

Using peer code review best practices

optimizes your code reviews, improves your

code and makes the most of your

developers' time. The recommended best

practices contained within for efficient,

lightweight peer code review have been

proven to be effective via extensive field

experience.

White Paper

11 Best Practices for Peer Code Review

2 11 Best Practices for Peer Code Review

Introduction

It’s common sense that peer code review – in which software developers review each other’s code

before releasing software to QA – identifies bugs, encourages collaboration, and keeps code more

maintainable.

But it’s also clear that some code review techniques are inefficient and ineffective. The meetings often

mandated by the review process take time and kill excitement. Strict process can stifle productivity, but

lax process means no one knows whether reviews are effective or even happening. And the social

ramifications of personal critique can ruin morale.

This whitepaper describes 11 best practices for efficient, lightweight peer code review that have been

proven to be effective by scientific study and by SmartBear's extensive field experience. Use these

techniques to ensure your code reviews improve your code – without wasting your developers' time.

1. Review fewer than 200-400 lines of code at a time.

The Cisco code review study (see sidebar for details) showed that for optimal effectiveness, developers

should review fewer than 200-400 lines of code (LOC) at a time. Beyond that, the ability to find defects

diminishes. At this rate, with the review spread over no more than 60-90 minutes, you should get a 70-

90% yield; in other words, if 10 defects existed,

you’d find 7-9 of them.

The graph on the following page, which plots

defect density against the number of lines of

code under review, supports this rule. Defect

density is the number of defects per 1000 lines

of code. As the number of lines of code under

review grows beyond 300, defect density drops

off considerably.

In this case, defect density is a measure of

“review effectiveness.” If two reviewers review

the same code and one finds more bugs, we

would consider her more effective. Figure 1

shows how, as we put more code in front of a

reviewer, her effectiveness at finding defects drops. This result makes sense – the reviewer probably

doesn’t have a lot of time to spend on the review, so inevitably she won't do as good a job on each file.

Figure 1: Defect density dramatically

decreases when the number of lines of

inspection goes above 200, and is almost

zero after 400.

3 11 Best Practices for Peer Code Review

2. Aim for an inspection rate of less than 300-500 LOC/hour.

Take your time with code review. Faster is not

better. Our research shows that you’ll achieve

optimal results at an inspection rate of less than

300-500 LOC per hour. Left to their own devices,

reviewers’ inspection rates will vary widely, even

with similar authors, reviewers, files, and review

size.

To find the optimal inspection rate, we compared

defect density with how fast the reviewer went

through the code. Again, the general result is not

surprising: if you don't spend enough time on

the review, you won’t find many defects. If the

reviewer is overwhelmed by a large quantity of

code, he won’t give the same attention to every

line as he might with a small change. He won’t

be able to explore all ramifications of the change

in a single sitting.

So – how fast is too fast? Figure 2 shows the

answer: reviewing faster than 400-500 LOC/hour

results in a severe drop-off in effectiveness. And

at rates above 1000 LOC/hour, you can probably

conclude that the reviewer isn’t actually looking

at the code at all.

3. Take enough time for a proper, slow review, but not more than

60-90 minutes.

We’ve talked about how you shouldn’t review

code too fast for best results – but you also

shouldn’t review too long in one sitting. After

about 60 minutes, reviewers simply wear out and stop finding additional defects. This conclusion is well-

Figure 2: Inspection effectiveness falls off

when greater than 500 lines of code are under

review.

Important Definitions

 Inspection Rate: How fast are we able to

review code? Normally measured in kLOC

(thousand Lines Of Code) per man-hour.

 Defect Rate: How fast are we able to find

defects? Normally measured in number of

defects found per man-hour.

 Defect Density: How many defects do we find

in a given amount of code (not how many there

are)? Normally measured in number of defects

found per kLOC.

You should never review code for more than

90 minutes at a stretch.

4 11 Best Practices for Peer Code Review

supported by evidence from many other studies besides our own. In

fact, it’s generally known that when people engage in any activity

requiring concentrated effort, performance starts dropping off after

60-90 minutes.

G Given these human limitations, a reviewer will probably not be able

to review more than 300-600 lines of code before his performance

 drops.

On the flip side, you should always spend at least five minutes

reviewing code – even if it’s just one line. Often a single line can

have consequences throughout the system, and it’s worth the five

minutes to think through the possible effects a change can have.

4. Authors should annotate source code

before the review begins.

It occurred to us that authors might be able to eliminate most

defects before a review even begins. If we required developers to

double-check their work, maybe reviews could be completed faster

without compromising code quality. As far as we could tell, this idea

specifically had not been studied before, so we tested it during the

study at Cisco.

The idea of “author preparation” is that authors should annotate

their source code before the review begins. We invented the term

to describe a certain behavior pattern we measured during the

study, exhibited by about 15% of the reviews. Annotations guide the

reviewer through the changes, showing which files to look at first

and defending the reason and methods behind each code

modification. These notes are not comments in the code, but rather

comments given to other reviewers.

Our theory was that because the author has to re-think and explain

the changes during the annotation process, the author will himself

himself uncover many of the defects before the review even begins,

The World’s Largest Code Review

Study at Cisco Systems®

Our team at SmartBear Software® has

spent years researching existing code

review studies and collecting “lessons

learned” from more than 6000

programmers at 200+ companies. Clearly

people find bugs when they review code –

but the reviews often take too long to be

practical! We used the information gleaned

through years of experience to create the

concept of lightweight code review. Using

lightweight code review techniques,

developers can review code in 1/5
th

 the

time needed for full “formal” code reviews.

We also developed a theory for best

practices to employ for optimal review

efficiency and value, which are outlined in

this white paper.

To test our conclusions about code review

in general and lightweight review in

particular, we conducted the world’s

largest-ever published study on code

review, encompassing 2500 code reviews,

50 programmers, and 3.2 million lines of

code at Cisco Systems. For ten months, the

study tracked the MeetingPlace® product

team, distributed across Bangalore,

Budapest, and San José.

At the start of the study, we set up some

rules for the group:

 All code had to be reviewed before it
was checked into the team’s Perforce
version control software.

 SmartBear’s CodeCollaborator® code
review software tool would be used to
expedite, organize, and facilitate all
code review.

 In-person meetings for code review
were not allowed.

 The review process would be enforced
by tools.

 Metrics would be automatically
collected by CodeCollaborator, which
provides review-level and summary-
level reporting.

5 11 Best Practices for Peer Code Review

More on the Cisco Study…

After ten months of monitoring, the study

crystallized our theory: done properly,

lightweight code reviews are just as

effective as formal ones – but are

substantially faster (and less annoying) to

conduct! Our lightweight reviews took an

average of 6.5 hours less time to conduct

than formal reviews, but found just as

many bugs.

Besides confirming some theories, the

study uncovered some new rules, many of

which are outlined in this paper. Read on

to see how these findings can help your

team produce better code every day.

**added a border to this text box also &

the others

Figure 3: The striking effect of author

preparation on defect density.

thus making the review itself more efficient. As

such, the review process should yield a lower

defect density, since fewer bugs remain.

 Sure enough, reviews with author preparation

have barely any defects compared to reviews

without author preparation.

We also considered a pessimistic theory to

explain the lower bug findings. What if, when

the author makes a comment, the reviewer

becomes biased or complacent, and just

doesn’t find as many bugs? We took a random

sample of 300 reviews to investigate, and the

evidence definitively showed that the

reviewers were indeed carefully reviewing the

code – there were just fewer bugs.

5. Establish quantifiable goals for code

review and capture metrics so you can

improve your processes.

A As with any project, you should decide in advance on the goals of

t the code review process and how you will measure its

 effectiveness. Once you’ve defined specific goals, you will be a

 able to judge whether peer review is really achieving the results

y you require.

It It’s best to start with external metrics, such as “reduce support

ca calls by 20%,” or “halve the percentage of defects injected by de

 development.” This information gives you a clear picture of how

yo your code is doing from the outside perspective, and it should ha

 have a quantifiable measure – not just a vague “fix more bugs.”

However, it can take a while before external metrics show results. Support calls, for example, won’t

be affected until new versions are released and in customers’ hands. So it’s also useful to watch

internal process metrics to get an idea of how many defects are found, where your problems lie, and

how long your developers are spending on reviews. The most common internal metrics for code

review are inspection rate, defect rate, and defect density.

6 11 Best Practices for Peer Code Review

Consider that only automated or tightly-controlled processes can give you repeatable metrics – humans

aren’t good at remembering to stop and start stopwatches. For best results, use a code review tool that

gathers metrics automatically so that your critical metrics for process improvement are accurate.

To improve and refine your processes, collect your metrics and tweak your processes to see how changes

affect your results. Pretty soon you’ll know exactly what works best for your team.

6. Checklists substantially improve results for both authors and

reviewers.

Checklists are a highly recommended way to find the things you forget to do, and are useful for both authors

and reviewers. Omissions are the hardest defects to find – after all, it’s hard to review something that’s not

there. A checklist is the single best way to combat the problem, as it reminds the reviewer or author to take

the time to look for something that might be

missing. A checklist will remind authors and

reviewers to confirm that all errors are handled,

that function arguments are tested for invalid

values, and that unit tests have been created.

Another useful concept is the personal checklist. Each person typically makes the same 15-20 mistakes. If

you notice what your typical errors are, you can develop your own personal checklist (PSP, SEI, and CMMI

recommend this practice too). Reviewers will do the work of determining your common mistakes. All you

have to do is keep a short checklist of the common flaws in your work, particularly the things you forget to

do.

As soon as you start recording your defects in a checklist, you will start making fewer of them. The rules will

be fresh in your mind and your error rate will drop. We’ve seen this happen over and over.

For more detailed information on checklists plus a sample checklist, get yourself a free copy of the book, Best

Kept Secrets of Peer Code Review, at www.CodeReviewBook.com.

7. Verify that defects are actually fixed!

OK, this “best practice” seems like a no-brainer. If you’re going to all of the trouble of reviewing code to find

bugs, it certainly makes sense to fix them! Yet many teams who review code don’t have a good way of

Checklists are especially important for

reviewers, since if the author forgot it, the

reviewer is likely to miss it as well.

http://www.codereviewbook.com/

7 11 Best Practices for Peer Code Review

tracking defects found during review, and ensuring that bugs are actually fixed before the review is

complete. It’s especially difficult to verify results in e-mail or over-the-shoulder reviews.

Keep in mind that these bugs aren’t usually logged in the team’s usual defect tracking system, because they

are bugs found before code is released to QA, often before it’s even checked into version control. So, what’s

a good way to ensure that defects are fixed before the code is given the All Clear sign? We suggest using

good collaborative review software to track defects found in review. With the right tool, reviewers can logs

bugs and discuss them with the author. Authors then fix the problems and notify reviewers, and reviewers

must verify that the issue is resolved. The tool should track bugs found during review and prohibit review

completion until all bugs are verified fixed by the reviewer (or consciously postponed to future releases and

tracked using an established process).

If you’re going to go to the trouble of finding the bugs, make sure you’ve fixed them all!

Now that you’ve learned best practices for the process of code review, we’ll discuss some social effects and

how you can manage them for best results.

8. Managers must foster a good code review culture in which

finding defects is viewed positively.

Code review can do more for true team building than almost any other technique we’ve seen – but only if

managers promote it at a means for learning, growing, and communication. It’s easy to see defects as a bad

thing – after all they are mistakes in the code – but fostering a negative attitude towards defects found can

sour a whole team, not to mention sabotage the bug-finding process.

Managers must promote the viewpoint that defects are positive. After all, each one is an opportunity to

improve the code, and the goal of the bug review

process is to make the code as good as possible.

Every defect found and fixed in peer review is a

defect a customer never saw, another problem QA

didn’t have to spend time tracking down.

Teams should maintain the attitude that finding defects means the author and reviewer have successfully

worked as a team to jointly improve the product. It’s not a case of “the author made a defect and the

review found it.” It’s more like a very efficient form of pair-programming.

The point of software code review is to

eliminate as many defects as possible –

regardless of who “caused” the error.

8 11 Best Practices for Peer Code Review

Reviews present opportunities for all developers to correct bad habits, learn new tricks and expand their

capabilities. Developers can learn from their mistakes – but only if they know what their issues are. And if

developers are afraid of the review process, the positive results disappear.

Especially if you’re a junior developer or are new to a team, defects found by others are a good sign that

your more experienced peers are doing a good job in helping you become a better developer. You’ll

progress far faster than if you were programming in a vacuum without detailed feedback.

To maintain a consistent message that finding bugs is good, management must promise that defect densities

will never be used in performance reports. It’s effective to make these kinds of promises in the open – then

developers know what to expect and can call out any manager that violates a rule made so public.

Managers should also never use buggy code as a basis for negative performance review. They must tread

carefully and be sensitive to hurt feelings and negative responses to criticism, and continue to remind the

team that finding defects is good.

9. Beware the “Big Brother” effect.

“Big Brother is watching you.” As a developer, you

automatically assume it’s true, especially if your review

metrics are measured automatically by review-supporting

tools. Did you take too long to review some changes? Are

your peers finding too many bugs in your code? How will

this affect your next performance evaluation?

Metrics are vital for process measurement, which in turn provides the basis for process improvement. But

metrics can be used for good or evil. If developers believe that metrics will be used against them, not only

will they be hostile to the process, but they will probably focus on improving their metrics rather than truly

writing better code and being more productive.

Managers can do a lot to improve the problem. First and foremost – they should be aware of it and keep an

eye out to make sure they’re not propagating the impression that Big Brother is indeed scrutinizing every

move.

Metrics should never be used to

single out developers, particularly in

front of their peers. This practice can

seriously damage morale.

9 11 Best Practices for Peer Code Review

Metrics should be used to measure the efficiency of the process or the effect of a process change.

Remember that often the most difficult code is handled by your most experienced developers; this code in

turn is more likely to be more prone to error – as well as reviewed heavily (and thus have more defects

found). So large numbers of defects are often more attributable to the complexity and risk of a piece of

code than to the author’s abilities.

If metrics do help a manager uncover an issue, singling someone out is likely to cause more problems than it

solves. We recommend that managers instead deal with any issues by addressing the group as a whole. It’s

best not to call a special meeting for this purpose, or developers may feel uneasy because it looks like

there’s a problem. Instead, they should just roll it into a weekly status meeting or other normal procedure.

Managers must continue to foster the idea that finding defects is good, not evil, and that defect density is

not correlated with developer ability. Remember to make sure it’s clear to the team that defects,

particularly the number of defects introduced by a team member, shouldn’t be shunned and will never be

used for performance evaluations.

10. The Ego Effect: Do at least some code review, even if you don’t

have time to review it all.

Imagine yourself sitting in front of a compiler, tasked with fixing a small bug. But you know that as soon as

you say “I’m finished,” your peers – or worse, your boss – will be critically examining your work. Won’t this

change your development style? As you work, and certainly before you declare code-complete, you’ll be a

little more conscientious. You’ll be a better developer immediately because you want the general timbre of

the “behind your back” conversations to be, “His stuff is pretty tight. He’s a good developer;” not “He makes

a lot of silly mistakes. When he says he’s done, he’s not.”

The “Ego Effect” drives developers to write better code because they know that others will be looking at

their code and their metrics. And no one wants to be known as the guy who makes all those junior-level

mistakes. The Ego Effect drives developers to review their own work carefully before passing it on to others.

A nice characteristic of the Ego Effect is that it works equally well whether reviews are mandatory for all

code changes or just used as “spot checks” like a random drug test. If your code has a 1 in 3 chance of being

called out for review, that’s still enough of an incentive to make you do a great job. However, spot checks

must be frequent enough to maintain the Ego Effect. If you had just a 1 in 10 chance of getting reviewed,

you might not be as diligent. You know you can always say, “Yeah, I don’t usually do that.”

10 11 Best Practices for Peer Code Review

Reviewing 20-33% of the code will probably give you maximal Ego Effect benefit with minimal time

expenditure, and reviewing 20% of your code is certainly better than none!

11. Lightweight-style code reviews are efficient, practical, and

effective at finding bugs.

There are several main types, and countless variations, of code review, and the best practices you’ve just

learned will work with any of them.

However, to fully optimize the time

your team spends in review, we

recommend a tool-assisted

lightweight review process.

Formal, or heavyweight, inspections

have been around for 30 years – and

they are no longer the most efficient

way to review code. The average

heavyweight inspection takes nine

hours per 200 lines of code. While

effective, this rigid process requires

three to six participants and hours of

painful meetings paging through code

print-outs in exquisite detail. Unfortunately, most organizations can’t afford to tie up people for that long –

and most programmers despise the tedious process required. In recent years, many development

organizations have shrugged off the yoke of meeting schedules, paper-based code readings, and tedious

metrics-gathering in favor of new lightweight processes that eschew formal meetings and lack the overhead

of the older, heavy-weight processes.

We used our case Study at Cisco to determine how the lightweight techniques compare to the formal

processes. The results showed that lightweight code reviews take 1/5th the time (or less!) of formal reviews

and they find just as many bugs!

While several methods exist for lightweight code review, such as “over the shoulder” reviews and reviews by

email, the most effective reviews are conducted using a collaborative software tool to facilitate the review.

A good lightweight code review tool integrates source code viewing with “chat room” collaboration to free

Figure 4: CodeCollaborator, the lightweight code

review tool used in the Cisco study.

11 11 Best Practices for Peer Code Review

the developer from the tedium of associating comments with individual lines of code. These tools package

the code for the author, typically with version control integration, and then let other developers comment

directly on the code, chat with the author and each other to work through issues, and track bugs and verify

fixes. No meetings, print-outs, stop-watches, or scheduling required. With a lightweight review process and

a good tool to facilitate it, your team can conduct the most efficient reviews possible and can fully realize

the substantial benefits of code review.

Summary

So now you’re armed with an arsenal of best practices to ensure that you get the most of out your time

spent in code reviews – both from a process and a social perspective. Of course you have to actually do code

reviews to realize the benefits. Old, formal methods of review are simply impractical to implement for 100%

of your code (or any percent, as some would argue). Tool-assisted lightweight code review provides the

most “bang for the buck,” offering both an efficient and effective method to locate defects – without

requiring painstaking tasks that developers hate to do. With the right tools and best-practices, your team

can peer-review all of its code, and find costly bugs before your software reaches even QA – so your

customers get top-quality products every time!

More details on these best practices, the case study, and other topics are

chronicled in Jason Cohen’s book, Best Kept Secrets for Peer Code Review,

currently available FREE at www.CodeReviewBook.com. For information

on SmartBear Software’s CodeCollaborator code review tool, please

contact us!

Figure 5: Best Kept Secrets

of Peer Code Review – the

only book to address

lightweight code review.

http://www.codereviewbook.com/
http://www..smartbear.com/
http://www.codecollaborator.com/

12 11 Best Practices for Peer Code Review

You may also enjoy these other resources in the SmartBear Software Quality Series:

 Uniting Your Automated and Manual Test Efforts

 6 Tips to Get Started with Automated Testing

Be Smart and join our growing community of over 100,000 development, QA and IT professionals in 90

countries at (www.smartbear.com/community/resources/) or follow us @SmartBear on Twitter!

 © 2011 SmartBear Software. All rights reserved. All other product/brand names are trademarks of their respective holders.

About SmartBear Software

SmartBear Software provides enterprise-class yet

affordable tools for development teams that care

about software quality and performance. Our

collaboration, performance profiling, and testing

tools help more than 100,000 developers and testers

build some of the best software applications and

websites in the world. Our users can be found in

small businesses, Fortune 100 companies, and

government agencies.

SmartBear Software

+ 1 978.236.7900

www.smartbear.com

http://www.smartbear.com/PDF/Uniting_Automated_and_Manual_Test.pdf
http://www.smartbear.com/PDF/6_Tips_for_Automated_Test.pdf
http://www.smartbear.com/community/resources/
http://www.smartbear.com/

