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Abstract
Deep neural networks in computer vision have shown remarkable progress in recogniz-
ing facial genetic syndromes. Many genetic syndromes are difficult to detect, even for
experienced clinicians, and computer-aided phenotyping can accelerate clinical diagnosis.
High-stakes clinical tasks using deep learning, as in clinical genetics, require human un-
derstandable explanations for model decisions. Saliency methods are used to explain DNN
predictions in various image analysis domains but have yet to be studied in facial genetics.
The syndromic features of most genetic conditions are often localized to areas like the eyes,
nose, and mouth. In this paper, to summarize the contribution of key facial regions to a
specific disease prediction, we propose a face region relevance score that can be applied to
any saliency method. We also investigate how prior knowledge, namely human phenotype
ontology and DNN model explanations, align. Quantitative experiments are performed on
a new database containing over 3,500 images of 11 rare facial syndromes, a healthy control
group, and an additional test set of 171 facial images, whose respective facial phenotypes
are labeled by clinicians. Current saliency methods are good at capturing dysmorphism in
particular regions (parts of the face), but they may not completely capture all the relevant
features in a given person or condition. Our study indicates which saliency explanations
and face regions are more consistent with the phenotypes of specific genetic syndromes and
could be used in large-scale clinical evaluations.

1. Introduction

Genetic disorders refer to medical conditions caused by abnormalities in or affecting a
person’s DNA. Precise diagnosis is important for optimal care. As genetic conditions of-
ten affect the face, clinicians rely on careful physical examination of the face to identify
which condition a patient may have. Traditional computer vision based on feature engi-
neering and, more recently, deep learning approaches have been shown to predict genetic
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syndromes from facial images (Gurovich et al., 2019). However, such high-stake decisions
require model explanations and, more specifically, a human-AI collaboration that supports
clinicians’ decision-making and diagnosis.

In recent years, machine learning applications, primarily based on deep and representa-
tion learning, have gained importance in digital healthcare and medical image processing
tasks. Deep learning models showed remarkable performance in many tasks, which also
caused much enthusiasm in the medical domain. However, human experts need explana-
tions for high-stake decisions, as in human medicine and healthcare. Deep neural networks
(DNN) are not inherently interpretable, so they must be explained. In computer vision,
saliency maps (also called visual feature attribution methods) are well established, and they
quantify the importance of image pixels for a network’s decision.

Saliency methods either use a model’s internal mechanisms and parameters (model spe-
cific) or are independent of the DNN model (model agnostic). In medical image analysis,
there are many domains, such as histopathology, radiology, or ophthalmology, where saliency
methods are used to explain DNN models (see for an overview, Van der Velden et al. (2022)).
Even though the evaluation of saliency maps is not yet standardized, computational tasks
such as object detection or recognition in various medical imaging applications can be eval-
uated relatively easily. However, in face images, multiple or all regions can play a role in the
decision with varying importance. For instance, an image with Williams syndrome can have
syndromic features affecting the eyes, nose, and mouth at the same time, and measuring
localization performance by the intersection of regions is not straightforward. Furthermore,
the specific underlying syndromes may be subtle or difficult to identify even for a highly
trained clinician (Figure 1). Recognition of facial genetic conditions is more challenging
than other popular face analysis tasks, such as identity or facial expression recognition, and
requires human genetics expertise and clinical experience.

Explainable machine learning approaches in facial genetics are important in clinical
applications, where phenotypic features help inform the differential diagnosis and decision-
making, such as the genetic testing strategy. The Human Phenotype Ontology (HPO) is
the most comprehensive and standardized collection of human diseases and phenotypes and
a highly-used source for clinical genetics creating a computational bridge between genome
biology and clinical medicine (Köhler et al., 2020). Previous computer vision work in fa-
cial genetics did not investigate the relationship between clinicians’ and DNNs’ decisions.
Relating DNN decisions and HPO is an open research direction to evaluate DNN decisions
and investigate their strengths and drawbacks.

In this study, we aim to generate more structured, robust, and understandable expla-
nations based on saliency maps that relate the network’s decision to facial regions and

1. All images used in the study are from publicly available sources, and we make the versions of the publicly
available images included in our analyses available (via CC0 license) for the purpose of reproducibility
and research, with the assumption that these would only be used for purposes that would be considered
fair use. These data were compiled to produce a new, derivative work, which we offer as a whole. All
images are publicly available (all are used with appropriate permission), and sources are listed in the
appendix.

2. 22q11.2DS: 22q11.2 deletion syndrome; Angelman: Angelman syndrome; BWS: Beckwith-Wiedemann
syndrome; CdLS: Cornelia de Lange syndrome; Down: Down syndrome; KS: Kabuki syndrome; NS:
Noonan syndrome; PWS: Prader-Willi syndrome; RSTS: Rubinstein-Taybi syndrome; Unaffected: Un-
affected individual; WHS: Wolf-Hirschhorn syndrome; WS: Williams syndrome
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Figure 1: Representative images of individuals with specific genetic conditions, as well as
unaffected individuals1,2.

phenotypes that are known to be highly relevant based on the HPO taxonomy. We do this
by proposing a region-based explanation approach that uses any saliency method and face
parsing and generates coefficients representing the importance of face regions for DNN’s
prediction.

To validate our approach, we create a new facial image database of genetic conditions and
an unaffected control group, carefully collected and confirmed by geneticists from previously
published and other publicly available web-based resources.

Our paper aims to fill this gap. Our main contributions are as follows:

1. We propose a region-based saliency explanation approach to validate and compare
DNN decisions in recognition of facial genetic syndromes. Our approach highlights
the importance of face regions for DNN decisions. In this way, model explanations,
together with predictions, provide more structured evidence about model predictions
and potentially support clinicians’ examination.

2. We create a new face database containing over 3,500 images of 11 rare facial syndromes
and a healthy group to validate the proposed approach and further machine learning
research in facial genetics. Clinicians validated the disease labels and carefully labeled
the most prominent HPO terms in a test set for fine-grained analysis 3.

3. The evaluation of the region-based saliency explanation also contains twofold contri-
butions: one is statistical testing of how DNN’s decisions are faithful to show the most

3. The links and directions to recreate the data, phenotype annotations (HPO terms) are publicly available
under https://doi.org/10.5281/zenodo.8209022. Source code is also available at https://github.
com/sumeromer/facial-gestalt-xai.

3

https://doi.org/10.5281/zenodo.8209022
https://github.com/sumeromer/facial-gestalt-xai
https://github.com/sumeromer/facial-gestalt-xai


Region-based Saliency Explanations on the Recognition of Facial Genetic Syndromes

influential facial regions to distinguish unaffected and syndromic groups, and the sec-
ond is a correlation analysis of region-based explanations of DNN’s predictions and the
physicians’ decisions based on HPO taxonomy. Our preliminary evaluation shows the
strengths and drawbacks of saliency map methods and a promising direction toward
human understandable explanations in recognizing rare facial genetic syndromes.

Generalizable Insights about Machine Learning in the Context of Healthcare

Computer vision and machine learning bring powerful solutions to the recognition of facial
genetic syndromes; however, current DNN-based approaches are opaque models and lack
the necessary evidence needed for clinical applications. To the best of our knowledge, none
of the previous studies deploying machine learning have used model explanations yet.

Our study can be an exemplar for further research in explainable machine learning to
evaluate and attribute model decisions to medical ontologies as we did by using HPO. These
insights are not limited to facial genetics, but also applicable to different modalities such as
medical imaging or electronic health records to align decisions of machine learning classifiers
and ontologies in support of clinical decision-making.

The rest of the paper is organized as follows: In Section 2, we review the literature on
both computer vision approaches in recognition of facial genetic syndromes and explainable
AI methods in deep learning. Section 3 presents our region-based saliency explanation
approach for facial genetic syndromes. Section 4 describes data collection, HPO annotation,
and region of the interest selection that will be used in our approach as well as classification
model and experimental settings. Subsequently, in Section 5, we present our experimental
results to distinguish unaffected and syndromic groups (how faithful DNN’s prediction is)
and the relationship between our region-based saliency explanations and HPO terms labeled
by clinicians (understandability). Finally, in Sections 6 and 7, we conclude this paper
with a discussion including a summary of the results and limitations and discuss future
implications.

2. Background and Related Work

In this section, we first review the automated methods to recognize rare facial genetic
syndromes. As our work aims to integrate more explainable approaches to facial genetics
and produce region-based relevance information for human experts, afterward, we review
explainability methods in deep neural networks.

2.1. Recognition of Facial Genetic Syndromes

Since the early days of computer vision, several studies have aimed at automatically recog-
nizing dysmorphic faces. Loos et al. (2003) gathered manually labeled 48 facial nodes from
a limited number of images (only 55 images of mucopolysaccharidosis type III, Cornelia de
Lange, fragile X, Prader–Willi, and Williams–Beuren syndromes), extracted texture infor-
mation around these nodes using Gabor wavelets, and used elastic bunch graph matching
to classify dysmorphic faces. Later, computer vision methodologies like Active Appear-
ance Models (AAM) led to automated facial landmark estimation, and Ferry et al. (2014)
classified genetic conditions and healthy controls in a larger dataset (2878 images) based
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on facial landmarks and the pixel values around them as appearance features using Large
Margin Nearest Neighbor (LMNN) metric learning. In understanding the subtle relation-
ships between facial phenotypes and genetic conditions (beyond significant malformations
such as a cleft palate or heart defect, i.e., minor variants and combinations, such as a slight
difference in the angulation of the eyes or the shape of the tip of the nose), 3D facial models
have also been very helpful Ham (2007). In contrast to previous works that require 3D face
scanners to acquire face meshes, 3D Morphable Face Models (3DMM) have shown remark-
able progress in estimating 3D facial geometry from a single-view image (Blanz and Vetter,
1999; Egger et al., 2020).

Traditional computer vision methods used handcrafted feature extractors and separate
classifiers (Zhao et al., 2003); however, the progress in deep learning methods offered an
opportunity to learn feature representations from data, notably, the performance of face
recognition (Masi et al., 2018). Thanks to the availability of large-scale face databases with
4-5 million facial images, self-supervised learning further aims to learn proxy tasks (that
align with different downstream tasks) on a large amount of unlabeled data. For instance,
the use of contrastive learning on face image-text pairs and image inpainting that learns to
retrieve tokens of masked facial image regions showed state-of-the-art results in face parsing
and face alignment (Zheng et al., 2022).

Genetic syndromes can involve sequelae affecting different facial regions, and recogni-
tion of facial genetic conditions is similar to facial biometrics, with a significant difference:
most syndromes appear very rarely in large populations, and finding training databases is
challenging. Recent studies used pre-trained face recognition models on large databases
and applied transfer learning to recognition of facial genetic syndromes (Gurovich et al.,
2019; Hsieh et al., 2022). The power of learned representation showed promising results
on unseen syndromes by retrieving the most similar samples compared to several gallery
images, even in a population where the training set lacks enough samples from concordant
genetic characteristics Mishima et al. (2019).

In addition to learned face representations, generative face modeling can also tackle data
scarcity, for instance, as Duong et al. (2022) used StyleGAN2 with adaptive discriminator
augmentation for age progression and showed improved recognition performance using the
same persons’ age-manipulated images.

Despite computer vision and machine learning literature in recognition of genetic syn-
dromes in the last two decades, to the best of our knowledge, none of them incorporated
explainable artificial intelligence approaches to relate facial images with particular facial
regions or phenotype ontology and produce human-understandable interpretations.

2.2. Explainable AI Methods in Deep Neural Networks

Deep learning models perform far beyond other machine learning approaches in facial phe-
notyping; however, they are known not to be transparent. Saliency maps are often used in
computer vision applications. Here, we mostly focus on feature attribution methods that
assign an importance score for particular label or layer activations.

We consider a multiclass classifier fθ : RH×W×3 → RK , where H and W are the height
and width of input images, and K is the number of categories (in our case, the number
of syndromes and healthy groups). An explanation method creates a relevance mapping
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hfθ : RH×W×3 → RH×W×3 that associates each input sample to a relevance score for
classifier’s decision.

2.2.1. Gradient-based Methods

Simonyan et al. (2013) (Gradients) proposed visualization methods, one is to generate an
image (in the input size) that maximize the class score. The second is computing a class
saliency map for a given image and class using backpropagation. For a given image, x,
they used hfθ(x) = ∂fθ

∂x . However, these raw gradients were typically noisy, and Smooht-
Grad (Smilkov et al., 2017) sharpened gradient-based saliency maps by sampling many
small perturbations to the input and averaging. A different approach for this problem was
Integrated Gradients Sundararajan et al. (2017):

hfθ(x) = (x− x′)×
∫ 1

α=0

∂f(x′ + α× (x− x′))

∂x
∂α (1)

Here, they assigned importance scores for each feature by approximating the integral of
gradients from a given baseline, x′.

Guided Backprop (Springenberg et al., 2015) is another gradient-based method; it also
calculated the gradient of the target output with respect to the input image but masked
out the negative values by changing the gradients of ReLU functions.

Zhang et al. (2018a) proposed a probabilistic Winner-Take-All (WTA) formulation for
modeling top-down attention, inspired by Selective Tuning model (Tsotsos et al., 1995) that
is a deterministic scheme to decide the most relevant neurons. In current DNN architectures,
activation neurons are also being used, and their Excitation Backprop approach propagates
in activation neurons. This approach passes top-down signals only through excitatory (non-
negative neurons).

DeconvNet (Zeiler and Fergus, 2014) is another method that is based on Gradients
except for the backpropagation through the ReLU nonlinearity. In pooling, activation, and
convolutional layers, they reversed the filters by using transposed operations.

Another gradient-based approach is Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015; Montavon et al., 2019). The main difference, LRP is based on the decomposition
of the decision and produces a relevance score between activations of each neuron and their
inputs. Epsilon rule (LRP-ε) distributes the contributions of activations as follows:

Rj =
∑
K

ajwjk

ε+
∑

0,j ajwjk
Rk (2)

where j and k are neurons at consecutive layers, w are the weights of the classifier fθ(.), aj ’s
are the activations at layer k. ε is a term to filter out weak and unrelated contributions.
This rule at ε = 0 is also called as the basic rule (LRP-0). Another rule, LRP-αβ weights
the positive and negative contributions as follows:

Rj =
∑
K

(
α

(ajwjk)
+∑

0,j(ajwjk)+
− β

(ajwjk)
−∑

0,j(ajwjk)−

)
Rk (3)

Flat rule applies uniform weights only in the first layer, whereas w2-rule similarly use squares
of the weights in lower layers.
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Following LRP, Shrikumar et al. (2017); Ancona et al. (2018)(DeepLIFT) calculated the
relevance of neurons between consecutive layers in backpropagation. However, DeepLIFT
compared the input x w.r.t. some reference input x̄, and the selection of baseline depended
on the domain knowledge (i.e., blurred version of input images). It also brought additional
backpropagation rules to basic LRP, such as rescale and reveal cancel rules.

There are attribution methods that associate the feature importance of higher convo-
lutional layers with the gradients of each class probability. For instance, Selvaraju et al.
(2017) (GradCAM) used weighted activations of feature maps or Guided GradCAM when
scores of Guided Backpropagation were used.

2.2.2. Occlusion Methods

Gradient-based methods in the previous section were all using the internal structure of
the classifiers. Another way to investigate the contributions of particular regions of the
input is occlusion analysis (Zeiler and Fergus, 2014; Zintgraf et al., 2017). In occlusion
analysis, h(i,j) = f(x)− f(x ·m(i,j)). Here, a rectangular mask, m, is applied to the image,
and the importance of the occluded part is decided according to the drop in classifier
performance. Similarly, SHAP and Kernel SHAP approaches (Lundberg and Lee, 2017)
can also be regarded as occlusion methods; however, they occlude not only a patch but a
set of occlusion patterns.

Localization of Saliency Maps. There are different ways to evaluate the localization
performance of saliency maps in the literature. Pointing game (Zhang et al., 2018b) evalu-
ates whether the highest attribution of a saliency map lies inside the target object’s bound-
ing box. Kohlbrenner et al. (2020) used the ratio of positive attributions within the object
bounding box to the total image area. Arras et al. (2020) evaluated localization performance
using the ratio of highly attributed pixels in a bounding box to the size of the area. All
these approaches are most suitable for generic object detection and recognition; however, in
face analysis, all input faces are aligned. It is not straightforward to determine a particular
bounding box as several dysmorphic features can be present in the same image and possibly
be overlapping between different diseases. In different face analysis tasks such as the face,
gender, expression recognition (John et al., 2021) or depression recognition (Zhou et al.,
2018), saliency maps were deployed to explain decisions or detect biases in the model. How-
ever, none of the previous works reported a structured approach to relating the localization
performance of DNN and human explanations.

Similarly, Saporta et al. (2022) reported that several saliency maps performed worse
than the human benchmark and described several oracles; for instance, a model with perfect
AUROC but saliency maps (1) can pick up confounders on the image, (2) do not localize
well, or (3) do not correctly reflect the model’s attention. However, the evaluation metrics
they used were mean intersection over union (mIoU) and hit rate metrics, not a structured
evaluation based on an ontology as we adopted by using the HPO taxonomy.

IoU and pointing game in Saporta et al. (2022) and the previously mentioned metrics
define some regions of interest to judge how well saliency maps perform against ground
truth (and human experts). However, these metrics are not suitable for facial genetics.
The same facial regions can have varying severity (for example, at the mouth region, a
Williams Syndrome image may be annotated with more HPO terms than an Angelman
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Syndrome image, and vice versa). We often have varying numbers of phenotypes covering
the eyes, nose, and mouth regions. Thus, the comparison of binarized segmentation maps
and drawn regions by clinicians cannot correctly capture the alignment of saliency maps
and the syndromic facial features.

Human understanding of object detection or recognition is more based on meaningful
properties such as texture, color, object parts, or scene composition. To give more concrete
examples, we perceive a person in an image as having certain characteristics (i.e., having two
legs and arms and a head, walking or standing on a surface). Similarly, a pathologist decides
about a cellular structure as a tumor based on a grading scale. Providing only bounding
boxes does not tell us too much about human explanations, and we need more structured
evidence. Also, in the general domain of computer vision, there are recent works to explain
DNN decisions based on a set of samples representing the concept of human interest (Kim
et al., 2018; Ghorbani et al., 2019). In the facial phenotyping of genetic syndromes, concepts
of interest are well defined, often key regions like eyes, nose, and mouth, and more precisely
as in HPO. We aim to relate this ontology and DNN explanations. This is the main
motivation of this work, and we describe our approach, region-based saliency explanations,
in the following section.

3. Region-Based Saliency Explanations

Genetic conditions that affect facial morphology, which are our primary interest here, are
rare in populations. The identification of each genetic condition can depend on a number
of visible dysmorphic features and phenotypes in faces. The primary motivation for using
DNNs is to assist clinicians in practice, and the explanation of decisions plays an important
role. However, the benefit of showing raw saliency maps is limited, and there is a need
to associate decisions with human-interpretable regions. Our motivation is to transform
saliency maps that contain the information of “where” into a summary of “what/which
region”.

Figure 2 describes our workflow to extract face region-based saliency explanations. We
initially train a classifier network, fθ, on labeled images to classify syndromic and unaffected
groups. In the same image input provided to the classifier, we use a segmentation model for
face parsing and acquire segmentation maps, for instance, eyes, eyebrows, nose, forehead,
mouth, and so on. These fine-scale segmentation maps can be directly used, or different
regions of interest can be created according to analyzed facial syndromes. In each of these
regions, we will acquire region relevance values for DNN’s decision.

In facial images, raw saliency explanations, hfθ , tell about the importance of each feature
dimension. Using different saliency maps (as described in Section 2.2), we create a pixel-
wise relevance map maximizing the most likely predicted category. Saliency maps usually
contain both excitatory and inhibitory information. In a clinical use case, we should provide
evidence for the predicted category. Furthermore, we compare excitatory information with
human experts’ evaluation. Thus, we applied feature normalization, hfθ

−min(hfθ
)

max(hfθ
)−min(hfθ

) to
scale attributions to the range of [0, 1]. Subsequently, we calculate the mean activation of
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Figure 2: Region-based saliency explanations. Our approach takes the weights of a trained
DNN, region map acquired from a pre-trained face parser network, and an XAI module.
the outputs are single floating values for each region.

the relevance map per region as follows:

Ci =

∑
hfθ(x) � mi(x)∑

mi(x)
(4)

where x is the aligned face image, h(.) is the saliency map calculated with any available
approach, mi is the binary mask for any facial region whose importance needs to be cal-
culated, and � is the element-wise product sign. In this way, we acquire the total amount
of activation, Ci for region i, in the raw saliency map normalized by the size of the region
of interest. Therefore, Ci is a variable that summarizes the importance of a particular
region behind DNN’s prediction. In other words, instead of using pixel-based information
(where?), we explain by ”which part/what” plays a role in DNN’s particular decision.

To summarize, our approach generates region-based relevance scores, which form the
building blocks of our explanations by highlighting the importance of major facial parts
relevant to the diseases investigated. Figure 3 depicts a sample image, three regions of
interest, eyes, nose, and mouth, and observed HPO terms that will be used in further
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Figure 3: A test sample with 22q11.2 deletion syndrome. The original image, region-based
explanation (using SmoothGrad), and observed HPO terms are shown.

evaluation. Region relevance coefficients represent the respective regions’ importance in
DNN’s prediction based on a given saliency map 4.

In order to evaluate the potential of this approach to support the explainability of DNN
predictions, we focus on two questions that cover different aspects of the problem:

1. Do our region relevance coefficients enable us to distinguish syndromic and unaffected
samples? An initial step to answering this question is to verify that the distribution
of our region-based saliency coefficients is statistically different between syndromic
and unaffected images. This statistical difference is a necessary condition for region-
based explanations to provide suitable visual support to humans to verify that a given
prediction is correct. Furthermore, this analysis can also be regarded as a measure
of faithfulness. We cannot consider these explanations faithful if our region relevance
coefficients give comparable importance values on these two groups.

2. Do region-based explanations align with HPO terms labeled by clinicians? Asking this
question is important because HPO terms represent the features that clinicians rely on
to diagnose syndromic faces. On the other hand, DNN-based classifiers of syndromic
vs. unaffected faces are entirely unaware of HPO terms. Finding an alignment of
region-based explanations with HPO terms would validate the usefulness of explana-
tions as they focus on features known to be discriminative for humans. Furthermore,
this alignment would suggest a great potential for the region-based explanations to
be understandable by clinicians since they reflect the elements that the clinicians are
familiar with, where human understandability is the final step of evaluation for any
explainable machine learning approach.

4. In our study, we used eyes, nose, and mouth regions, however, depending on the syndromes analyzed
and their relation to facial regions, our approach can be applied to any parts (i.e., hair, upper forehead
or chin).
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4. Experiments

4.1. Dataset

We build the dataset to evaluate our proposed approach by using Google and PubMed
to select publicly available images depicting individuals with one of the following 11 ge-
netic conditions: 22q11.2 deletion, Angelman, Beckwith-Wiedemann (BWS), Cornelia de
Lange (CdLS), Down, Kabuki (KS), Noonan (NS), Prader-Willi (PWS), Rubinstein-Taybi
(RSTS), Wolf-Hirschhorn (WHS), and Williams (WS) syndromes. We selected these par-
ticular conditions because they often involve subtle but recognizable facial phenotypes and
are common enough that there are sufficient publicly available images for the purposes of
this study.

From websites and academic papers in human genetics and medicine, we initially col-
lected more than 4,000 images. While we did collect multiple images from some of the
papers we used, we usually reviewed three to five times as many papers to find a paper with
usable images. Subsequently, 2 to 3 clinicians reviewed the images to ensure the patient’s
phenotype was consistent with the disorder, particularly if the genetic result was not given
with the image. Together with an unaffected control group, this resulted in 3547 images.
The number of samples per category is as follows: 22q11.2DS (591), Angelman (456), BWS
(308), CdLS (120), Down (352), KS (246), NS (327), PWS (104), RSTS (105), Unaffected
(228), WHS (178), and WS (529).

Unlike other image datasets, understanding facial phenotypes requires human genetics
expertise and more careful data curation. Some images collected from the internet might
contain an inaccurate diagnosis, which may introduce noise in the created database. Thus,
the syndrome labels of each image in the database were verified by clinicians to prevent
such situations. We also included facial images from public resources to get samples of
individuals without genetic conditions. However, individuals we retrieved as “unaffected”
could theoretically have an undiagnosed condition. To mitigate this, clinicians carefully
inspected the unaffected images for a constellation of dysmorphic features (phenotypes)
that would suggest a specific genetic condition. Figure 1 shows representative images from
our dataset.

4.2. HPO Labeling and Defining Region of Interests

From over 13,000 HPO terms that are listed in the HPO taxonomy, the clinicians identified
the set of relevant phenotypes (HPO terms) that are known to be visible in facial images
from the Clinical Synopsis section of OMIM (https://omim.org), as described in Köhler
et al. (2020). Among them, only HPO terms whose occurrences in a syndrome are frequent
or very frequent are considered in our analysis. This resulted in 50 HPO terms represented
in Table 15.

Labeling HPO terms is a time-consuming task requiring careful facial features inspection.
For this reason, we considered 171 images containing varying phenotypes of 22q11.2 deletion,
Angelman, Kabuki, Noonan, and Williams syndromes. Three clinicians viewed these images
and independently annotated the absence (0) or presence (1) of the 50 HPO terms in Table 1.

5. Short descriptions, synonyms, PubMed references, syndromes, and gene associations of each HPO term
can be found at https://hpo.jax.org/app
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Table 1: Selected phenotypes (HPO terms) that are visible on facial images of the selected
conditions in this study.

Overall

Abnormal facial shape Narrow face Elfin facies
Long face Coarse facial features Webbed neck
Microcephaly Triangular face Midface retrusion
Hypopigmentation of the skin

Ears

Low-set ears Small earlobe Protruding ear
Overfolded helix Macrotia Thickened helices
Low-set posteriorly rotated ears

Eyes

Epicanthus Strabismus Proptosis
Upslanted palpebral fissure Iris hypopigmentation Highly arched eyebrow
Abnormal eyelid morphology Blepharophimosis Sparse lateral eyebrow
Downslanted palpebral fissures Ptosis Long eyelashes
Eversion of lateral third of lower eyelids Hypertelorism Telecanthus

Nose

Prominent nasal bridge Bulbous nose Short columella
Wide nasal bridge Short nose

Mouth

Long philtrum Widely spaced teeth Microdontia
Open bite Protruding tongue Wide mouth
Abnormality of the dentition Thick lower lip vermilion Everted lower lip vermilion

Forehead Hair Chin

High forehead Fair hair Pointed chin
Broad forehead

After having HPO terms, we need to identify which of the regions in the face are con-
spicuous enough to be included in our region-based explanations and define a ground truth
measure providing their importance. First, we aggregated clinicians’ ratings and created
50-dimensional weight vectors that encode each HPO value varying from 0 to 3. Using
these weight vectors, we plotted the t-SNE distribution of 171 test samples colored by their
syndrome labels in Figure 4(a). As expected, five syndromic conditions can be clearly dis-
tinguished by using these phenotype annotations. So, this validates relevant HPO terms as
a standard to evaluate explanations of DNN predictions.

We also investigated these 50 HPO terms’ ability to distinguish five genetic conditions
and further to see which terms are most useful in this context. For this purpose, we
used the χ2 statistic that measures the expected and observed frequencies of two events,
in our case, between the dimensions of the weight vector and syndrome labels. The χ2

statistic of HPO terms can be seen in Figure 4(b). There we see that, for instance, very
relevant terms are eversion of the lateral third of lower eyelids, downslanted palpebral
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a b

Figure 4: (a) t-SNE embedding of 171 images represented via 50-dimensional weight vector,
where each syndrome label is colored. (b) χ2 statistic between HPO terms and syndrome
categories (all p-values are below 0.05, and the most relevant features are highlighted in
red).

fissures, and a short columella. The phenotypes under the “overall” group are related to
the morphology of overall faces; thus, they cannot be explained (or localized) easily by
saliency explanations. Ears are not visible in most images. Similarly, foreheads might
be occluded by hair, particularly in toddlers and children. Furthermore, the number of
prominent phenotypes in the hair and chin area is only one per area. Considering these
conditions, Table 1 and feature importances in Figure 4(b), we decided on three regions of
interest in the face: the eyes, nose, and mouth.

4.3. Classification Model

We train a convolutional neural network from frontal facial images to classify 11 genetic
syndromes (22q11.2 deletion, Angelman, Beckwith-Wiedemann, Cornelia de Lange, Down,
Kabuki, Noonan, Prader-Willi, Rubinstein-Taybi, Wolf-Hirschhorn, Williams) and healthy
groups. We allocated HPO-annotated images (N = 171) for the test set. Considering the
limited size of the database, the rest is used in person-independent 5-fold cross-validation to
train the classifier, where we kept a small number of samples with kinship relations, either
training or test sets at a time. We applied the RetinaFace (Deng et al., 2020) face detector,
and 5-point similarity transform on eyes, nose, and mount points. 

Due to the nature of the problem, we cannot create large image datasets as in face
recognition. On the other hand, the information needed to analyze facial dysmorphism and
biometric tasks is similar, and most prior works leveraged face recognition models. Thus,
we apply transfer learning.

Most DNN architectures trained on face recognition tasks are in a lower resolution, for
instance, in the size of 112×112 pixels. As we aim to create human-understandable saliency
explanations, having fine-grained saliency maps would be a reasonable option. Thus, we
chose a backbone trained on larger input images (of 224×224 pixels). The majority of
face recognition studies focus on loss formulation, using comparable DNN architectures,
and ResNet50 He et al. (2016) backbone is one of the most widely used ones. This is
another reason to use a ResNet-50 trained on a large-scale face recognition database, VG-
GFace2 (Cao et al., 2018).
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All the networks in 5-folds were trained for 35 epochs using an SGD optimizer with an
initial learning rate of 0.001 and a momentum of 0.9 and a Cosine annealing warm restarts
scheduler.

Table 2: Validation performance evaluation for recognition of facial genetic syndromes on
NIH-Faces. All metrics are reported mean/std. of 5-fold cross-validation.

N Precision Recall F1-score

22q11DS 557 0.816 (0.02) 0.813 (0.04) 0.814 (0.02)

Angelman 420 0.817 (0.03) 0.872 (0.03) 0.843 (0.02)

BWS 308 0.732 (0.01) 0.729 (0.05) 0.730 (0.03)

CdLS 120 0.858 (0.06) 0.791 (0.09) 0.818 (0.03)

Down 352 0.914 (0.04) 0.926 (0.03) 0.919 (0.03)

KS 212 0.805 (0.02) 0.802 (0.08) 0.802 (0.05)

NS 293 0.828 (0.05) 0.778 (0.07) 0.799 (0.03)

PWS 104 0.634 (0.10) 0.509 (0.09) 0.563 (0.09)

RSTS 105 0.813 (0.11) 0.801 (0.09) 0.806 (0.10)

Unaffected 228 0.703 (0.04) 0.726 (0.06) 0.710 (0.01)

WHS 178 0.775 (0.06) 0.767 (0.10) 0.765 (0.04)

WS 496 0.916 (0.03) 0.917 (0.04) 0.916 (0.03)

Overall 3373 0.801 (0.015) 0.786 (0.007) 0.790 (0.009)

The average Top-1 accuracy over 5-folds is 81.8%, and precision, recall, and F1-scores
are presented in Table 2. The difficulty of each facial image to be recognized by clinicians
and also DNN may depend on many factors, including the distinctiveness of facial features
or the size of the region. Among the 11 syndromes, particularly, both the precision and
recalls of Prader-Willi and Beckwith-Wiedemann seem below average. Interestingly, the
unaffected group also has lower performance, with an F1 score of 0.710. This can be
because the dataset is limited, and the initial facial representation is very powerful. Even
after transfer learning on our database, we retain the knowledge of unaffected facial features.
Furthermore, only a part of the face is affected in syndromic images. The best-performing
categories are Down and Williams syndromes. The performance on 171 held-out test images
of 22Q11.2DS, Angelman, Kabuki, Noonan, and Williams syndromes is much better, with
an average accuracy of 90.2%(0.008).

4.4. Experimental Settings

The salience methods that we experiment with as the basis for our region-based approach
are Gradient, SmothGrad, IntegratedGradients GuidedBackprob, ExcitationBackprop, De-
convNet, LRP, DeepLIFT and GuidedGradCam (they are described in Section 2.2.) In LRP,
we used ε− z+, ε− z+ − flat,ε− α2 − β1, and ε− α2 − β1 − flat rules. For DeepLIFT and
GradCam, we also used the layer attribution of ResNet50’s layer4. Furthermore, we used
the Occlusion maps with a stride of 8 pixels and a sliding window of 15. In order to stan-
dardize saliency map computation, we used the open-source libraries Captum (Kokhlikyan
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et al., 2020) and Zennit (Anders et al., 2021). An example of these saliency maps are given
in Figure 5.

Figure 5: A test sample with Kabuki syndrome and all saliency methods used in this study
(this particular subject has more prominent phenotypes in the eyes and nose regions).

When creating region coefficients, we initially ran FaRL face parsing model (Zheng et al.,
2022) which is the state-of-the-art face parsing method in benchmarks such as LaPa (Liu
et al., 2020) and CelebAMask-HQ (Lee et al., 2020), to acquire face segments. However,
our region-based saliency explanation is rather generic, and it works on the manually drawn
region of interest using another face parsing method or areas acquired by facial landmarks.
After having face parsing, we created the non-overlapping eye, nose, and mouth regions
as depicted in Figures 3 and 5 (on the input image above). As phenotypes related to the
nasal bridge are considered in the nose regions, the area between the eyes is included in the
nose. The reason why we picked these three regions was described in Section 4.2, and our
experimental evaluation can be extended into different regions of interest.

We investigated two research questions described in Section 3. First is whether region-
based saliency explanations distinguish unaffected and syndromic images or not. Second
is region-based saliency explanations’ relationship with HPO terms labeled by clinicians.
Whereas the first one does not require any labeling, we used the respective test partitions
of the entire dataset in a cross-validation setting. The second question is a comparison
between region-based saliency explanations and human evaluation. As it requires HPO
labels, we used only 171 held-out test images.

Do Region-based saliency explanations distinguish unaffected and syndromic
images? To answer this question, we derive the distributions of region relevance coeffi-
cients, Ci’s in unaffected and a particular syndromic group based on different state-of-the-art
saliency-based techniques and test if there is a statistical difference between these two groups
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or not. Here, our null hypothesis is there is no difference between the average region-based
relevance score of unaffected and a particular syndromic category in a face region. In each
comparison, we initially assess normality (Shapiro-Wilk) and equality of variances (Levene)
tests and apply two-tailed t-test or Mann-Whitney-U tests, respectively. As we deployed
many pairwise comparisons (number of regions × number of syndromes, 15 hypotheses in
total), we used one-step Bonferroni correction at an alpha level of 0.001 among the tests
used to evaluate a particular approach.

Do region-based explanations align with HPO terms labeled by clinicians? This
question requires a ground truth importance measure of HPO terms. As the affected regions
of respective HPO terms are known (see Table 1), we aggregated the number of annotations
for each region in images to create a region importance measure. The distributions did not
fulfill the normality conditions; thus, we used the Spearman rank correlation between these
groups to compare DNN and human explanations. This correlation analysis does not tell
about a specific HPO term, but it is a good indicator of how region-based explanations
mimic the visual cues behind physicians’ analysis.

5. Results

This section describes our experimental results in region-based saliency explanations of
unaffected vs. syndromic groups and the relationship between model explanations and
HPO terms.

5.1. Results on Region-based Saliency Explanations of Unaffected and
Syndromic Images

We first look into the first question is whether our region-based explanations using different
saliency maps helped to distinguish these five syndromes from unaffected groups. Table 3
summarizes the number of statistically significant outcomes using 15 different saliency maps
(hence, 15 statistical tests).

These results depict that the importance of each region varies according to the syndrome
that we compare with the unaffected control group. For instance, in our dataset, samples
with 22q11.2DS differ from the unaffected group at the eyes and nose region because there
are 11/15 and 9/15 significant tests for these two areas as compared to 3/15 significant
tests for the mouth region. This result is in line with the phenotypic characteristics of
22q11.2DS, as it has more prominent phenotypes in the eyes and nose regions (i.e., epican-
thus, upslanted palpebral fissure, abnormal eyelid morphology, ptosis, and telecanthus in
eyes, and prominent nasal bridge, wide nasal bridge, and bulbous nose in nose). However,
in our experiment, this condition only has one phenotype, long philtrum, annotated in the
mouth region. There may be other useful phenotypes in the mouth regions, but the ones
labeled by clinicians as prominent features in their decision-making suggest they are the
most notable or important.

All the Angelman images in the test set have a wide mouth phenotype, and more than
half of the images have protruding tongues. In contrast, strabismus and iris hypopigmenta-
tion in the eye region is not as common. Having more statistically significant outcomes of
region-based coefficients in Williams syndrome has a similar condition. Williams syndrome
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Table 3: The number of significant tests: genetic condition vs. unaffected comparisons
using different region explanations and saliency methods (the total number of tests is 15).

Region/Syndrome 22q11.2DS Angelman Kabuki Noonan Williams
eye 11 2 2 9 9
nose 9 4 4 4 9
mouth 3 8 8 6 11

has wide mouth, thick lower lip vermilion, long philtrum, everted lower lip vermilion, and
open bite. These phenotypes are observed in most of the images by clinicians.

In the case of Kabuki syndrome, only two tests are significant, in spite of having more
prominent phenotypes in the eye regions, and they were manually observed in most of the
images. Having a lower significance in the eye region’s relevance (particularly in Angelman
and Kabuki) can be due to major phenotypes such as strabismus and iris hypopigmentation,
which require high-resolution, detailed imaging in the eye regions or might otherwise not
be readily apparent and might be missed in typical quality facial images.

We can consider the ability to distinguish explanations of unaffected and syndromic
groups as a necessary condition. There are different factors of variation, and it is not easy
to tell about region-based coefficients’ performance using a particular saliency map by only
looking at this comparison.

Figure 6 depicts the boxplot distribution of these five syndromes and unaffected groups
using selected saliency maps: SmoothGrad, LRP(ε + flat rule), GradCam (using the last
convolutional group, the layer4 of ResNet50), and Occlusion maps with a stride of 8 pixels
and a sliding window of 15. Particular trends are easily noticeable; for instance, Angelman
and Williams’s relevance in the mouth region is significantly above the level of the unaffected
group. These findings help us find the most prominent features to explain DNN’s decisions,
but we still need more structured HPO information.

5.2. Results on the Relationship between Region-based Saliency Explanations
and HPO Terms

As clinicians labeled these images based on the most prominent HPO terms, they represent
clinicians’ visual attention based on prior phenotype ontology. We conducted a Spearman
rank correlation analysis between the number of HPO terms labeled per region and region-
based relevance coefficients in 171 held-out test images. Table 4 depicts the results of this
analysis for region and each saliency map. In order to make a more reliable comparison, we
used all five models trained in a cross-validation setting and reported average and standard
deviations of correlation coefficients.

Independent of the saliency maps used, correlation analysis gave the best results in
the mouth region. The highest correlation is acquired from GradCam (layer4) with 0.530.
DeepLIFT, Occlusion maps, and SmoothGrad follow in the mouth region. Among LRP
rules, there is a large variation; however, the ones with z+-rule, LRP-ε-z+-flat, and LRP-ε-α2-β1-
flat with correlations of 0.422 and 0.429 are among the best. Interestingly, the DeconvNet
approach consistently showed a negative correlation of -0.415 with HPO-based region coeffi-
cients, particularly in the mouth region. DeconvNet visually did not give relevant outcomes
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Figure 6: Region-based explanation coefficients using selected attribution methods. Here
in the entire database (using respective trained models in cross-validation), the distribution
of coefficients across healthy vs. five syndromes is depicted.

(as in Figure 5), and this can be regarded as an artifact of this saliency map on our data
domain.

In the eye region, the average performance is far below that of mouth; however, several
saliency methods performed well, for instance, GradCam (layer4) and GuidedGradCam,
with correlations of 0.441 and 0.332. When we looked at the number of HPO terms per
region, 15 HPO terms out of 51 are from eye regions. However, these phenotypes could not
be explained by most of the saliency maps compared.

The worst-performing region is the nose. In contrast to the eye and mouth regions, we
would expect having fewer HPO terms in the nose (prominent or wide nasal bridge, bul-
bous nose, short nose, and short columella) to facilitate the explanation of DNN decisions.
Understanding these HPO terms in the nose region requires a different view of the same
image. This is not the case in the eyes or mouth. In the eye region, the issue can be due to
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Table 4: Correlation analysis between our region-based explanations and amount of labeled
HPO terms for each regions (eyes, nose, and mouth), and various attribution methods.

eye nose mouth

Gradient 0.145 (0.042) 0.078 (0.061) 0.335 (0.193)

SmoothGrad 0.043 (0.149) 0.034 (0.070) 0.486 (0.136)

IntegratedGradients -0.039 (0.145) 0.023 (0.040) 0.425 (0.161)

GuidedBackprop 0.055 (0.091) -0.046 (0.065) 0.331 (0.112)

ExcitationBackprop 0.022 (0.203) -0.006 (0.072) 0.345 (0.078)

DeconvNet -0.101 (0.065) -0.033 (0.090) -0.414 (0.096)

LRP-ε-z+ -0.007 (0.055) -0.015 (0.061) 0.403 (0.076)

LRP-ε-z+-flat 0.050 (0.079) -0.011 (0.088) 0.422 (0.091)

LRP-ε-α2-β1 0.060 (0.151) 0.017 (0.148) 0.380 (0.091)

LRP-ε-α2-β1-flat -0.014 (0.124) -0.008 (0.153) 0.429 (0.086)

DeepLIFT 0.162 (0.119) 0.049 (0.063) 0.512 (0.097)

GuidedGradCam 0.332 (0.129) 0.074 (0.121) 0.449 (0.123)

DeepLIFT (layer4) 0.087 (0.120) 0.016 (0.136) 0.410 (0.213)

GradCam (layer4) 0.441 (0.085) 0.259 (0.215) 0.530 (0.137)

Occlusion 0.111 (0.125) -0.145 (0.117) 0.512 (0.090)

a number of factors (i.e., having small affected areas). However, having better HPO corre-
lations also in the eyes and nose area can potentially improve the human understandability
of region-based explanations.

6. Discussion

In this study, we trained a classifier with decent performance in recognizing genetic syn-
dromes and investigated the saliency explanations of these DNN models. Our region-based
explanation approach depicted the strengths and weaknesses of different saliency maps.
Furthermore, we proposed a quantitative method to compare DNNs’ explanations and clin-
icians’ decisions based on phenotype ontology. In contrast to previous works on facial
genetics that relied on machine learning models, we carefully investigated the explainability
of deep learning models in facial genetic syndromes.

Our work also has certain limitations. Due to the scarcity of available image data,
we have to transfer the pre-trained representations from other face analysis domains. The
most relevant task is face recognition, which learns morphology information from large-scale
image databases. Different forms of bias in face recognition have been known in recent
years (Leslie, 2020), and the computer vision community aims to mitigate this. Thus, as
well as explainable machine learning, the fairness of algorithmic solutions is critical. For
instance, there is limited diversity of race and ancestry in most face recognition databases.
The performance of a trained deep learning model varies across ethnicities, genders, and age
groups. Thus, ensuring the fairness criteria of classifiers is another aspect of the problem
that needs to be carefully addressed.
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We created an extensive, clinically validated face database that can be used in further
research to improve automated methods to recognize syndromes and explain classifiers.
However, most diseases are rare, and it is more challenging to scale up the size of the
database than in face recognition databases. Furthermore, the average viewer cannot easily
perceive the syndrome from faces; field experts and clinicians’ support is needed to ver-
ify labeling. There are commercial tools (i.e., web-based and mobile applications such as
Face2Gene6), or more recently, publicly available web services and databases like Gestalt-
Matcher (Hsieh et al., 2022). These tools have a great potential to create awareness among
clinicians and contribute to larger databases of genetic syndromes. The use of few-shot
learning on recognition of facial genetic syndromes (Sümer et al., 2022) is a promising di-
rection to address data scarcity, and there is a line of work in the explainability of few-shot
learning models (Wang et al., 2022). We are also limited by the images being taken in 2D,
like passport photos. Statistical shape modeling is another alternative; for instance, creat-
ing 3D databases of faces with dysmorphism (Matthews et al., 2021) and the explainability
of deep learning models in shape analysis is another open research direction.

Our approach is an initial step towards generating human understandable explanations
by using region relevance for DNN’s decisions. In other words, explanations should be in
the following form: “This model predicts this syndrome because the following phenotypes
are present in this image.” Such an explanation requires more time consuming labeling work
at a larger scale and, in return, improves explanations.

As well as learning problems and datasets, explainable machine learning methods de-
pend on the DNN architectures, too. We used a well-performing Resnet architecture and
presented a proof of concept to systematically evaluate region-based explanations. In future
work, the effects of different DNN architectures can also be investigated.

Facial phenotyping provides a structured and objective way to measure the shift between
DNNs and humans’ attention. However, a large-scale clinical validation of our region-
based explanations is needed. How does explanation-based visual support help clinicians’
diagnoses? This question is essential to deploying these methods at a larger scale for clinical
use. We left this for future work.

7. Conclusion

This study proposes a region-based saliency explanation approach for the deep neural net-
works trained to recognize facial genetic syndromes. We evaluated different saliency maps
based on the importance of the eyes, nose, and mouth regions in face images. We trained
a classification model that performed with an acerate accuracy of 81.8% and investigated
how the region-based saliency explanations differ between unaffected and syndromic images.
Depending on the syndrome investigated, all three regions are comparatively informative
in distinguishing syndromic images’ explanations from the unaffected set. Williams and
Noonan syndromes showed more distinctive explanations that separated them from the
unaffected group. The importance of regions varies; for instance, 22Q11.2DS has a bet-
ter separation in the eye regions, whereas it is the mouth region in Angelman syndrome.
Overall, our findings aligned with the prominent affected areas of particular syndromes.

6. https://www.face2gene.com/
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Furthermore, we acquired HPO annotations of an image set and compared region-based
explanations of different saliency maps and HPO annotations. Explanations were more in
line with clinicians’ HPO annotations in the mouth region; however, eyes and nose were
less precise. Among the saliency methods compared, GradCam, DeepLIFT, and Occlusion
maps were the best-performing approaches. Our study provided a quantitative approach to
comparing saliency explanations and pointed out the weaknesses to guide future research
in this direction.
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Table 5: All the images used throughout the paper were acquired from publicly available
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