join the worker
Kubeadm? Prgin. o
node to the master node (control
plane) using the join command. 7.
Validate all cluster components
and nodes. 8. Install Kubernetes
Metrics Server. 9. Deploy a sample
app and validate the app."
Kubernetes can be run locally
using the Minikube tool. It runs a
Open How can Kubernetes single-node cluster ina VM
28 pIE)CGSS be run on a local (virtual machine) on the computer.

machine?

Therefore, it offers the ideal way
for users who have just started
learning Kubernetes.

Table 7.1: The evaluation dataset proposed.
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Label Instructions

The answer is not answered correctly: Select this label if the provided
0 answer is entirely incorrect or irrelevant to the question. The answer does
not address the question or provide any useful information.

The answer is partially correct: Choose this label if the answer partially
1 addresses the question and contains some relevant information. However,
the answer is incomplete, inaccurate, or lacks necessary details.

The answer is close to being perfectly answered: Assign this label if the
answer is mostly correct and provides relevant information. Although there
2 may be minor errors, omissions, or slight inaccuracies, the answer
demonstrates a good understanding of the question and provides valuable
insights.

The answer is completely and correctly answered: Use this label if the
answer is accurate, complete, and addresses all aspects of the question. The
answer is comprehensive, well-structured, and provides precise information

that directly answers the question without any errors or omissions.

Table 7.2: Labeling instructions for annotators.

Question: What distinguishes Docker Compose from Kubernetes?

Real Answer: Docker Compose deploys multi-container Docker apps to a single server, while Kubernetes is
a production-grade container orchestrator that can run multiple container runtimes, including Docker's,
across multiple virtual or physical machines.

Generated Answer Given Label

They complement each other. 0

Docker Compose defines multi-container Docker applications and deploys them to a
single server. 1

While Docker Compose is mainly focused on building and running multiple containers
locally, Kubernetes is designed specifically for managing containerized workloads across
different hosts. 2

Docker Compose is used to create and manage multi-container Docker applications on a

single host, while Kubernetes is a production-grade container orchestrator that can run

other container runtimes, including Docker’s, over several machines, virtual or real.

Docker Compose defines multi-container Docker applications and deploys them to a

single server, while Kubernetes organizes containers according to an abstraction called a

pod. Kubernetes is better suited for production environments and on a larger scale, while

Docker Compose is better suited for local development and testing scenarios. 3

Table 7.3: Example of the label assigned to different types of responses.
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Model Answer generated

RoBERTa-

base- two

Squad2

Flan-t5-x1 no

GPT4ALL no, the number of arguments specified by the configuration file for a pod is

LoRa (7B) not.ﬁxed. it depepds on how marny arguments are needed to execute the
desired task within the container.
no, the number of arguments specified by the configuration file for a pod is
not fixed. the user can define any number of arguments based on their
requirements. in the example provided, the configuration file for the pod

ChatGPT defines a command and two arguments, but the user can define more or

3.5-turbo fewer arguments as needed. additionally, the user can define arguments
using environment variables, which provides more flexibility in defining
arguments. for example, the user can define an argument for a pod using
configmaps or secrets.

RoBERTa-

base- google kubernetes engine

Squad2

Flan-t5-x1 google kubernetes engine

ngjél]; gke stands for "google kubernetes engine".
gke stands for google kubernetes engine, which is a managed kubernetes
service provided by google. it allows users to deploy and operate
containerized applications at scale using google’s infrastructure. gke is
based on kubernetes, an open source container management and

Ch orchestration platform developed by google. gke provides the operational

atGPT . . .

3 5-turbo power of kubernetes while managing many of the underlying components,
such as the control plane and nodes, for the users. gke is ideal for those who
need a platform that lets them configure the infrastructure that runs their
containerized apps, such as networking, scaling, hardware, and security.
gke is used in a variety of industries, including robotics, healthcare, retail,
education, gaming, and financial services.

RoBERTa-

base- profiles

Squad2

Flan-t5-x1 roles and rolebindings

GPT4All- the mechanism used to impose particular configurations in the security

LoRa (7B) context is access control lists (acl).
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Model

Answer generated

the mechanism within the control plane that is utilized to impose particular
configurations in the security context is the admission control process. the
admission control process has two phases: the mutating phase and the
validating phase. mutating admission controllers, such as istio’s automatic
sidecar injection mechanism, can modify the objects they admit, while
validating admission controllers do not. by using admission controllers,

g?iﬁgz kubernetes can enforce security policies and configurations in the security
context, ensuring that pods and containers are running with the appropriate
security parameters. for example, pod security policies (psps) are
cluster-level resources that define the security requirements that pods must
meet before they can be created. psps can be used to enforce security
policies such as preventing privileged containers, enforcing read-only file
systems, and restricting host network access.

RoBERTa-

base- a control loop

Squad?2

Flan-t5-x1 a control loop

GPT4All-

LoRa (7B)
a non-terminating loop that regulates the state of a system is called a control
loop. it is a fundamental concept in robotics and automation, where it is
used to maintain a desired state of a system by continuously monitoring

ChatGPT and adjusting its parameters. examples of control loops include thermostats,

3.5-turbo which regulate the temperature of a room, and cruise control systems in
cars, which maintain a constant speed. in kubernetes, controllers are also
control loops that watch the state of the cluster and make or request changes
to bring it closer to the desired state.

RoBERTa-

base- kubeadm certs generate-csrthis

Squad?2

Flan-t5-x1 kubeadm certs generate-csr

GPT4All-

LoRa (7B) generate- keys-and-csrs
the specific command capable of producing keys and csrs for all
control-plane certificates and kubeconfig files is "kubeadm certs
generate-csr”. this command is designed for use in kubeadm external ca
mode, where it generates csrs that can be submitted to an external certificate

ChatGPT authority for 'signing. the pem epcoded signed ce'rtificates‘should' then be

3 5-turbo saved alongside the key files, using ".crt" as the file extension, or in the case

of kubeconfig files, the pem encoded signed certificate should be base64
encoded and added to the kubeconfig file in the "users > user >
client-certificate-data" field. an example of using this command is "kubeadm
certs generate-csr —kubeconfig-dir /tmp /etc-k8s —cert-dir
/tmp/etc-k8s/pki".
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Model Answer generated

RoBERTa-

base- kubectl

Squad?2

Flan-t5-x1 kubectl get pv —sort-by=".spec.capacity.storage’

S(I:g:(A;]; kubectl get pvc —sort-by=capacity
the command utilized to display persistentvolumes in a sorted manner
based on their capacity is "kubectl get pv —sort-by=.spec.capacity.storage".

ChatGPT this command will display the persistentvolumes in ascending order based

3.5-turbo on their storage capacity. for example, if a user wants to see the list of
persistentvolumes sorted by their capacity, they can use this command to
get a clear view of the available volumes and their respective capacities.

RoBERTa-

base- kubectl logs

Squad2

Flan-t5-x1 kubectl logs —since=1h

Efg:?;];) the correct response is "kubectl logs —since=1h".
the command utilized to retrieve the logs for a pod that were generated
within the last hour is "kubectl logs —since=1h <pod-name>". this command
will fetch the logs produced by the specified container within the last hour.

ChatGPT for example, if you want to retrieve the logs produced by the nginx

3.5-turbo container within the last hour, you would run the command "kubectl logs
—since=1h nginx". you can also specify the duration in hours, minutes, or
seconds using the format "-since=1h30m20s" to fetch logs from the last 1
hour, 30 minutes, and 20 seconds.

RoBERTa-

base- no namespace was provided in the command

Squad2

Flan-t5-x1 to maintain backwards compatibility
1. kubectl getrc — —namespace = ” < namespace,ame > " command is used
to list all replication controllers (rc) present under specified namespace. it

GPT4ALlL lists out rcs along with their status, creation time, labels etc. 2. by specifying

LoRa (7B) the namespace name while executing the above mentioned command, we

can restrict our search results only within that particular namespace. so, if
we have multiple namespaces defined in our cluster, then we can filter
down the search result based upon the desired namespace.
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Model

Answer generated

ChatGPT
3.5-turbo

the kubectl getrc — —namespace =7 < namespace,ame > " command is
used to get the list of all replication controllers (rc) in a specific namespace.
replication controllers are responsible for ensuring that a specified number
of pod replicas are running at any given time. by specifying the namespace,
the command only returns the rc objects that belong to that particular
namespace. for example, if you have multiple namespaces in your
Kubernetes cluster, you can use this command to view the rc objects in a
specific namespace. this can be useful for troubleshooting or monitoring
purposes. additionally, you can use this command in conjunction with other
kubectl commands to perform actions on specific rc objects in a particular
namespace.

RoBERTa-
base-
Squad?2

kubernetes service catalog

Flan-t5-x1

the service catalog is a declarative Kubernetes API extension to discover
and use cloud managed services

GPT4All-
LoRa (7B)

1) clustering services - these services help in managing clusters such as
monitoring, logging, networking, security, and scheduling.2) storage
services - these services provide persistent data storage solutions like file
systems, block devices, and volume plugins.3) compute services - these
services enable users to deploy containers on top of virtual machines or bare
metal servers.4) networking services - these services allow users to connect
their workloads together through networks using tools like load balancers,
firewalls, VPN gateways, and NAT rules.5) monito..

ChatGPT
3.5-turbo

Kubernetes offers a wide range of services that can be used to manage and
deploy containerized applications. Some of the key services offered by
Kubernetes include: 1. Pods: Pods are the smallest deployable units in
Kubernetes and are used to run containers. They can be used to run a single
container or multiple containers that share the same network and storage. 2.
Deployments: Deployments are used to manage the deployment of pods
and can be used to scale up or down the number of replicas of a pod. 3.
Services: Services are used to expose pods to the network and can be used
to load balance traffic between multiple pods. 4. ConfigMaps: ConfigMaps
are used to store configuration data that can be used by pods. 5. Secrets:
Secrets are used to store sensitive data such as passwords and API keys that
can be used by pods. 6. StatefulSets: StatefulSets are used to manage the
deployment of stateful applications such as databases. 7. Jobs: Jobs are used
to run batch jobs or one-off tasks. 8. CronJobs: CronJobs are used to run
scheduled tasks. These are just a few examples of the services offered by
Kubernetes. There are many more services and features available that can be
used to manage and deploy containerized applications.

10

RoBERTa-
base-
Squad2

estring, uid, and optionalnamespacespec

Flan-t5-x1

pods
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Model

Answer generated

GPT4All-
LoRa (7B)

There are many types of Kubernetes objects, but some of the most common
ones include: 1. Deployment - A Deployment represents one or more
replicas of a particular application. It defines the desired number of replicas
and their desired state. 2. Service - A Service provides a way to expose a set
of ports from a pod. Services allow clients outside of the cluster to access
services inside the cluster. 3. Replication Controller - A Replication
Controller manages a group of pods that share a single purpose. They
define the desired number of replicas and monitor whether there are
enough healthy replicas running. 4. Persistent Volume Claim - This type of
object allows users to claim storage space in a shared file system. Users
specify the size of the volume needed and where it should be mounted. 5.
ClusterRoleBinding - Allows administrators to bind roles to groups of users.
These binding rules determine who has permission to perform certain
actions in the cluster.

ChatGPT
3.5-turbo

There are many different types of Kubernetes objects, but some of the most
commonly used ones include: 1. Pods: These are the smallest unit of
deployment in Kubernetes and can host one or more containers. 2.
Deployments: These are used to manage the lifecycle of one or more
identical pods and allow you to declaratively manage the desired state of
your application. 3. Services: These provide a way to expose applications
running in pods and represent a set of pods that perform the same function.
4. ConfigMaps: These are used to store configuration data that can be
accessed by pods. 5. Secrets: These are used to store sensitive information
such as passwords or API keys that can be accessed by pods. 6. StatefulSets:
These are used to manage stateful applications and provide guarantees
about the ordering and uniqueness of pods. 7. Jobs: These are used to run
batch or one-time tasks in a cluster. 8. CronJobs: These are used to run
scheduled tasks in a cluster. 9. Ingresses: These are used to expose HTTP
and HTTPS routes from outside the cluster to services within the cluster. 10.
PersistentVolumes: These are used to provide persistent storage for pods.
11. Namespaces: These are used to create virtual clusters within a physical
cluster and provide a way to organize and isolate resources.
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enforce — any pods that violate the policy will be rejected- audit — pods
with violations will be allowed and an audit annotation will be added- warn
— pods that violate the policy will be allowed and a warning message will
be
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There are three modes of pod security admission: warn, audit, and enforce.
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The three modes of pod security admission are warn, audit, and enforce. In
warn mode, violations of the pod security standards are logged as warnings
but not prevented. This mode is useful for testing and evaluating new
security policies without disrupting existing workloads. In audit mode,
violations are logged and prevented, but not enforced. This mode is useful
Ch for gradually implementing new security policies and identifying potential
atGPT . . N
3 5-turbo issues before fully enforcing them. In enforce mode, violations are both
logged and prevented, and the pod security standards are fully enforced.
This mode is the most restrictive and is recommended for production
environments where security is a top priority. Examples of violations that
could be prevented in enforce mode include running containers as root,
using host network or PID namespaces, and mounting sensitive host
directories into containers.
RoBERTa-
base- Kubernetes namespaces
Squad?2
12 | Flan-t5-xl default, kube-system, and kube-public
GPT4All- The initial namespaces from which Kubernetes starts include "default” and
LoRa (7B) "kube-system".
Kubernetes starts with three initial namespaces: default, kube-system, and
kube-public. The default namespace is where services and apps are created
by default. The kube-system namespace is used for Kubernetes
components, and the kube-public namespace is used for public resources.
ChatGPT These namespaces are created automatically when Kubernetes is installed
3.5-turbo and cannot be deleted. It is recommended to create additional namespaces
to organize and manage resources effectively. For example, a team can
create a namespace for their specific project or application, and all resources
related to that project can be created within that namespace. This helps to
avoid conflicts and makes it easier to manage resources.
RoBERTa-
base- an open-source container orchestration engine
Squad?2
13 Flan-t5-x] an open-source system for automating deployment, scaling, and
management of containerized applications
GPT4All-
LoRa (7B)
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Kubernetes is an open-source container orchestration engine that automates
the deployment, scaling, and management of containerized applications. It
groups containers that make up an application into logical units for easy
management and discovery. Kubernetes builds upon 15 years of experience
of running production workloads at Google, combined with best-of-breed
ideas and practices from the community. It is a powerful tool for managing
containerized applications in a cloud-native environment. With Kubernetes,
you can easily deploy, scale, and manage containerized applications across
multiple hosts and clusters. Some examples of companies that use
Kubernetes include Babylon, Booz Allen Hamilton, Booking.com, and
AppDirect.
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node
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kubelet is a daemon running inside each node of a Kubernetes cluster. It
manages pods and containers running within those nodes according to the
policies defined in the Kubernetes master.

ChatGPT
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kubelet is an agent that runs on each node in a Kubernetes cluster. Its main
responsibility is to ensure that containers are running on the node as
expected. It communicates with the Kubernetes API server to receive
instructions on which containers to run and how to run them. kubelet also
monitors the health of the containers and restarts them if necessary.
Additionally, it manages the node’s resources, such as CPU and memory, to
ensure that containers have the necessary resources to run. Examples of
kubelet configuration parameters include —~kubeconfig, which specifies the
path to a kubeconfig file for connecting to the API server, and
—eviction-hard, which sets eviction thresholds for pods based on resource
usage.
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a group of one or more application containers
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Kubernetes is a container runtime and Docker is a container runtime.
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Kubernetes and Docker are closely related technologies. Both were
developed around the same time and share many similarities. However,
they serve distinct purposes within modern cloud computing environments.
While Docker was designed primarily as a tool for building and managing
software containers, Kubernetes was built specifically to manage clusters of
containers across multiple hosts. In other words, while Docker focuses on
individual containers, Kubernetes focuses on groups of containers known as
pods. This means that if you want to deploy a single containerized app into
production, then Docker may suffice; however, if you need to scale up your
deployment to handle hundreds or thousands of instances, then Kubernetes
becomes essential.
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Kubernetes and Docker are two different technologies that can be used
together to create and manage containerized applications. Docker is a
containerization platform that allows developers to package their
applications and dependencies into a single container that can be easily
deployed and run on any system. Kubernetes, on the other hand, is a
container orchestration platform that automates the deployment, scaling,
and management of containerized applications. Kubernetes can work with
any containerization platform, including Docker, to manage and orchestrate
containers. For example, a developer can use Docker to create a
containerized application and then use Kubernetes to deploy and manage
that application across a cluster of servers. Kubernetes can also manage
containers created by other containerization platforms, such as rkt or cri-o.
Overall, the relationship between Kubernetes and Docker is complementary,
with Kubernetes providing a powerful platform for managing containerized
applications and Docker providing a flexible and easy-to-use
containerization platform.
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a container
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a pod is the smallest deployable unit of computing capacity in Kubernetes.
Each pod contains one or more containers, which together make up the
application logic of the system.

ChatGPT
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In Kubernetes, a pod is the smallest and simplest unit of deployment. It is a
logical host for one or more containers, and it provides a shared network
namespace and storage volumes for those containers. A pod can contain
multiple containers that share the same network namespace and can
communicate with each other using localhost. Pods are designed to be
ephemeral, meaning they can be created, destroyed, and replaced easily.
They are also designed to be scalable, meaning multiple identical pods can
be created to handle increased traffic or workload. For example, a pod can
contain a web server container and a database container, and they can
communicate with each other within the same pod. The pod can be
managed by a deployment, which ensures that the desired number of
replicas of the pod are running at all times.
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a unified unit that is self-contained and independent from other
applications
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using compass
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The company should start by identifying which aspects of its current
infrastructure need improvement. They may consider using tools such as
Kubernetes or Mesosphere to help them manage their containerized
applications. Additionally, they might look into adopting a CI/CD pipeline
to automate the process of building, testing, and deploying their
microservices. Finally, they will likely need to invest in training employees
who work with these new technologies so that everyone understands
what’s involved in this shift toward microservices.

ChatGPT
3.5-turbo

To make the transition from monolithic architecture to microservices, the
company would need to break down their application into smaller,
independent services that can be developed, deployed, and scaled
separately. This would require a comprehensive understanding of the
application’s architecture and dependencies, as well as the ability to identify
and isolate individual services. Once the services have been identified, they
can be deployed in containers using containerization platforms like Docker
or Kubernetes. Containerization allows for the creation of lightweight,
portable, and scalable environments that can be easily replicated and
managed. This enables the company to deploy multiple instances of the
same service, all running in the same environment, and to scale up or down
as needed. To ensure the success of the transition, the company would need
to have a clear understanding of the benefits and challenges of
microservices architecture, as well as the technical expertise to implement
and manage the new architecture. They may also need to invest in new
tools and technologies to support the transition, such as container
orchestration platforms, monitoring and logging tools, and automated
deployment pipelines. An example of a company that successfully
transitioned from monolithic architecture to microservices is Netflix. In
2012, Netflix began migrating its application to a microservices architecture,
which allowed them to scale their platform to support millions of users and
to release new features and updates more quickly. They used
containerization and container orchestration platforms like Docker and
Mesos to manage their services and developed a suite of tools and
technologies to support their new architecture. Today, Netflix is one of the
largest users of microservices architecture, with over 700 services running in
production.
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Kubernetes enables businesses to manage IT workloads efficiently
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utilizing multiple cloud providers and distributed across multiple regions to
provide a truly global multi-cluster environment

GPT4All-
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A multinational company with an extensively distributed system can utilize
Kubernetes to maintain consistent task management by setting up and
managing multi-cluster deployments. Kubernetes can help in managing all
the infrastructure and applications from a centralized location, providing
better visibility with standardized processes and proper DevOps practices.
This can significantly reduce the overall management complexity and help
in managing operational expenditure. For example, a company with data
centers in different regions can set up isolated Kubernetes clusters in each
region to cater to specific geographic regions. This can limit the scope of
regulatory requirements and enable organizations to target specific clusters
to meet different requirements and gain regulatory compliance relatively
easily. Additionally, a multi-cluster environment can help in isolating
production issues to a specific cluster, allowing developers to investigate
and fix issues without affecting other clusters. This can also ensure
availability as other clusters step in to prevent downtime in case of a
complete cluster failure. Moreover, a multi-cluster Kubernetes environment
can be the ideal platform for distributed computing, especially with
increasing edge computing requirements and the popularity of IoT services.
Developers can create containerized applications that can be deployed in
Kubernetes while providing a powerful orchestration engine distributed
across multiple regions. This eliminates the need to cater applications to
different environments and infrastructure. Overall, Kubernetes can help a
multinational company with an extensively distributed system to maintain
consistent task management by providing a centralized platform for
managing infrastructure and applications, isolating production issues, and
enabling distributed computing.
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in order to give millions of clients
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to move from their private data centers (if they are using any) to any cloud
environment such as AWS. Not only this, but they should also implement
the microservice architecture so that they can start using Docker containers.
Once they have the base framework ready, then they can start using the best
orchestration platform available, i.e., Kubernetes. This would enable the
teams to be autonomous in building applications and delivering them very
quickly.
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In order for this company to upgrade their deployment methods, they need
to first identify what type of platform they want to use. They can choose
between public clouds like Amazon Web Services (AWS), Microsoft Azure,
Google Cloud Platform, etc., or they can opt for an on-premises solution if
they prefer not to rely on third parties. The choice depends on factors like
cost, security concerns, compliance requirements, and availability of
resources. After choosing the appropriate infrastructure, the company must
ensure that all necessary components are installed correctly and configured
properly. To make sure everything works smoothly, they might consider
automating some tasks through scripting languages like Python, Ruby,
Bash, or PowerShell. Additionally, they can adopt containerization
technologies like Docker or Kubernetes to deploy and manage multiple
services efficiently. These tools allow developers to package software into
lightweight packages called containers, making it easier to run different
versions of the same application side by side without affecting each other’s
performance. Finally, the company can optimize their network connectivity
to improve response times and minimize latency issues. By doing these
things, the company can create a highly scalable and responsive platform
that meets customer demands while reducing operational overhead.

ChatGPT
3.5-turbo

To achieve a highly scalable and responsive platform, the company can
adopt a microservices architecture and containerization using Kubernetes.
By breaking down their monolithic codebase into smaller, independent
services, they can scale each service independently as needed. This
approach also allows for easier maintenance and updates, as changes can be
made to individual services without affecting the entire system.
Additionally, the company can move their infrastructure to a cloud
environment, such as AWS or Google Cloud, to take advantage of the
scalability and flexibility offered by cloud computing. This would allow
them to easily add or remove resources as needed to handle fluctuations in
traffic. Furthermore, the company can implement DevOps practices, such as
continuous integration and continuous deployment, to streamline their
development and deployment processes. This would allow them to quickly
and efficiently deploy updates and new features to their platform,
improving their responsiveness to customer needs. Overall, a combination
of microservices architecture, containerization with Kubernetes, cloud
infrastructure, and DevOps practices can help the company achieve a highly
scalable and responsive platform that meets the satisfaction of their
customers. Examples of companies that have successfully implemented
these practices include Netflix, Amazon, and Google.
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continuous security vulnerability scanning
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here are some recommendations for implementing security measures for
kubernetes: - improve visibility into container activity through monitoring
tools such as prometheus or datadog. these tools allow administrators to
detect anomalies and potential attacks early on. - ensure that all
components within the kubernetes stack are up-to-date with patches and
fixes. - configure access control lists (acls), firewall rules, and ips policies
based on the specific needs of the organization. - enable logging and
auditing capabilities so that any suspicious activities can be easily traced
back to their source. - utilize encryption technologies such as tls/ssl
certificates and vpn tunnels to protect data transfers across the network. -
regularly review and update security configurations to ensure they remain
effective against evolving attack vectors.

ChatGPT
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Here are some recommendations for implementing security measures for
Kubernetes: - Improve visibility into container activity through monitoring
tools such as Prometheus or Datadog. These tools allow administrators to
detect anomalies and potential attacks early on. - Ensure that all
components within the Kubernetes stack are up-to-date with patches and
fixes. - Configure access control lists (ACLs), firewall rules, and IPS policies
based on the specific needs of the organization. - Enable logging and
auditing capabilities so that any suspicious activities can be easily traced
back to their source. - Utilize encryption technologies such as TLS/SSL
certificates and VPN tunnels to protect data transfers across the network. -
Regularly review and update security configurations to ensure they remain
effective against evolving attack vectors.
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Docker Compose is limited to single-host deployments and lacks the
advanced orchestration capabilities of Kubernetes.
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Docker Compose and Kubernetes are both container orchestration
frameworks, but they have some key differences. Docker Compose is
designed to run containers on a single host machine, while Kubernetes can
run containers over a number of computers, virtual or real. Docker
Compose is best suited for small-scale applications that don’t require
complex orchestration, while Kubernetes is ideal for large-scale applications
that require high availability, scalability, and fault tolerance. Another key
difference is that Docker Compose defines multi-container Docker
applications and deploys them to a single server, while Kubernetes is a
production-grade container orchestrator that can run other container
runtimes, including Docker’s, over several machines, virtual or real.
Kubernetes provides advanced features such as automatic scaling, rolling
updates, and self-healing, which are essential for managing complex
applications in production environments. For example, if you have a small
web application that consists of a web server and a database, you can use
Docker Compose to define the services and configurations required to run
your application and launch it with a single command. On the other hand,
if you have a large e-commerce platform that consists of multiple
microservices, you can use Kubernetes to manage the deployment, scaling,
and monitoring of your application across multiple nodes and clusters.
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container orchestration tools
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Mesos is designed to be a more specialized cluster manager for running
distributed systems.
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1. apache mesos is a framework for building highly available and scalable
distributed systems. it allows you to build and operate large-scale data
centers or clouds. in contrast, kubernetes is focused on providing a simpler
approach to managing containerized applications across multiple machines.
2. one key differentiator between these two technologies is how they handle
application lifecycles. while mesos uses a centralized scheduler to
coordinate resources, kubernetes relies on pods to define the relationship
between containers and the host machine. this means that kubernetes offers
greater flexibility when it comes to defining the behavior of individual
containers within a larger application. 3. another important distinction is
the level of abstraction provided by each technology. mesos focuses on
abstracting away details like network topology and hardware configuration,
allowing administrators to concentrate on higher-level concerns like service
discovery and load balancing. by comparison, kubernetes emphasizes ease
of use and simplicity, making it easier for non-technical teams to get started
with containerization
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Mesos and Kubernetes are both container orchestration platforms, but they
have some differences in their design and target use cases. Mesos is
designed to be a general-purpose cluster manager that can handle a variety
of workloads, including traditional applications, big data processing, and
containerized applications. It provides a unified framework for managing
resources across different types of workloads and supports multiple
schedulers, allowing users to choose the one that best fits their needs.
Kubernetes, on the other hand, is primarily focused on containerized
applications and provides advanced features specifically tailored for
managing containerized workloads at scale. It is optimized for running
cloud-native applications and provides built-in support for containerization,
service discovery, load balancing, and scaling. Kubernetes also has a strong
ecosystem and community support, making it a popular choice for
managing containerized applications in production environments. If the
company’s primary focus is on containerized applications and they want a
platform that is specifically designed for managing containers, Kubernetes
would be a better choice. However, if they have a diverse set of workloads
and want a more general-purpose cluster manager that can handle different
types of applications, Mesos could be a suitable option. Ultimately, the
choice between Mesos and Kubernetes depends on the specific requirements
and use cases of the company:.
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deployments are useful for managing stateless applications, while
statefulsets are useful for managing stateful applications that require stable
network identities and persistent storage
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the main difference between using kubernetes deployments and statefulsets
is that deployments are typically used for stateless applications, while
statefulsets are more suited for stateful applications. deployments allow you
to manage sets of identical pods using common configurations, while
statefulsets treat each pod individually and require pods with unique
identities. deployments are lightweight and provide granular control over
the rollout of new pod versions and rollback to previous versions. they are
ideal for applications that do not require persistent storage and can easily be
replaced if a pod fails. on the other hand, statefulsets are used when state
has to be persisted, and require persistent storage to enable the application
to save its state and data across restarts. for example, if you are deploying a
web application that does not require persistent storage, you can use a
deployment. however, if you are deploying a database or a messaging
system that requires persistent storage and unique identities for each pod,
you should use a statefulset.
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24 kubernetes is well suited for complex applications. on the other hand,

Flan-t5-x1 docker swarm is designed for ease of use, making it a preferable choice for
simple applications.

GPT4AL- 1. docker swarm is simpler to install and configure compared to kubernet

LoRa (7B) . p g pared to kubernetes.
the major difference between docker swarm and kubernetes is based on
complexity. docker swarm is designed for ease of use, making it a preferable
choice for simple applications. on the other hand, kubernetes is more
powerful, customizable, and flexible, which comes at the cost of a steeper
initial learning curve. kubernetes is well suited for complex applications

Ch that require automatic scaling, intelligent scheduling, and high availability

atGPT ; - . . .

3 5-turbo of services through replication. however, the installation process is complex,
especially for beginners, and it takes specialized knowledge to master
kubernetes. in contrast, docker swarm is easier to install and configure, and
instances are typically consistent across operating systems. docker swarm
excels within smaller apps with fewer containers. overall, the right tool
depends on your organization’s needs and the complexity of your
applications.
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base- restarted while waiting for processes to terminate
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25 3/5when theprestopcompletes, the kubelet sends the sigterm signal to the

Flan-t5-x1 container. from that point, the container should close all long-lived
connections and prepare to terminate.

GPT4All-

LoRa (7B)
there is no specific procedure for halting or pausing a pod in kubernetes.
however, you can delete a pod using the kubectl delete command, as shown
in the context above. this will immediately terminate the pod, but it will be
relaunched by the cluster since it is part of a replicaset. if you want to
temporarily stop a pod, you can scale the number of replicas to 0 using the
kubectl scale command. this will effectively pause the pod until you scale

ChatGPT the replicas back up again. for example, if you have a deployment named

3.5-turbo my-deployment, you can pause it by running:kubectl scale deployment
my-deployment —replicas=0this will scale the deployment down to 0
replicas, effectively pausing all pods associated with it. to resume the
deployment, you can scale it back up to the desired number of
replicas:kubectl scale deployment my-deployment —replicas=3this will scale
the deployment back up to 3 replicas, effectively resuming the pods
associated with it.
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kubectl create job —from=cronjob/cronjob-name> job-name> -n
namespace-name>

GPT4All-
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to trigger a kubernetes cronjob manually, follow these steps: 1. install the
latest version of “kubectl’. you can download it from

https:/ /github.com/googlecloudplatform /kubernetes/releases/. 2. run
‘kubectl version’ to ensure that you have the correct version of ‘kubectl”. 3.
create a new cron job using the ‘kubectl create job’ command followed by
specifying the name of the existing cron job (‘—from’) and then creating a
new cron job with the same frequency and time zone as the existing cron
job. 4. specify the namespace where the cron jobs should exist when
creating them. 5. finally, start the newly created cron job using the ‘kubectl
apply’ command.

ChatGPT
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to trigger a kubernetes scheduled job manually for testing purposes, you
can create a simple job based on your scheduledjob. if you already run a
scheduledjob, there are jobs in history. you can export one of these jobs
using the command "kubectlgetjob < job — name > —oyaml > my;ob.yaml”.
then edit the yaml a little bit, erasing some unnecessary fields and run it
manually using the command "kubectlcreate — fmy;ob.yaml”. alternatively,
you can use the command “kubectlcreatejob — — from = cronjob/ <

cronjob — name >< job — name > —n < namespace — name > " to create a
new job from an existing cronjob. this command is available with kubectl
v1.10.1+ and is backwardly compatible with older clusters. it is important to
note that kubernetes skips scheduled starts if the last run hasn’t finished. to
replace incomplete runs when the next job is scheduled, you can use the

" — —replace” flag. additionally, you can apply the concurrency policy to the
cluster to create cronjobs that only permit a single run at any time. if you
encounter any errors while triggering the scheduled job manually, make
sure your kubectl version is up to date (21+) and check the starting
deadline, successful jobs history limit, and failed jobs history limit values.
you can also monitor cronjobs with mechanisms like the kubectl command
and retrieve container logs for individual jobs.
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preparing the hostsinstall a container runtime and kubeadm on all the hosts.
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to setup a kubernetes cluster using kubeadm, follow these steps: 1. install
the necessary packages such as docker, coreos, etc., if they aren’t already
present. 2. create an admin user account and configure the systemd service
files. 3. configure the kubelet and kube-proxy daemonsets. 4. run "kubeadm
init’ to generate the initial configmap and secret files needed during
installation. 5. edit the generated configmap and secret files to customize
them according to your needs. 6. run ‘kubeadm join —token xxxxxx” to join
the new master node to the existing cluster. 7. verify that the newly joined
master node is properly configured and functional.

ChatGPT
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to set up a kubernetes cluster using kubeadm, follow these steps:1. install
kubeadm on all nodes that will be part of the cluster.2. initialize the cluster
using the kubeadm init command. this will download and install the control
plane components and create the necessary configuration files.3. deploy a
pod network to the cluster using the kubectl apply command. this will
enable communication between the nodes in the cluster.4. join any number
of machines to the cluster using the kubeadm join command. this will add
the nodes to the cluster and enable them to run workloads.5. customize the
control plane components and other configuration options as needed using
the kubectl edit command.6. make sure to keep a record of the kubeadm
join command that was output during initialization, as this will be needed
to add additional nodes to the cluster.for example, to initialize a cluster with
kubeadm, you could run the following command:“‘sudo kubeadm init
—pod-network-cidr=192.168.0.0/16"'this would initialize the cluster with a
pod network cidr of 192.168.0.0/16, which would enable communication
between the nodes in the cluster. once the initialization is complete, you
would need to deploy a pod network to the cluster using the kubectl apply
command, such as:”“’kubectl apply -f

https:/ /docs.projectcalico.org/v3.14/manifests/ calico.yaml”’this would
deploy the calico network plugin to the cluster, which would enable
communication between the nodes. finally, you could join additional nodes
to the cluster using the kubeadm join command that was output during
initialization, such as:

“'sudokubeadmjoin192.168.1.100 : 6443 — —tokenabcdef.1234567890abcdef —
—discovery — token — ca — cert — hashsha256 :

1234567890abcde f1234567890abcde f 1234567890abcde f1234567890abcde f
this would add a new node to the cluster and enable it to run workloads.
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kubernetes can be run on a local machine using tools like kind, minikube,
and kubeadm. kind is a tool that allows you to run kubernetes on your local
computer. it requires docker to be installed and configured. the kind quick
start page provides instructions on how to get started with kind.minikube is
another tool that lets you run kubernetes locally. it runs an all-in-one or a
multi-node local kubernetes cluster on your personal computer (including
windows, macos, and linux pcs) so that you can try out kubernetes or use it
for daily development work. the official get started! guide provides
instructions on how to install and use minikube.kubeadm is a tool that can
be used to create and manage kubernetes clusters. it performs the actions
necessary to get a minimum viable, secure cluster up and running in a
user-friendly way. once installed, you can use it to create a cluster.overall,
running kubernetes on a local machine can be useful for testing and
development purposes before deploying to a production environment

Table 7.4: Responses of the best model-input combination along the evalua-
tion dataset.
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