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Abstract

AutoFDO is a system to simplify real-world deployment of
feedback-directed optimization (FDO). The system works by
sampling hardware performance monitors on production ma-
chines and using those profiles to guide optimization. Profile
data is stale by design, and we have implemented compiler
features to deliver stable speedup across releases. The result-
ing performance has a geometric mean improvement of 10.5

The system is deployed to hundreds of binaries at Google,
and it is extremely easy to enable; users need only to add
some flags to their release build. To date, AutoFDO has
increased the number of FDO users at Google by 8X and
has doubled the number of cycles spent in FDO-optimized
binaries. Over half of CPU cycles used are now spent in some
flavor of FDO-optimized binaries.

Categories and Subject Descriptors D.3.4 [Processor]:
Optimization; D.4 [Performance of Systems]: Design Stud-
ies

General Terms Performance

Keywords Feedback Directed Optimization, Sampling, Sys-
tem Profiling

1.

Google spent $11 billion on capital expenditures in 2014[2],
the majority of which was for production equipment, data-
center construction, and real estate purchases. With gains
from Moore’s law and Dennard scaling tapering in recent
years, there is increasing pressure for software to operate
more efficiently with existing resources. Improvements in the
compiler can yield big performance gains across the board,
which lead to big reductions in cost.
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A common approach for improving performance is feed-
back directed optimization (FDO), which uses information
about the code’s runtime behavior to guide optimization,
yielding improvements commonly in the 10-15% range and
sometimes over 30%. The case for using FDO for datacen-
ter applications is especially compelling, where even small
deployments can consume thousands of CPUs. However, un-
til recently only a few dozen of Google’s largest CPU con-
sumers had adopted FDO because the release process was
too difficult to maintain. Traditional FDO follows this three-
step pattern:

1. Compile with instrumentation
2. Run a benchmark to generate representative profile

3. Recompile with the profile

The nature of datacenter applications makes maintaining
a representative benchmark prohibitively difficult for many
users (it is even challenging for simple applications like
SPEC[16]). Binaries are typically large, compiled from mil-
lions of lines of C++ code, where the most performance-
critical portions are often rapidly changing[18]. They typ-
ically depend on many remote services, and the data they
process is often sensitive in nature, so storing and accessing
logs for loadtesting is complicated by security restrictions.
Further, the overhead of instrumentation causes servers to
behave very differently under load because default timeouts
are exceeded. Given these constraints, isolating real-world
behavior in a benchmark is a substantial barrier to entry.

In this paper, we describe AutoFDO, a system to collect
feedback from production workloads and apply it at com-
pile time. To enable AutoFDO, users need only add some
new flags to their build. AutoFDO works by sampling hard-
ware performance monitors on production machines and us-
ing those production profiles to compile the next release.
Because the profile is stale relative to the newest source,
we have developed compiler techniques to tolerate staleness
and deliver stable performance for the typical amount of
code change between releases. On benchmarks, AutoFDO
achieves 85% of the gains of traditional FDO, but in prac-
tice many projects have switched to AutoFDO from tradi-
tional processes and found performance to be equivalent,
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Figure 1. System Diagram.

likely because more representative input balances out less
precise profiles. To date, AutoFDO has increased the number
of FDO users at Google by 8X and has doubled the number
cycles spent in FDO-optimized binaries. Over half of CPU
cycles used are now spent in some flavor of FDO-optimized
binaries.

While the concept is simple, a warehouse-scale deploy-
ment involves many interesting challenges. This paper de-
tails the novel challenges solved in developing and produc-
tionizing AutoFDO:

e Using sampled profiles to achieve performance 85% as
good as with instrumentation

e Supporting iterative compilation with profiles from Aut-
oFDO optimized binaries with stable performance

e Tolerating stale profile data

® Scaling and automation for hundreds of production bina-
ries

2. System Overview

Figure 1 gives an overview of the system. AutoFDO lever-
ages the Google-wide Profiler[25] (GWP) to sample hard-
ware performance counters from production machines. Sam-
ples are stored in raw form in a Dremel[21] database, an-
notated with job metadata. Sampling incurs negligible over-
head to the system under observation, and further processing
happens offline using a relatively minuscule amount of data-
center resources.

Periodically, a batch job queries the database for aggre-
gated raw samples for each of the top binaries. The batch job
first symbolizes the raw samples, mapping addresses back to
their source location. Finally, symbolized samples are con-
verted to the compiler’s profile format and submitted to ver-
sion control[4].

During release, the compiler fetches the binary’s profile
from the source repository, uses the profile to annotate the
intermediate representation of the compiler to drive feedback
directed optimizations. The resulting binary is on average
10% faster than binaries optimized without AutoFDO.
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3. Profiling System
3.1 Profiling

In order for the compiler to use the profile, it needs to be
mapped onto the compiler intermediate representation (IR).
We begin with a binary-level profile, then convert that to a
source-level profile, which is finally converted into a stan-
dard compiler format which can be mapped onto the IR. The
binary-level profile has two maps:

e A map from binary instruction addresses to their fre-
quency. With the help of the CPU’s performance mon-
itoring unit (PMU), which is available on most of the
modern processors, one can use a sampling based ap-
proach to get this profile with negligible overhead. How-
ever, due to PMU design constraints, it is not straightfor-
ward to get an accurate instruction frequency profile[9].
Experiments[ 10] show that by sampling the last few taken
branches (e.g., LBR[24] and BHRB[22]), one can build a
near-accurate instruction frequency profile.

e A map from branches to their frequency. A branch is
represented as a {source, destination} address pair. As
with the instruction frequency profile, modern PMUs pro-
vide a mechanism to sample branch frequency with neg-
ligible overhead[24][22].

The binary-level profile by itself is meaningless to the
compiler. Program counters need to first be mapped to
source, which serves as a bridge between the binary-level
profile and compiler IR. Before introducing the source-level
profile, we need to first define some concepts.

An extended source location is a source line loca-
tion annotated with inline stack information. It can be con-
sidered as a stack of source locations where the top of the
stack is the source location of the sampled instruction, and
other entries represent the source locations of the inlined
callsites.

A source location is defined as a triplet:

e function name
® source line offset to function start

® discriminator

This triplet represents the relative source location within a
function. For example, for the program in Figure 2, foo is in-
lined into bar at the callsite in line #7. The extended source
location for the instruction at address 0x690 is [{bar, 1,
0}1. The extended source location for the instruction at ad-
dress 0x6a2is [{foo, 2, 0}, {bar, 2, 0}].

Discriminator[l] is a logical term used to distinguish
instructions that are mapped to the same source line but are
with different basic blocks. For example, for the program in
Figure 3, all instructions are mapped to the same source line,
but they are distributed in 3 basic blocks thus with different
discriminators.



Line Offset Source: Binary:

#1  #0 foo() { foo():

#2  #1 if (cond) 0x670: if_stmt.binary;
#3 #2 foo_stmt; 0x675: foo_stmt.binary;
#4 #3 ¥

#5

#6  #0 bar() { bar():

#7 #1 bar_stmt; 0x690: bar_stmt.binary;
#8  #2 foo(); 0x69d: if_stmt.binary;
#9 #3 } O0x6a2: foo_stmt.binary;

Binary Level Profile:

Instruction Address Sample Count

0x670 50
0x675 10
0x690 200
0x69d 200
Ox6a2 100

Figure 2. A simple program and its binary-level profile

A = (foo() ? bar()
D1 D2

Source: : baz());

Discriminator: D3

Figure 3. Discriminator assignment.

Using extended source location as the key for profile
database lookups greatly increases profile stability because a
change of one function will not affect the extended source lo-
cation of other functions, nor will compiler version changes
affect extended source locations.

The source-level profile is organized as a forest of trees
which are composed of ProfileNode nodes. Each profile
tree represents the sampled profile data for one standalone
function in the profiled binary. Inner nodes in a tree represent
function inline instances. Leaf tree nodes represent source
statements associated with extended source locations. An
inner node has the following properties:

e TotalCount: the total sample counts that are attributed
to the inline instance

e Function: the name of the function from which the in-
line instance originates

A leaf node has the following profile information associ-
ated with it:

® Count: the maximum sample count of instructions that
are attributed to the extended source location

e Targets: a map from indirect call target function names
to their frequencies. The map forms the frequency his-
togram of the indirect call targets for a specific indirect
call

In the source-level profile database, there is a map from
the extended source locations to a tree node. An actual in-
struction’s extended source location maps to a leaf node in
the source-level profile tree. If a callsite was inlined in the
profiled binary, the callsite’s extended source location maps
to an inner node in the tree, representing the inlined instance.
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Figure 4. The source-level profile for example in Figure 2

We use standard debug info[14] embedded in the binary
to convert the binary-level profile to the source-level profile.
The conversion is illustrated in Algorithms 1 and 2.With this
algorithm, converting the binary-level profile from Figure 2
will get the source-level profile as shown in Figure 4.

A statement at one extended source location may ex-
pand to multiple instructions. Ideally, all instructions that are
mapped to the same extended source location are from the
same basic block, and thus have identical frequency. In re-
ality, debug info can be skewed in an optimized binary[10],
making this assumption unsatisfied. In our implementation
in GCC, we use the maximum instruction frequency as the
frequency of an extended source location.

Algorithm 1 Converting Binary-level Profile To Source-
level Profile

1: for each address PC in InstructionProfile do
esl := ExtendedSourceLocation[ PC']
profn := Profile[esl]
count := MAX(InstructionProfile[ PC'], profn.Count)
profn.Count := count
while !esl.InlineStack.Empty() do
loc := esl.InlineStack.Pop()
Profile[esl].TotalCount += count
Profile[esl].Function := loc.Function
10: end while
11: end for

ORI NRLN

Algorithm 2 Converting Binary-level Profile To Call Profile

1: for each branch B in BranchProfile do
2: if B.SourcePC is indirect call then

3 esl := ExtendedSourceLocation[ B.SourcePC]
4. target := FunctionName[ B.TargetPC]

5: Profile[esl]. Targets[target] := BranchProfile[ B]
6 end if

7: end for

3.2 Fleet-wide Collection

Each machine in a Borg[28] cluster has a standard set of
daemons installed to support monitoring and system man-



agement. Among those is the perf_events daemon, which
exposes access to a restricted set of perf_events[3] func-
tionality. The GWP collector continuously crawls machines
in Borg in a random order and requests a 10-second system-
wide LBR [24] profile.

The AutoFDO collector covers about 10% of machines
each day, so around 0.001% of observable cycles are pro-
filed. During profiling, less than 1% overhead is observed.
Coverage may seem low, but the distribution of jobs is fairly
top-heavy; about 750 binaries account for 95% of CPU us-
age, and we obtain more than enough samples for top bina-
ries. There are tens of thousands of binaries in total, but those
further from the top are less important to optimize.

3.3 Database

For each sample the collector observes, it writes a row to
a Dremel database containing the addresses of the sample
and some metadata describing the context. Some examples
of metadata include:

® Borg user and job identifiers
e Binary name

® Revision

e Timestamp

e Build-ID, a unique identifier for each binary usually com-
puted by a hash of its contents at compile time.

This gives us the flexibility to do ad-hoc queries over weeks
of data to instantly generate custom profiles without having
to collect new data.

Ultimately, the samples need to be symbolized, and it is
tempting to symbolize at this stage in the pipeline. But each
sample can expand to thousands of bytes of information,
and there are many billions of samples each day. Instead,
we simply store sample addresses in the database and defer
symbolization to a later stage.

3.4 Updating Profiles

Profiles are stored in version control so that they can be
used in automated testing and to ensure that builds at the
same revision will be repeatable and hermetic. Several hun-
dred profiles are submitted weekly and are typically under a
megabyte each after compression, so the growth relative to
the rest of Google’s repository is negligible[4].

3.4.1 Configuration

There are tens of thousands of live binaries, so we have a
configuration schema to describe which binaries to generate
profiles for. Configuration and profiles are stored in a sep-
arate directory hierarchy that mirrors where each original
binary resides. Each binary may have one or more config-
uration files describing the database filters to use when se-
lecting profile samples. The common case is one config file
per binary, but some binaries are used in multiple scenarios
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where the code paths are drastically different, so users can
filter samples to build profiles specialized for each scenario.

For quality assurance, the profile generator has some
heuristics to assert that a profile is viable. For example, we
typically have line numbers for a 90% of samples, and ex-
pect to have discriminators for at least 5% of samples. Some
binaries exceed these constraints, so the config files are also
used to relax the rules for validation after a failure is man-
ually inspected to be a false positive. These assertions add
some toil for the system operators, but have caught several
instances of inadequate profile data before it reached end
users.

3.4.2 Batch Job

A batch job runs weekly to submit new profiles. First, it scans
the config hierarchy and loads each config file.

To avoid the complexity of merging profiles from multiple
revisions, we need to choose a single revision to use samples
from. There are often dozens of revisions of a binary that
are live at any moment, and we aim to choose a revision that
is both recent (so the source at head will be most similar)
and most heavily used (so the optimizations target the most
important use cases). Often, most of the revisions are for
test deployments and release candidates, and only 1 or 2 are
viable alternatives. The heuristic in place selects the most
recent revision that has at least 20% as many samples as the
most heavily used revision, looking at samples from the last
two weeks.

Once a revision has been selected, the database is queried
again to retrieve sample counts for that revision.

The samples are then symbolized, converted to the com-
piler’s profile format, and submitted over the previous profile
revision.

For testing, the batch job also does a dry run without
submitting twice a week to alert us of problems as soon as
possible.

3.5 High Performance Symbolization

When written to the database, samples need to be annotated
with metadata about how the binary was built. When gener-
ating the aggregated profile, hundreds of thousands of unique
addresses must be symbolized for each binary. We have de-
veloped a high-performance distributed symbolization ser-
vice to fill this need for all binaries running in Google data-
centers. The service is also used by profilers for ChromeOS,
Chrome for Windows, and Android.

To save space, released binaries have been stripped of
most or all of their metadata and symbolic debug info. Typi-
cally, to symbolize an address, we must first retrieve the orig-
inal unstripped binary, load it into memory, and look up the
items of interest in the DWARF[14] tables. Unstripped bina-
ries at Google can be multiple gigabytes, so just retrieving
the binary can take several minutes. Then symbolizing ad-
dresses using a tool like addr21ine can take several minutes
more and use multiple gigabytes of RAM.



An individual branch profile is system-wide, so it may
contain samples from hundreds of disparate binaries and
libraries. Google-wide, there are tens of thousands of unique
live binaries, many of which are updated daily or weekly. The
perf_events branch profile contains no metadata about the
provenance of those binaries, only each binary’s Build-ID,
which serves as a globally unique identifier for the binary.

The symbolization service addresses the need to quickly
retrieve metadata and symbols for a given Build-ID. When a
release binary is built, we ingest the binary into a Bigtable[8]
keyed by the Build-ID. Each row contains build metadata
(e.g., the name of the binary, its timestamp, and version) and
the complete symbolic line table in a format optimized for
fast retrieval. During ingestion, the binary’s address range is
partitioned into shards of approximately 100,000 addresses.
Each shard contains an indexed list of addresses and their
corresponding function, file, line, and discriminator informa-
tion.

With the symbolization service, retrieving metadata about
a Build-ID or symbolizing a single address usually takes tens
of milliseconds. Symbolizing all of the samples observed for
a single binary takes only a few tens of seconds. For the
client, it requires only enough memory to hold the data of in-
terest, and can be done with high concurrency. Performance
and client simplicity make the system easier to manage, but
the symbolization service also makes debugging and manu-
ally regenerating profiles much easier for developers.

4. Compiler Support
4.1 Profile Annotation

Profile annotation takes the source-level profile and IR as
inputs and produces annotated IR, i.e. control flow graph
with edge and node frequency. This is a 3-steps process:

4.1.1 Preparation

The source-level profile contains inline stack information for
the profiled binary and is therefore hierarchical. In the hier-
archical source-level profile, all instances of a given function
(inlined or standalone) are represented by different subtrees.
The data stored in those subtrees collectively represent the
context sensitive profile for that function. The preparation
step transforms the IR and makes it resemble the inline tree
structure stored in the source-level profile via selective in-
lining. By so doing, the compiler is enabled to fully utilize
the context-sensitivity embedded in the hierarchical profile.
In particular, the preparation inlining step requires:

e A top-down pass of the call graph to traverse all functions
to make inlining more selective. In the call graph shown
in Figure 5, bar — baz is only hot when bar is called
from foo (as shown by the dotted edge foo — bar —
baz. With top-down traversal, baz will only be inlined
through bar into foo, but not to the outline copy of bar.

e [teratively inline each callsite that maps to a hot inline in-
stance in the source-level profile. Note that if a callsite is

foo other

9, | bar |/

0
499, | bar |1

. 500
A A 4
baz

Figure 5. Context sensitive call graph

inlined in the profiled binary and recorded in the source-
level profile, but the instance is not hot enough, the call-
site will not be inlined in this step to avoid excessive code
growth. This step also needs to invoke indirect call pro-
motion to make sure that indirect calls are also inlinable.
See Section 4.2.1 for details. The algorithm is described
in Algorithm 3.

Algorithm 3 Preparation for Profile Annotation

1: for each node N in ReversePostOrder(CallGraph) do
2 callsites := CollectCallSites(N)

3 while !callsites.Empty() do

4 C = callsites.Pop()

5: esl := C'.ExtendedSourceLocation

6: if Profile[esl].TotalCount > Threshold then
7:

8

9

0

1:

newsites := Inline(C'.Callstmt)
callsites. Append(newsites)
end if
end while
end for

4.1.2 Annotate Basic Block Frequency

Except for the cold inline instances, all other function inline
instances recorded in the source-level profile database are
recreated in the IR after the preparation step. In other words,
each one of the newly created inline instances has exactly
one matching inner node in the source-level profile tree. The
profile data for an IR statement in the inline instance can
be simply retrieved through its extended source location.
Algorithm 4 illustrates the algorithm to calculate the basic
block frequencies from the source-level profile. In this step,
the profile samples from cold instances that are not inlined
during the preparation step are discarded. We can choose
to combine those cold instance’s profile with the standalone
instance’s profile, but in practice, it does not make much
performance difference.

Algorithm 4 Basic Block Frequency Annotation
1: for each basic block B in CFG do
2: B.Count :=0
3 B.Annotated := false
4 for each statement S in B do
5: esl := S.ExtendedSourceLocation
6: if Profile.Exist(esl) then
7.
8
9
0
1

B.Count := MAX(B.Count, Profile[es]].Count)
B.Annotated := true
end if
end for
: end for




Figure 6. Basic block frequency v.s. edge frequency

4.1.3 Calculate Edge Frequency

In theory, there are cases where one cannot derive edge fre-
quency from basic block frequency [7]. As illustrated in Fig-
ure 6, multiple edge frequency annotations could correspond
to the given basic block annotation. To make things worse,
the basic block frequency may not be reliable because some
source may have been eliminated in the optimized binary
that was used for profile collection, thus some basic blocks
may not have been frequency-annotated. The heuristic used
to propagate frequency across the control flow graph is illus-
trated in Algorithm 5. In this algorithm, an equivalence class
is a set of basic blocks that are in the same loop nest, and
dominate or post-dominate each other. All basic blocks in
an equivalence class should have identical frequency, thus
we set the equivalence class’s frequency to be the maxi-
mum frequency of all basic blocks in it. We then use a flow-
based heuristic to iteratively infer edge frequencies from ba-
sic block frequencies and update basic block frequencies if
a profile inconsistency is detected. A11EdgesAnnotated re-
turns true if all incoming or outgoing edges are annotated.
GetSingleUnannotated returns the only unannotated in-
coming or outgoing edge, if one exists. Note that when there
are inaccuracies, the algorithm only attempts to increase ba-
sic block frequency in order to make the algorithm terminate.
For most of the cases we have seen so far, the iterative algo-
rithm terminates in 3 iterations.

4.1.4 Sources of Profile Inaccuracies

Profile accuracy is critical to AutoFDO performance and it
is known[ 10] that binary-level profile collected using branch
traced sampling is very accurate. In fact, the main source of
profile inaccuracies comes from the debug information that
is used to map the binary-level profile to the source-level
profile consumed by the compiler.

Since the programs profiled by AutoFDO are running in
production, their binaries are fully optimized. The quality of
the debug information for an optimized binary can be com-
promised by various compiler optimizations/transformations.
The degraded debug information may in turn reduce the
source-level profile accuracy and affect AutoFDO optimiza-
tion. These optimizations can be roughly grouped into the
following categories:

® Recoverable transformations. This type of transforma-
tions leads to profile information loss, but it can be cor-
rected by the annotation algorithm. For example, in the
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Algorithm 5 Frequency Propagation

changed := true
for each basic block B in CFG do
ec := B.EquivalentClass
if B.Annotated and B.Count > ec.Count then
ec.Count := B.Count
ec.Annotated := true
end if
end for
while changed do
changed := false
for each basic block B in CFG do
ec := B.EquivalentClass
for incoming in [true, false] do
if AllEdgesAnnotated(B, incoming) then
total := GetTotalEdgeCount(B, incoming)
if lec.Annotated or total > ec.Count then
ec.Count := total
changed := true
end if
continue
end if
if ec.Annotated then
edge := GetSingleUnannotated(B, incoming)
if Exists(edge) then
continue
end if
total := GetTotalEdgeCount(B, incoming)
edge.count := ec.Count - total
edge.annotated := true
changed := true
end if
end for
end for
end while

1=0
T = a[M]

v v
T =a[M] >|:> If foo(T) > 0?

If foo(T) > 09

"

>

Figure 7. Loop invariant code motion

CFG as shown in Figure 7, the loop invariant code motion
(LCM) moves the statement T = a[M] outside the loop.
As a result, the sampled frequency of that line would be
incorrect with respect to the original source. During anno-
tation, the basic block will still be annotated with the cor-
rect profile which comes from statement call foo(T).
The MAX operation used in Algorithm 4 and Algorithm 1
can often derive the correct basic block frequency be-
cause redundancy elimination optimizations tend to move
instructions from more expensive blocks with higher fre-
quencies to blocks with lower frequencies. In some cases,
the code motion or block duplication transformation may
cause basic blocks (and source statements within) to be
completely eliminated. The flow-based algorithm using
equivalent classes described in Algorithm 5 is designed
to handle this situation. Other than LICM, partial redun-
dancy elimination (PRE), jump threading, code hoisting,
code sinking, loop unswitching, and tail duplication also
fall into this category.



e Unrecoverable benign transformations. Some optimiza-
tions may change the profile significantly, such that the
missing information cannot be easily recovered by the
annotation algorithm. However, the profile loss is local-
ized in one small isolated code region, and the optimiza-
tion decisions on that region will not be affected by the
inaccuracy. For example, the full loop unroller may de-
cide to flatten out a small loop, which makes it impossible
for profile to represent the original loop structure. How-
ever, the full loop unroller makes the decision based on
static source information such as loop size and constant
trip count, so the lost information for the loop region does
not really matter. In addition, the scaled down frequency
for the fully unrolled loop does not affect the frequency of
its surrounding basic blocks, so optimizations outside the
loop will not be affected either. Unreachable code elimi-
nation is another example of this kind.

e Unrecoverable destructive changes. Optimizations in this
group will lead to information loss and the optimizer can
be misled to make suboptimal decisions based on the in-
correct profile. For example, the loop unroller uses pro-
file data such as a loop’s average trip count to decide how
the loop should be unrolled. However if the loop was un-
rolled previously in the profiled binary, the average trip
count computed from the profile data will be smaller,
which can lead to the wrong unrolling decision for the
loop. Optimizations of this kind include indirect call pro-
motion, function cloning, if conversion, etc. This type of
optimization is usually hard to deal with in general. Spe-
cial handling is needed for each one of the cases. See sec-
tion 4.2.1 for a description on how indirect function call
promotion is handled. In general, whenever there is code
duplication, the SUM operation should be used instead
of MAX to derive source-level profile frequency. However
when mapping the sampled addresses in the binary-level
profile to extended source locations, there is no easy way
to tell whether multiple addresses from the same location
are clones or not. To completely solve this problem, the
source discriminator support needs to be extended to dis-
tinguish instructions generated by code duplication. This
solution will also increase the size of debug info.

4.2 Production Deployment

After the source-level profile is annotated on the IR, it is
straight-forward for other feedback directed optimizations
to kick in and use the profile data. However, in order for
AutoFDO to be useful in a production environment, there
are still two problems to solve:

4.2.1 Iterative Compilation

The AutoFDO profile for a target program is collected di-
rectly from an optimized binary running in production. The
profile is used to further optimize the binary to be deployed
to production and become the new profiling target. Certain
feedback directed optimizations are so aggressive that spe-
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cial care needs to be taken when using profiles collected from
a binary aggressively optimized with AutoFDO. For exam-
ple, AutoFDO will speculatively promote a hot indirect call
and inline it. If we profile from an AutoFDO-optimized bi-
nary, the indirect call will become much colder, and the in-
line instance of the promoted direct call will become hot.
When using this profile, during annotation, the profile data
for the inlined instance cannot be used in annotation because
the indirect call promotion has not happened so there is no di-
rect call to be inlined in the preparation step. And later in the
indirect promotion pass (usually run after the profile anno-
tation step), the call will not be promoted to the original hot
target because it does not have the indirect call target profile
any more. As a result, the performance will likely drop when
using profiles collected from AutoFDO optimized binary. In
the next iteration, the performance will recover because the
indirect call that failed to be promoted in the previous iter-
ation, appears again in the profile. In Section 5.2, we will
show the performance impact of iterative compilation when
indirect calls are not specially handled.

Algorithm 6 Preparation With Indirect Call Handling

1: for each node N in ReversePostOrder(CallGraph) do
2 callsites := CollectCallSites(N')

3 while !callsites. Empty() do

4: C' := callsites.Pop()

5: esl := C'.ExtendedSourceLocation

6

7

8

9

if Profile[esl]. TotalCount > Threshold then
if IsIndirectCall(C) then
dcall := Promote(C', Profile[esl].Function)
else

10: dcall := C.Callstmt
11: end if

12: newsites := Inline(dcall)
13: callsites. Append(newsites)
14: end if

15: end while

16: end for

To solve this problem, the preparation step is adjusted
as in Algorithm 6 to integrate indirect call promotion. If an
indirect call is promoted, inlined and proved to be hot in the
profile, the preparation step will force promote and inline the
indirect call. To support this transformation, the node that is
mapped from an indirect call site is enhanced to have both
the inner node’s property (i.e. total_count and function)
and the leaf node’s property (i.e. count and targets). The
former represents the inlined target function the indirect call
is promoted to, while the latter represents the default path
with the unpromoted indirect call. To support more general
indirect call promotion, a linked list of inner nodes can be
used to track all promoted targets in the source-level profile.

Though iterative compilation adds more complexity to
AutoFDO, it also brings benefits. Note that we use top-down
inlining in the preparation stage. After profile annotation,
we have another inline pass to inline hot callsites that are
not inlined in the previous iteration. So in the next iteration,
we will have finer grained context for the newly inlined hot
callees. The benefit will diminish after a few iterations when
the second inline pass has no more hot candidates to inline.



4.2.2 Stale Source Code

AutoFDO collects profiles from production binaries, then
uses these profiles when building new releases in which the
source code for a binary may have changed relative to the
profiled binary. As a result, it is important to design the
system to be tolerant to source changes. Instead of using
{file name, line number, discriminator}[10], we
use {function name, line offset, discriminator}
triplet to represent the source location. This can effectively
tolerate file name/path changes, and can also lock the source
change within one function. Le. if function foo () has some
modification, even if bar () is in the same source file, as
long as bar () is unchanged, the profile of bar () can still be
used.

In practice, this approach is very effective in tolerating
source changes when using AutoFDO profile. As section 5.3
show, the performance penalty is small on major data center
applications. This is because their profiles are mostly flat,
and it is not likely that all hot functions have source changes
at the same time. Instead, source change tends to happen
gradually and has minor impact between two consecutive
releases. Thus for design simplicity, this is the only approach
we use to tackle the source code staleness. We do not detect
source changes, nor do we try to rectify the profile. We do
provide a migration path for user to recover quickly from
potential performance loss due to stale profile. User can
quickly push a new suboptimal version to production for
profile collection. Once we have collected enough samples,
anew release is built with the new profile to recover from the
performance loss. This migration has not been activated for
a single project so far due to high performance in tolerating
source change.

5. Performance Evaluation
5.1 AutoFDO vs FDO

We randomly chose some important Google internal appli-
cations, and use their benchmarks to compare performance
between AutoFDO and traditional instrumentation based
FDO. As we cannot collect instrumented profile from pro-
duction, for both FDO and AutoFDO, profiles are collected
from the benchmark itself. As can be seen from Table 1, for
most benchmarks, AutoFDO can achieve >90% of the FDO
speedup. The gap is mostly due to inaccurate debug info that
is used to represent the AutoFDO profile. AutoFDO tends to
be less effective where loop nesting is tight and complicated
because:

® Feedback directed loop optimization usually requires
very accurate profile info (e.g. loop trip count, etc).

e Debug info is usually polluted by aggressive loop opti-
mizations.

For example, media encoding/decoding such as that in the
encoder application usually benefits less from AutoFDO.
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Application FDO AutoFDO Ratio
server 17.61% 15.89% 90.23%
graphl 14.68% | 14.04% 95.65%
graph2 7.16% 6.27% 87.50%
machine learning1 8.92% 8.46% 94.85%
machine learning2 7.09% 6.60% 93.06%
encoder 8.63% 3.31% 38.37%
protobuf 16.96% 14.40% 84.94%
artificial intelligencel 10.12% 10.12% 100.00%
artificial intelligence2 13.24% 11.33% 85.61%
data mining 20.48% | 15.54% 75.86%
mean 12.40% | 10.52% 84.84%

Table 1. AutoFDO and FDO performance (speedup against
02 binary) comparison on Google internal applications

Application FDO AutoFDO Ratio
400.perlbench 15.27% 14.99% 98.17%
401.bzip 1.35% 1.00% 74.07%
403.gcc 7.73% 7.52% 97.28%
429.mef 0.04% 2.75% 100.00%
445.gobmk 3.67% 3.23% 88.01%
456.hmmer -0.73% 1.90% 100.00%
458.sjeng 6.19% 6.03% 97.42%
462.libquantum | -10.41% | -0.61% 100.00%
464.h264ref 1.61% -1.75% 0.00%
471.omnetpp 4.03% 1.31% 32.51%
473.astar 8.86% 10.12% 114.20%
483.xalancbmk 14.44% 11.98% 82.96%
mean 4.40% 4.87% 112.33%

Table 2. AutoFDO and FDO performance (speedup against
02 binary) comparison on SPECCPU 2006 integer bench-
marks

We also evaluated AutoFDO performance on SPEC-
CPU 2006[16] integer benchmarks, as shown in Table 2.
The performance are evaluated on Intel Westmere plat-
form. The compiler is GCC (1231122 from google/gcc-4_9
branch). AutoFDO has shown similar speedup with instru-
mentation based FDO. Note that for some applications (like
libquantum), due to lack of tuning and mis-optimization,
FDO/AutoFDO has introduced negative speedups, which we
have not observed from our production applications.

5.2 Iterative AutoFDO

As illustrated in Section 4.2.1, if the profile is collected from
an AutoFDO-optimized binary, some feedback based opti-
mizations would affect debug info, which will prevent the
same optimization from happening in the next iteration of
the AutoFDO build. We randomly choose some internal per-
formance benchmarks to perform iterative AutoFDO com-
pilation: for the first iteration, we use profile collected from
02 binary; for the Nth iteration, the profile is collected from
the N-1th iteration. As can be seen in Figure 8, most appli-
cation performance fluctuates every other iteration. After in-
tegrating indirect call promotion into the profile preparation
step, the iterative AutoFDO performance is much smoother,
as shown in Figure 9. Later iterations also tend to perform
better than the first iteration because more context is col-
lected in later iterations. For some applications, AutoFDO
performance in later iteration even exceeds instrumentation
based FDO.
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Figure 8. Iterative AutoFDO speedup (comparing with non-
FDO binary) for different application (without integrating
indirect call promotion into preparation step).
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Figure 9. Iterative AutoFDO speedup (comparing with non-
FDO binary) for different application (integrating indirect
call promotion into preparation step).

Note that there are other feedback directed optimizations
that could make iterative AutoFDO performance fluctuate.
E.g. loop unrolling can distort loop trip counts in the col-
lected profile. In the next iteration, the compiler makes less
aggressive unrolling decision based on profile data, which
makes unrolling optimization less effective. From our expe-
rience, for most of the C++ applications in Google, fixing
indirect call promotion can solve most of the performance
fluctuation issues in iterative AutoFDO.

Figure 10 shows the iterative AutoFDO performance
for SPECCPU 2006 integer benchmarks. Most benchmarks
show stable performance between iterations. Some bench-
marks (e.g. 458.sjeng) shows variation between two iter-
ations. This is because most of the performance benefits
comes from loop based optimizations(e.g. loop unrolling),
which does not work well in iterative AutoFDO.

5.3 Impact of Stale Profiles

In this experiment, we use old release binaries to collect the
profile, and use the stale profile to optimize the latest source
code. In Figure 11, we compared two ways to represent
source location in profile: using absolute line number and us-
ing offset to the function start line. We choose an application
that has a relatively stable code base, i.e. its source does not
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Figure 10. Iterative AutoFDO speedup (comparing with
non-FDO binary) for SPECCPU 2006 integer benchmarks.
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Figure 11. AutoFDO speedup (comparing with non-FDO
binary) over staleness(weeks)

change very frequently. When using absolute line number as
the key to represent source location, the speedup will quickly
degrade as the profile becomes stale. When using offset to
function start line as the key to represent source location, the
speedup degrades gracefully over time as the profile grows
stale. In Figure 12, we show speedup-over-staleness for 3
major applications. For applications 2 and 3, as they are al-
ready in mature state, using stale profile has nearly no im-
pact on its performance. Application 1 is a rapid-changing
project, with lots of source changes to its hottest code dur-
ing the experiment’s time range. For this application, using
3-weeks old profile only incurs a 2% to 3% of performance
penalty; using 6-months old profile can still provide 50% of
the speedup obtained from using fresh profile.

6. Experience

The process of deploying AutoFDO in Google’s production
data centers has exposed many lessons along the way.

6.1 Testing

Introducing a bug via compiler transformations can be an
annoying burden in the best case or lead to subtle data cor-
ruption in the worst case, so testing is of paramount con-
cern. Google has an internal benchmark suite to exercise the
various compilation modes and ensure stable performance
across releases. Further, when releasing a binary compiled
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Figure 12. AutoFDO speedup (comparing with non-FDO
binary) over staleness(weeks) for different applications

with FDO (in general, not just AutoFDO), teams also com-
pile and run related tests using the generated profile, so hun-
dreds of FDO-compiled tests may be run to qualify a binary
for release. To date, only one production bug has been at-
tributable to the compiler; a third party library exposed an
optimizer bug that was not well-tested because most Google
C++ applications do not use C++ exception handling.

It is somewhat common for FDO to expose latent bugs in
applications. FDO can lead the compiler to make substan-
tially different optimization decisions, especially with inlin-
ing, which can lead to failures to compile due to missing
or duplicate symbols or runtime failures due to uninitialized
uses and stack overflow. The risk exposed by FDO is similar
to that of a normal compiler upgrade.

6.2 Stability

For latency-sensitive workloads, stable performance is es-
pecially important. Increasingly, latency-sensitive users are
switching from traditional FDO to AutoFDO despite its
slightly inferior benchmark performance. Their production
monitoring has shown that the realized performance is equiv-
alent between FDO and AutoFDO, indicating that imprecise
profiles from real workloads are as good as precise profiles
from training inputs. In one case, a user discovered that a rare
error condition had poorly optimized code (because the pro-
file suggested it was cold), which led to cascading overload
of their service. They had to disable feedback-directed opti-
mization altogether because stable performance outweighed
average performance in this case. Note that this situation
could arise with traditional FDO as well if the error path is
not covered proportionally. To work around this issue, we
are investigating disabling FDO on a per-file basis.

6.3 Context Sensitivity

Generated profiles instruction counts are proportional to real-
world behavior. By default, we will generate a single profile
for a given binary. However, some binaries are used by mul-
tiple teams with very different workloads, and the merged
profile may not be optimal for the largest user and may actu-
ally penalize smaller users. To resolve this, we allow multiple
profiles to be generated for each binary, and samples can be
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partitioned by any metadata relating to the binary (usually
the Borg job where the samples were observed).

6.4 Utility

FDO generally is most effective on code that has many func-
tion calls and biased branches that the compiler cannot stat-
ically predict. This type of code accounts for a large frac-
tion of Google’s entire software footprint. However, there
is a considerable amount of time spent in routines that are
already very well tuned, like compression, encryption, and
math libraries. FDO provides little benefit for those types of
applications.

6.5 Release Integration

Google’s release package manager has integration with the
build system that makes it very easy to build a binary and si-
multaneously package it for deployment and archival. When
building a system that requires multiple binaries (as is of-
ten the case with multi-stage MapReduce[12] jobs), it is
common to put all of the binaries into the same archive.
Sometimes these binaries are even sub-packaged within Java,
Python, or Shell archives. This is problematic for FDO be-
cause the binaries must all be built in the same build in-
vocation, with the same profile. Unfortunately, there is no
convenient solution; each binary that is to use FDO must be
compiled and archived separately.

7. Future Work

Many opportunities remain to enhance performance for ex-
isting AutoFDO users. As mentioned in Section 4.1.4, we
can further improve profile quality by enhancing the dis-
criminator to record cloned instructions. Traditionally, top
cycle consumers have also enabled cross-module optimiza-
tion (LIPO)[20], which can often yield an extra 5-10% per-
formance over FDO. Compiling with LIPO is more complex
than traditional FDO, and has taken more work in compiler
internals and build system integration to operate with Aut-
oFDO. We are currently in the final steps of making Aut-
oFDO+LIPO (AutoLIPO) available and as easy to use as
AutoFDO. Traditional FDO supports targeted value profil-
ing, e.g., of the distribution of size and alignment of argu-
ments to memcpy. We are investigating ways to obtain this
information via sampling.

We are also working on ThinLTO[17], a new approach to
cross-module optimization which aims to scale better than
existing techniques. ThinLTO makes module grouping deci-
sions at compile time, but in a lazy mode that facilitates large
scale parallelism.

8. Related work

In a recent paper[9], sampling based profiling is used to
drive feedback directed compiler optimization. The author
observed that profile accuracy is very important to Sam-
pleFDO performance, and proposed to improve profile ac-
curacy by sampling multiple events. Follow-up research [10]



refines this work by sampling the LBR. It provides theoreti-
cal proof that LBR sampling can provide a near fully accu-
rate instruction frequency profile. Our work builds on top of
this paper, i.e. using LBR for binary-level profile collection.
We differ in how we represent and use the source profile:

e We introduce a separate step to prepare for annotation
for function inline instances. This is important for per-
formance of C++ applications where function inlining is
common.

e We use a flow based algorithm to propagate edge fre-
quency; [10] uses Minimum Cost Circulation algorithm
[19]. In theory, this approach is equivalent to those in[10],
but our flow based algorithm is conceptually simple, and
much more efficient than the minimal-cost circulation.

Aside from the differences in compiler implementation,
this paper also discusses issues discovered while deploying
AutoFDO to production (e.g. iterative compilation and stale
profile) that are not covered by [10].

Shen et. al proposed a framework [26] to migrate an old
profile to a new version of source code. They use different
metrics to check if some part of the old profile is reusable for
the new source, and selectively instrument the new source
to only collect profiles that needs to be recollected. Their
approach mainly focuses on offline profiling, while we focus
on online profiling. Instead of recollecting profiles, we reuse
the entire stale profile and tolerate discrepancies, which turns
out to be effective for stable performance.

Wang et. al proposed a binary matching algorithm to
map stale profile to the new binary[29]. The input of their
algorithm is stale profile and both the old and new binary.
With careful binary matching, their algorithm can accurately
map stale profile to the new binary. In our experience, binary
matching of basic blocks is hard for rapidly changing C++
binaries because inline decisions would be very different
between two versions of the binary. Instead of taking the old
binary as input, we simplified the process by just looking at
the stale profile and new source.

Different methods have been proposed for online pro-
filing. Some methods use PMU-based sampling to collect
system-wide profiles. DCPI[6] is designed to profile contin-
uously in production and provide insights on how to fine-
tune performance problems. The Google-wide Profiler[25]
extends the continuous sampling profiler to warehouse scale.
This paper builds on top of the Google-wide Profiler to au-
tomatically guide compiler optimizations for the entire data
center.

Some methods do not rely on the hardware PMU. For ex-
ample, the Morph system[30] collects profiles via statistical
sampling of the program counter on clock interrupts. Alter-
natively, Conte et al. proposed sampling the contents of the
branch-prediction hardware using kernel-mode instructions
to infer an edge profile[11]. In particular, the tags and tar-
get addresses stored in the branch target buffer (BTB) serve
to identify an arc in an application, and the branch history
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stored by the branch predictor can be used to estimate each
edge’s weight. These methods do not provide accurate in-
struction frequency profiles, thus are less effective in driving
compiler optimization.

Some methods build on ideas from both program in-
strumentation and statistical sampling. For example, Traub,
Schechter, and Smith propose periodically inserting instru-
mentation code to capture a small and fixed number of the
branch’s executions[27]. A post-processing step is used to
derive traditional edge profiles from the sampled branch bi-
ases collected. Their experiments show that the derived pro-
files show competitive performance gains when compared
with using complete edge profiles to drive a superblock
scheduler. Rather than dynamically modifying the binary,
others have proposed a similar framework that performs code
duplication and uses compiler-inserted counter-based sam-
pling to switch between instrumented and non-instrumented
code in a controlled, fine-grained manner[15]. Ammons,
Ball, and Larus proposed instrumenting programs to read
hardware performance counters[5]. By selecting where to
reset and sample the counters, the authors are able to extract
flow and context sensitive profiles. These profiles are not
limited to simple frequency profiles. The authors show, for
example, how to collect flow sensitive cache miss profiles
from an application. All these methods involve instrumenta-
tion, which is too intrusive and not acceptable in a production
runtime environment.

Some methods propose specialized hardware to facili-
tate PMU-based profiling. ProfileMe was proposed hardware
support to allow accurate instruction-level sampling[13] for
Alpha processors. Merten et al. also propose specialized
hardware support for identifying program hot spots[23]. Un-
fortunately the hardware they propose is not available in to-
day’s commercial processors.

9. Conclusion

Combined with production automation and scale, AutoFDO
has simplified the deployment of FDO in our datacenters to
require only adding some compiler flags. These advances
have led to an 8X increase in customer adoption and doubled
the number of cycles covered by FDO.
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