

stress-ng
A stress-testing Swiss army knife

Presentation by

Colin Ian King

colin.king@canonical.com

www.canonical.com

October 2019

http://www.canonical.com/

 2

stress-ng

Designed to stress a computer system:
● Originally designed to trip hardware issues (make test systems hot!)

● Exercises a wide range of system calls, /dev, /sys, /proc interfaces

● Micro-benchmarking (bogo-ops throughput metrics)

● Real Time / Low-latency cyclic measurements

● System burn-in tests

● Kernel regression testing (22 bugs found so far)

● Kernel coverage testing

● Verify option for deeper system failure checking

● Used by researchers for stress testing

 3

stress-ng

Over 220 stress tests (aka stressors)
● CPU cache (icache, dcache), CPU compute (integer, float, string, searching..)

● Process management (fork, vfork, clone, kill, pthread)

● Device (block and /dev)

● File system and I/O (files, attributes, directories, links, renaming, etc)

● Interrupts (IRQs and soft interrupts)

● Memory (throughput, VM, RAM tests, paging, stack, brk, mmap)

● Networking (tcp, udp, sctp, dccp, netlink, sockfd)

● Kernel (system calls and /sys, /proc interfaces)

● Security (AppArmor, seccomp)

● IPC (pipes, shared memory, sempahores, mutexes)

 4

stress-ng

Designed to be portable:
● Linux (multiple arches, multiple distros)

● FreeBSD, OpenBSD, NetBSD, DragonFlyBSD

● Solaris (OpenIndiana)

● Minix

● Android (static image)

● Mac OS X

● Haiku

● GNU/HURD

● Compiles with GCC, Clang and tcc

 5

stress-ng can break kernels

Minix 3.3 file system crash DragonFlyBSD

Debian kFreeBSD OpenIndiana (Solaris)

 6

stress-ng examples (1/4)

Run 1 iomix stressor (mix of I/O operations) for 20 seconds with verbose output:

stress-ng --iomix 1 -t 20 -v

Run 2 cpu stressors and 4 virtual memory stressors for 5 minutes:

stress-ng --cpu 2 --vm 4 -t 5m

Special mode with zero stressors will run a stressor on each of the currently on-line CPUs (no
need to specify number of CPUs),

e.g. on a 8 thread machine, run 8 shared memory stressors:

stress-ng --shm 0

 7

stress-ng examples (2/4)

Run all the stressors one by one on all CPUs; each stressor will run for 30 seconds and measure
thermal zone temperatures:

sudo stress-ng --seq 0 -t 30 --tz -v

Generate major page faults and see the page fault rate using perf stats:

stress-ng --fault 0 --perf -t 1m

stress-ng --userfaultfd 0 --perf -t 1m

Generate large interrupt load with 32 timer stressors:

stress-ng --timer 32 --timer-freq 1000000

 8

stress-ng examples (3/4)

Memory pressure and swapping:

stress-ng --brk 0 --stack 0 --bigheap 0

Stressor size options:

stress-ng --vm 1 --vm-bytes 2G

stress-ng --vm 1 --vm-bytes 50%

stress-ng --hdd 1 --hdd-bytes 10%

stress-ng --malloc 1 --malloc-bytes 120%

stress-ng --shm –-shm-bytes 256M

Can use percentage (%), or specific sizes in bytes, kilobytes (K), megabytes (M) or gigabytes (G)

 9

stress-ng examples (4/4)

Highly configurable stressors:

stress-ng --vm 1 --vm-locked --vm-populate --vm-madvise nohugepage --vm-method gray
--vm-bytes 128M --verify --metrics-brief --vm-ops 1000000

● Attempt to lock pages into memory using MAP_LOCKED

● Populate page tables for the memory mappings and don’t use hugepages

● Fill memory with ascending gray codes and verify these are set correctly

● Repeat for 1,000,000 bogo ops

The vm stressor will cycle through memory mapping, filling and checking and unmapping the
mapped region. If the stressor is OOM’d by the kernel then stress-ng will re-spawn the test.

 10

Stress-ng thermal testing

https://www.youtube.com/watch?v=V4idnxE5AbE

 11

stress-ng thermal zones

How Hot? Thermal zone information using the --tz option:
stress-ng --matrix 0 --tz -t 60 --log-brief

dispatching hogs: 4 matrix

successful run completed in 60.00s (1 min, 0.00 secs)

matrix:

 x86_pkg_temp 89.00 C (362.15 K)

 acpitz 88.50 C (361.65 K)

stress-ng --cpu 0 --tz -t 60 --log-brief

dispatching hogs: 4 cpu

successful run completed in 60.05s (1 min, 0.05 secs)

cpu:

 x86_pkg_temp 87.25 C (360.40 K)

 acpitz 87.12 C (360.27 K)

 12

stress-ng metrics (1/2)

● Stress-ng uses a concept of bogo-ops per second as a measure of throughput.

● One bogo-op is one loop iteration of a stressor action.

● Bogo-op rates vary from stressor to stressor.

● Bogo-op rates may vary between releases of stress-ng due to compiler optimizations or
code changes.

● Bogo-op rates will vary between kernels.

● Used by the Ubuntu Kernel team for performance regression testing.

stress-ng --dup 1 -t 1m --metrics --log-brief

dispatching hogs: 1 dup

successful run completed in 60.00s (1 min, 0.00 secs)

stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s

 (secs) (secs) (secs) (real time) (usr+sys time)

dup 21520821 60.00 33.79 26.16 358681.41 358979.50

 13

stress-ng metrics (2/2)

The --yaml option specifies a YAML output file containing test metrics.

stress-ng --cpu 0 -t 1m --metrics --yaml cpu-stats.yaml

The yaml file contains:

system information:

 stress-ng version, date, hostname, kernel version,

 architecture, memory, CPU info, etc.

per-stress test metrics:

 stressor name, bogo-ops rates, wall-clock time,

 user-time and system-time

Useful for automated benchmarking.

 14

stress-ng perf metrics (1/2)

Perf stats on CPU cycles, instruction rate, branching, cache activity, page faults, context
switching, page activity, system calls, TLB flushes, scheduling stats, signals, IRQs, filemap
cache, OOMs and thermal zone trips.

sudo stress-ng --perf --matrix 1 -t 60 --log-brief

 175,852,773,535 CPU Cycles 2.87 B/sec

 396,687,869,300 Instructions 6.48 B/sec (2.256 instr. per cycle)

 50,130,992,422 Branch Instructions 0.82 B/sec

 389,648,188 Branch Misses 6.37 M/sec (0.78%)

 74,228,869,562 Stalled Cycles Frontend 1.21 B/sec

 5,859,477,614 Bus Cycles 95.77 M/sec

 146,503,609,353 Total Cycles 2.39 B/sec

 300,031,623 Cache References 4.90 M/sec

 6,795,960 Cache Misses 0.11 M/sec (2.27%)

 15

stress-ng perf metrics (2/2)

 95,514,831,044 Cache L1D Read 1.56 B/sec

 49,657,247,152 Cache L1D Read Miss 0.81 B/sec

 1,123,259,756 Cache L1D Write 18.36 M/sec

 596,354,025 Cache L1D Write Miss 9.75 M/sec

 2,771,837,260 Cache L1D Prefetch Miss 45.31 M/sec

 18,003,604 Cache L1I Read Miss 0.29 M/sec

 277,631,907 Cache LL Read 4.54 M/sec

 19,435,044 Cache LL Write 0.32 M/sec

 335,291,945 Cache LL Prefetch 5.48 M/sec

 95,347,100,060 Cache DTLB Read 1.56 B/sec

 98,849,843 Cache DTLB Read Miss 1.62 M/sec

 1,118,723,178 Cache DTLB Write 18.29 M/sec

 400,530 Cache DTLB Write Miss 6.55 K/sec

 16

stress-ng cyclic latency measurements (1/3)

Much like the Real Time cyclictest tool, but can use any mix of stressors.

Example, run 1 cyclic benchmark with the virtual memory stressor for 60 seconds:

stress-ng --cyclic 1 --cyclic-dist 250 --cyclic-method clock_ns \

 --cyclic-sleep 20000 --cyclic-policy rr --vm 4 -t 60 --log-brief

 - distribution stats @ 250 ns intervals

 - using CLOCK_NANOSECOND timer, sleep interval of 20000 ns

 - round robin scheduler policy

 - exercise virtual memory with 4 vm stressors

 17

stress-ng cyclic latency measurements (2/3)

dispatching hogs: 1 cyclic, 4 vm

stress-ng-cyclic: sched SCHED_RR: 20000 ns delay, 10000 samples

stress-ng-cyclic: mean: 4164.04 ns, mode: 3791 ns

stress-ng-cyclic: min: 3547 ns, max: 58286 ns, std.dev. 1068.23

stress-ng-cyclic: latency percentiles:

stress-ng-cyclic: 25.00%: 3813 ns

stress-ng-cyclic: 50.00%: 3993 ns

stress-ng-cyclic: 75.00%: 4233 ns

stress-ng-cyclic: 90.00%: 4588 ns

stress-ng-cyclic: 95.40%: 5025 ns

stress-ng-cyclic: 99.00%: 7397 ns

stress-ng-cyclic: 99.50%: 9936 ns

stress-ng-cyclic: 99.90%: 14758 ns

stress-ng-cyclic: 99.99%: 46148 ns

 18

stress-ng cyclic latency measurements (3/3)

stress-ng-cyclic: latency distribution (250 ns intervals):

stress-ng-cyclic: (for the first 234 buckets of 234)

stress-ng-cyclic: latency (ns) frequency

stress-ng-cyclic: 0 0

stress-ng-cyclic: 250 0

...

stress-ng-cyclic: 3250 0

stress-ng-cyclic: 3500 1526

stress-ng-cyclic: 3750 3543

stress-ng-cyclic: 4000 2546

stress-ng-cyclic: 4250 1194

stress-ng-cyclic: 4500 450

stress-ng-cyclic: 4750 267

stress-ng-cyclic: 5000 124

 19

stress-ng stressor methods (1/2)

Some stressors have many different methods to stress a system.

stress-ng --tree 1 --tree-method avl -t 15s --metrics --log-brief

dispatching hogs: 1 tree

successful run completed in 15.00s

stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s

 (secs) (secs) (secs) (real time) (usr+sys time)

tree 94 15.00 14.96 0.01 6.27 6.28

One can see all the in-built methods using the 'which' option, e.g.

stress-ng --vm-method which

vm-method must be one of: all flip galpat-0 galpat-1 gray rowhammer incdec inc-nybble
rand-set rand-sum read64 ror swap move-inv modulo-x prime-0 prime-1 prime-gray-0
prime-gray-1 prime-incdec walk-0d walk-1d walk-0a walk-1a write64 zero-one

 20

stress-ng stressor methods (2/2)

The cpu stressor has over 75 different methods, so plenty of different ways to exercise the
CPU: float, integer, vector math, mixed math, etc. See the manual for more details.

stress-ng --cpu 4 --cpu-method fft -t 10 --metrics --log-brief

dispatching hogs: 4 cpu

successful run completed in 10.00s

stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s

 (secs) (secs) (secs) (real time) (usr+sys time)

cpu 23462 10.00 38.58 0.00 2346.02 608.14

Stress tests that have multiple methods will cycle through all the methods by default unless a
specific stressor method is specified.

 21

stress-ng verification mode

Most stressors have a verification mode to sanity check test operations.

Adds overhead to bogo-ops rate so don't use it for benchmarking.

Test memory with different test patterns for 1 hour:

stress-ng --vm 1 --vm-bytes 2G --verify -v -t 1h

1 hour CPU computation soak test:

stress-ng --cpu 0 --verify -t 1h

 22

stress-ng references

Quick start guide:

https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Main project page:

https://kernel.ubuntu.com/~cking/stress-ng/

GitHub Repo:

 https://github.com/ColinIanKing/stress-ng

Manual:

https://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf

Kernel Coverage:

 https://kernel.ubuntu.com/~cking/kernel-coverage/stress-ng

Patches are always
appreciated!

https://github.com/ColinIanKing/stress-ng

 23

Questions please
Thank you

Colin Ian King

colin.king@canonical.com

https://kernel.ubuntu.com/~cking/stress-ng/

www.canonical.com

mailto:colin.king@canonical.com

 24

stress-ng bonus material: stressor classes

Each stressor is in one or more classes of stress test. All the stressors in a particular class can be
run using the --class option.

Classes are: cpu-cache cpu device filesystem interrupt io memory network os pipe scheduler
security vm

Example: run sequentially 2 instances of each CPU cache stressing test for 1 minute per stress
test:

stress-ng --class cpu-cache --seq 2 -t 1m -v

Example: run in parallel all the virtual memory stressors, 1 instance of each stressor:

stress-ng --class vm --all 1 -t 1m -v

 25

stress-ng bonus material: stressor jobs

One can script stress-ng stress tests using the –jobs or #!/usr/bin/stress-ng.

The stress-ng long options can be put into the script (without the long option dashes). One
option per line, the interpreter is very simple.

#!/usr/bin/stress-ng

run parallel # run jobs in parallel

brief # metrics

verbose # verbose output

timeout 5m # run 5 minutes

af-alg 2 # 2 instances

atomic 4 # 4 instances

bsearch 1 # 1 instance

See stress-ng source example-jobs for some job file examples.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

