
11
Testing with Groovy

In this chapter, we will cover:

ff Unit testing Java code with Groovy

ff Testing SOAP web services

ff Testing RESTful services

ff Writing functional tests for web applications

ff Writing behavior-driven tests with Groovy

ff Testing the database with Groovy

ff Using Groovy in soapUI

ff Using JMeter and Groovy for load testing

Introduction
This chapter is completely devoted to testing in Groovy. Testing is probably the most important
activity that allows us to produce better software and make our users happier. The Java space
has countless tools and frameworks that can be used for testing our software. In this chapter,
we will direct our focus on some of those frameworks and how they can be integrated
with Groovy. We will discuss not only unit testing techniques, but also integration and
load testing strategies.

Starting from the king of all testing frameworks, JUnit and its seamless Groovy integration,
we move to explore how to test:

ff SOAP and REST web services

ff Code that interacts with databases

ff The web application interface using Selenium

Testing with Groovy

2

The chapter also covers Behavior Driven Development (BDD) with Spock, advanced web
service testing using soapUI, and load testing using JMeter.

Unit testing Java code with Groovy
One of the ways developers start looking into the Groovy language and actually using it is by
writing unit tests. Testing Java code with Groovy makes the tests less verbose and it's easier
for the developers that clearly express the intent of each test method.

Thanks to the Java/Groovy interoperability, it is possible to use any available testing or
mocking framework from Groovy, but it's just simpler to use the integrated JUnit based
test framework that comes with Groovy.

In this recipe, we are going to look at how to test Java code with Groovy.

Getting ready
This recipe requires a new Groovy project that we will use again in other recipes of this
chapter. The project is built using Gradle (see the Integrating Groovy into the build process
using Gradle recipe in Chapter 2, Using Groovy Ecosystem) and contains all the test cases
required by each recipe.

Let's create a new folder called groovy-test and add a build.gradle file to it. The build
file will be very simple:

apply plugin: 'groovy'
apply plugin: 'java'
repositories {
 mavenCentral()
 maven {
 url 'https://oss.sonatype.org' +
 '/content/repositories/snapshots'
 }
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.6'
 testCompile 'junit:junit:4.+'
}

The standard source folder structure has to be created for the project. You can use the
following commands to achieve this:

mkdir -p src/main/groovy

mkdir -p src/test/groovy

mkdir -p src/main/java

Chapter 11

3

Verify that the project builds without errors by typing the following command in your shell:

gradle clean build

How to do it...
To show you how to test Java code from Groovy, we need to have some Java code first!

1.	 So, this recipe's first step is to create a simple Java class called StringUtil, which
we will test in Groovy. The class is fairly trivial, and it exposes only one method that
concatenates String passed in as a List:
package org.groovy.cookbook;
import java.util.List;
public class StringUtil {
 public String concat(List<String> strings,
 String separator) {
 StringBuilder sb = new StringBuilder();
 String sep = "";
 for(String s: strings) {
 sb.append(sep).append(s);
 sep = separator;
 }
 return sb.toString();
 }
}

Note that the class has a specific package, so don't forget to create the appropriate
folder structure for the package when placing the class in the src/main/java folder.

2.	 Run the build again to be sure that the code compiles.

3.	 Now, add a new test case in the src/test/groovy folder:
package org.groovy.cookbook.javatesting
import org.groovy.cookbook.StringUtil
class JavaTest extends GroovyTestCase {
 def stringUtil = new StringUtil()
 void testConcatenation() {
 def result = stringUtil.concat(['Luke', 'John'], '-')
 assertToString('Luke-John', result)
 }
 void testConcatenationWithEmptyList() {
 def result = stringUtil.concat([], ',')
 assertEquals('', result)
 }
}

Testing with Groovy

4

Again, pay attention to the package when creating the test case class and create the
package folder structure.

4.	 Run the test by executing the following Gradle command from your shell:
gradle clean build

Gradle should complete successfully with the BUILD SUCCESSFUL message.

5.	 Now, add a new test method and run the build again:
void testConcatenationWithNullShouldReturnNull() {
 def result = stringUtil.concat(null, ',')
 assertEquals('', result)
}

This time the build should fail:

3 tests completed, 1 failed

:test FAILED

FAILURE: Build failed with an exception.

6.	 Fix the test by adding a null check to the Java code as the first statement of the
concat method:
if (strings == null) {
 return "";
}

7.	 Run the build again to verify that it is now successful.

How it works...
The test case shown at step 3 requires some comments. The class extends
GroovyTestCase is a base test case class that facilitates the writing of unit tests by
adding several helper methods to the classes extending it. When a test case extends from
GroovyTestCase, each test method name must start with test and the return type must
be void. It is possible to use the JUnit 4.x @Test annotation, but, in that case, you don't have
to extend from GroovyTestCase.

The standard JUnit assertions (such as assertEquals and assertNull) are directly
available in the test case (without explicit import) plus some additional assertion methods
are added by the super class. The test case at step 3 uses assertToString to verify
that a String matches the expected result. There are other assertions added by
GroovyTestCase, such as assertArrayEquals, to check that two arrays contain
the same values, or assertContains to assert that an array contains a given element.

Chapter 11

5

There's more...
The GroovyTestCase class also offers an elegant method to test for expected exceptions.
Let's add the following rule to the concat method:

if (separator.length() != 1) {
 throw new IllegalArgumentException(
 "The separator must be one char long");
}

Place the separator length check just after the null check for the List. Add the following
new test method to the test case:

void testVerifyExceptionOnWrongSeparator() {
 shouldFail IllegalArgumentException, {
 stringUtil(['a', 'b'], ',,')
 }
 shouldFail IllegalArgumentException, {
 stringUtil(['c', 'd'], '')
 }
}

The shouldFail method takes a closure that is executed in the context of a try-catch block.
We can also specify the expected exception in the shouldFail method. The shouldFail
method makes testing for exceptions very elegant and simple to read.

See also
ff http://junit.org/

ff http://groovy.codehaus.org/api/groovy/util/GroovyTestCase.html

Testing SOAP web services
In the Issuing a SOAP request and parsing a response recipe in Chapter 8, Working with Web
Services in Groovy, we have learned how to execute a request against a SOAP web service. In
this recipe, we put into practice the concepts learned in that recipe and combine them with
the unit testing capabilities of Groovy.

Additionally, this recipe shows you how to use the JUnit 4 annotations instead of the JUnit 3
API offered by GroovyTestCase (see the Unit testing Java code with Groovy recipe).

Testing with Groovy

6

Getting ready
For this recipe, we are going to use a publicly available web service, the US holiday date web
service hosted at http://www.holidaywebservice.com. The WSDL of the service can
be found on the /Holidays/US/Dates/USHolidayDates.asmx?WSDL path. We have
already encountered this service in the Issuing a SOAP request and parsing a response recipe
in Chapter 8, Working with Web Services in Groovy. Each service operation simply returns the
date of a given US holiday such as Easter or Christmas.

How to do it...
We start from the Gradle build that we created in the Unit testing Java code with Groovy recipe.

1.	 Add the following dependency to the dependencies section of the
build.gradle file:
testCompile 'com.github.groovy-wslite:groovy-wslite:0.8.0'

The groovy-wslite library is mentioned in the Issuing a SOAP request and parsing a
response recipe in Chapter 8, Working with Web Services in Groovy. This library is
the de facto SOAP library for Groovy.

2.	 Let's create a new unit test for verifying one of the web service operations. As usual,
the test case is created in the src/test/groovy/org/groovy/cookbook folder:
package org.groovy.cookbook.soap

import static org.junit.Assert.*
import org.junit.Test
import wslite.soap.*

class SoapTest {

 ...

}

3.	 Add a new test method to the body of the class:
@Test
void testMLKDay() {

 def baseUrl = 'http://www.holidaywebservice.com'
 def service = '/Holidays/US/Dates/USHolidayDates.asmx?WSDL'
 def client = new SOAPClient("${baseUrl}${service}")
 def baseNS = 'http://www.27seconds.com/Holidays/US/Dates/'
 def action = "${baseNS}GetMartinLutherKingDay

Chapter 11

7

"
 def response = client.send(SOAPAction: action) {
 body {
 GetMartinLutherKingDay('xmlns': baseNS) {
 year(2013)
 }
 }
 }

 def date = Date.parse(
 "yyyy-MM-dd'T'hh:mm:ss",
 response.
 GetMartinLutherKingDayResponse.
 GetMartinLutherKingDayResult.text()
)

 assertEquals(
 date,
 Date.parse('yyyy-MM-dd', '2013-01-15')
)

 assertEquals(
 response.httpResponse.headers['X-Powered-By'].value,
 'ASP.NET'
)

}

4.	 Build the code and execute the test from the command line by executing:

gradle -Dtest.single=SoapTest clean test

How it works...
The test code creates a new SOAPClient with the URI of the target web service. The
request is created using Groovy's MarkupBuilder (see the Constructing XML content recipe
in Chapter 5, Working with XML in Groovy). The body closure (and if needed, also the header
closure) is passed to the MarkupBuilder for the SOAP message creation. The assertion code
gets the result from the response, which is automatically parsed by XMLSlurper, allowing easy
access to elements of the response such as the header or the body elements. In the above
test, we simply check that the returned Martin Luther King day matches with the expected
one for the year 2013.

Testing with Groovy

8

There's more...
If you require more control over the content of the SOAP request, the SOAPClient also
supports sending the SOAP envelope as a String, such as in this example:

def response = client.send (
 """<?xml version='1.0' encoding='UTF-8'?>
 <soapenv:Envelope
 xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:dat='http://www.27seconds.com/Holidays/US/Dates/'>
 <soapenv:Header/>
 <soapenv:Body>
 <dat:GetMartinLutherKingDay>
 <dat:year>2013</dat:year>
 </dat:GetMartinLutherKingDay>
 </soapenv:Body>
 </soapenv:Envelope>
 """
)

Replace the call to the send method in step 3 with the one above and run your test again.

See also
ff https://github.com/jwagenleitner/groovy-wslite

ff http://www.holidaywebservice.com

ff The Constructing XML content recipe in Chapter 5, Working with XML in Groovy

ff The Issuing a SOAP request and parsing a response recipe in Chapter 8, Working with
Web Services in Groovy

Testing RESTful services
This recipe is very similar to the previous recipe Testing SOAP web services, except that it
shows how to test a RESTful service using Groovy and JUnit.

Getting ready
For this recipe, we are going to use a test framework aptly named Rest-Assured.
This framework is a simple DSL for testing and validating REST services returning
either JSON or XML.

Chapter 11

9

Before we start to delve into the recipe, we need to start a simple REST service for testing
purposes. We are going to use the Ratpack framework, which we already encountered in the
Running tasks in parallel and asynchronously recipe in Chapter 10, Concurrent programming
in Groovy. The test REST service, which we will use, exposes three APIs to fetch, add, and
delete books from a database using JSON as lingua franca.

For the sake of brevity, the code for the setup of this recipe is available in the rest-test
folder of the companion code for this chapter. The code contains the Ratpack server, the
domain objects, Gradle build, and the actual test case that we are going to analyze in the
next section.

How to do it...
The test case takes care of starting the Ratpack server and execute the REST requests.

1.	 Here is the RestTest class located in src/test/groovy/org/groovy/
cookbok/rest folder:
package org.groovy.cookbook.rest

import static com.jayway.restassured.RestAssured.*
import static com.jayway.restassured.matcher.
 RestAssuredMatchers.*

import static org.hamcrest.Matchers.*
import static org.junit.Assert.*

import groovy.json.JsonBuilder

import org.groovy.cookbook.server.*
import org.junit.AfterClass
import org.junit.BeforeClass
import org.junit.Test

class RestTest {

 static server
 final static HOST = 'http://localhost:5050
'
 @BeforeClass
 static void setUp() {
 server = App.init()
 server.startAndWait()
 }

Testing with Groovy

10

 @AfterClass
 static void tearDown() {
 if(server.isRunning()) {
 server.stop()
 }
 }

 @Test
 void testGetBooks() {
 expect().
 body('author',
 hasItems('Ian Bogost', 'Nate Silver')).
 when().get("${HOST}/api/books")
 }

 @Test
 void testGetBook() {
 expect().
 body('author', is('Steven Levy')).
 when().get("${HOST}/api/books/5")
 }

 @Test
 void testPostBook() {
 def book = new Book()
 book.author = 'Haruki Murakami'
 book.date = '2012-05-14'
 book.title = 'Kafka on the shore'
 JsonBuilder jb = new JsonBuilder()
 jb.content = book
 given().
 content(jb.toString()).
 expect().body('id', is(6)).
 when().post("${HOST}/api/books/new")
 }

 @Test
 void testDeleteBook() {
 expect().statusCode(200).
 when().delete("${HOST}/api/books/1")
 expect().body('id', not(hasValue(1))).
 when().get("${HOST}/api/books")
 }

}

Chapter 11

11

2.	 Build the code and execute the test from the command line by typing:

gradle clean test

How it works...
The JUnit test has a @BeforeClass annotated method, executed at the beginning of the unit
test, that starts the Ratpack server and the associated REST services. The @AfterClass
annotated method, on the contrary, shuts down the server when the test is over.

The unit test has four test methods. The first one, testGetBooks executes a GET request
against the server and retrieves all the books.

The rather readable DSL offered by the Rest-Assured framework should be easy to follow.
The expect method starts building the response expectation returned from the get method.
The actual assert of the test is implemented via a Hamcrest matcher (hence the static
org.hamcrest.Matchers.* import in the test). The test is asserting that the body of the
response contains two books that have the author named Ian Bogost or Greg Grandin.
The get method hits the URL of the embedded Ratpack server, started at the beginning
of the test.

The testGetBook method is rather similar to the previous one, except that it uses the is
matcher to assert the presence of an author on the returned JSON message.

The testPostBook tests that the creation of a new book is successful. First, a new
book object is created and transformed into a JSON object using JsonBuilder (see the
Constructing JSON messages with JsonBuilder recipe in Chapter 6, Working with JSON in
Groovy). Instead of the expect method, we use the given method to prepare the POST
request. The given method returns a RequestSpecification to which we assign the
newly created book and finally, invoke the post method to execute the operation on the
server. As in our book database, the biggest identifier is 8, the new book should get the
id 9, which we assert in the test.

The last test method (testDeleteBook) verifies that a book can be deleted. Again we use the
expect method to prepare the response, but this time we verify that the returned HTTP status
code is 200 (for deletion) upon deleting a book with the id 1. The same test also double-checks
that fetching the full list of books does not contain the book with id equals to 1.

See also
ff https://code.google.com/p/rest-assured/

ff https://code.google.com/p/hamcrest/

ff https://github.com/ratpack/ratpack

ff The Constructing JSON messages with JsonBuilder recipe in Chapter 6, Working with
JSON in Groovy

Testing with Groovy

12

ff The Issuing a REST request and parsing a response recipe in Chapter 8, Working with
Web Services in Groovy

Writing functional tests for web applications
If you are developing web applications, it is of utmost importance that you thoroughly test
them before allowing user access. Web GUI testing can require long hours of very expensive
human resources to repeatedly exercise the application against a varied list of input
conditions. Selenium, a browser-based testing and automation framework, aims to solve
these problems for software developers, and it has become the de facto standard for web
interface integration and functional testing.

Selenium is not just a single tool but a suite of software components, each catering to
different testing needs of an organization. It has four main parts:

ff Selenium Integrated Development Environment (IDE): It is a Firefox add-on that you
can only use for creating relatively simple test cases and test suites.

ff Selenium Remote Control (RC): It also known as Selenium 1, is the first Selenium
tool that allowed users to use programming languages in creating complex tests.

ff WebDriver: It is the newest Selenium implementation that allows your test scripts to
communicate directly to the browser, thereby controlling it from the OS level.

ff Selenium Grid: It is a tool that is used with Selenium RC to execute parallel tests
across different browsers and operating systems.

Since 2008, Selenium RC and WebDriver are merged into a single framework to form
Selenium 2. Selenium 1 refers to Selenium RC.

This recipe will show you how to write a Selenium 2 based test using HtmlUnitDriver.
HtmlUnitDriver is the fastest and most lightweight implementation of WebDriver at
the moment. As the name suggests, it is based on HtmlUnit, a relatively old framework
for testing web applications.

The main disadvantage of using this driver instead of a WebDriver implementation that
"drives" a real browser is the JavaScript support. None of the popular browsers use the
JavaScript engine used by HtmlUnit (Rhino). If you test JavaScript using HtmlUnit, the results
may divert considerably from those browsers. Still, WebDriver and HtmlUnit can be used for
fast paced testing against a web interface, leaving more JavaScript intensive tests to other,
long running, WebDriver implementations that use specific browsers.

Chapter 11

13

Getting ready
Due to the relative complexity of the setup required to demonstrate the steps of this recipe, it
is recommended that the reader uses the code that comes bundled with this recipe. The code
is located in the selenium-test located in the code directory for this chapter. The source
code, as other recipes in this chapter, is built using Gradle and has a standard structure,
containing application code and test code.

The web application under test is very simple. It is composed of two pages. A welcome page
that looks similar to the following screenshot:

And a single field test form page:

The Ratpack framework is utilized to run the fictional web application and serve the HTML
pages along with some JavaScript and CSS.

How to do it...
The following steps will describe the salient points of Selenium testing with Groovy.

1.	 Let's open the build.gradle file. We are interested in the dependencies required
to execute the tests:
testCompile group: 'org.seleniumhq.selenium',
 name: 'selenium-htmlunit-driver',
 version: '2.32.0'
testCompile group: 'org.seleniumhq.selenium',
 name: 'selenium-support',
 version: '2.9.0'

Testing with Groovy

14

2.	 Let's open the test case, SeleniumTest.groovy located in test/groovy/org/
groovy/cookbook/selenium:

package org.groovy.cookbook.selenium

import static org.junit.Assert.*

import org.groovy.cookbook.server.*
import org.junit.AfterClass
import org.junit.BeforeClass
import org.junit.Test
import org.openqa.selenium.By
import org.openqa.selenium.WebDriver
import org.openqa.selenium.WebElement
import org.openqa.selenium.htmlunit.HtmlUnitDriver
import org.openqa.selenium.support.ui.WebDriverWait

import com.google.common.base.Function

class SeleniumTest {

 static server
 static final HOST = 'http://localhost:5050'
 static HtmlUnitDriver driver

 @BeforeClass
 static void setUp() {
 server = App.init()
 server.startAndWait()
 driver = new HtmlUnitDriver(true)
 }

 @AfterClass
 static void tearDown() {
 if (server.isRunning()) {
 server.stop()
 }
 }

 @Test
 void testWelcomePage() {
 driver.get(HOST)
 assertEquals('welcome', driver.title)
 }

Chapter 11

15

 @Test
 void testFormPost() {

 driver.get("${HOST}/form")
 assertEquals('test form', driver.title)

 WebElement input =
 driver.findElement(By.name('username'))

 input.sendKeys('test')
 input.submit()

 WebDriverWait wait = new WebDriverWait(driver, 4)
 wait.until ExpectedConditions.
 presenceOfElementLocated(By.className('hello'))

 assertEquals('oh hello,test', driver.title)

 }

}

How it works...
The test case initializes the Ratpack server and the HtmlUnit driver by passing true to the
HtmlUnitDriver instance. The boolean parameter in the constructor indicates whether
the driver should support JavaScript.

The first test, testWelcomePage, simply verifies that the title of the website's welcome page
is as expected. The get method executes an HTTP GET request against the URL specified in
the method, the Ratpack server in our test.

The second test, testFormPost, involves the DOM manipulation of a form, its submission,
and waiting for an answer from the server.

The Selenium API should be fairly readable. For a start, the test checks that the page
containing the form has the expected title. Then the element named username (a form field)
is selected, populated, and finally submitted. This is how the HTML looks for the form field:

<input type="text"
 name="username"
 placeholder="Your username">

The test uses the findElement method to select the input field. The method expects a By
object that is essentially a mechanism to locate elements within a document. Elements can
be identified by name, id, text link, tag name, CSS selector, or XPath expression.

Testing with Groovy

16

The form is submitted via AJAX. Here is part of the JavaScript activated by the form submission:

complete:function(xhr, status) {
 if (status === 'error' || !xhr.responseText) {
 alert('error')
 } else {
 document.title = xhr.responseText
 jQuery(e.target).
 replaceWith('<p class="hello">' +
 xhr.responseText +
 '</p>')
 }
}

After the form submission, the DOM of the page is manipulated to change the page
title of the form page and replace the form DOM element with a message wrapped
in a paragraph element.

To verify that the DOM changes have been applied, the test uses the WebDriverWait class
to wait until the DOM is actually modified and the element with the class hello appears on
the page. The WebDriverWait is instantiated with a four seconds timeout.

This recipe only scratches the surface of the Selenium 2 framework's capabilities, but it
should get you started to implement your own integration and functional test.

See also
ff http://docs.seleniumhq.org/

ff http://htmlunit.sourceforge.net/

Writing behavior-driven tests with Groovy
Behavior Driven Development, or simply BDD, is a methodology where QA, business analysts,
and marketing people could get involved in defining the requirements of a process in a
common language. It could be considered an extension of Test Driven Development, although
is not a replacement. The initial motivation for BDD stems from the perplexity of business
people (analysts, domain experts, and so on) to deal with "tests" as these seem to be too
technical. The employment of the word "behaviors" in the conversation is a way to engage
the whole team.

Chapter 11

17

BDD states that software tests should be specified in terms of the desired behavior of
the unit. The behavior is expressed in a semi-formal format, borrowed from user story
specifications, a format popularized by agile methodologies.

For a deeper insight into the BDD rationale, it is highly recommended to read the original
paper from Dan North available at http://dannorth.net/introducing-bdd/.

Spock is one of the most widely used frameworks in the Groovy and Java ecosystem that
allows the creation of BDD tests in a very intuitive language and facilitates some common
tasks such as mocking and extensibility. What makes it stand out from the crowd is its
beautiful and highly expressive specification language. Thanks to its JUnit runner, Spock is
compatible with most IDEs, build tools, and continuous integration servers.

In this recipe, we are going to look at how to implement both a unit test and a web integration
test using Spock.

Getting ready
This recipe has a slightly different setup than most of the recipes in this book, as it resorts
to an existing web application source code, freely available on the Internet. This is the Spring
Petclinic application provided by SpringSource as a demonstration of the latest Spring
framework features and configurations. The web application works as a pet hospital and most
of the interactions are typical CRUD operations against certain entities (veterinarians, pets,
pet owners). The Petclinic application is available in the groovy-test/spock/web folder
of the companion code for this chapter.

All Petclinic's original tests have been converted to Spock. Additionally we created a simple
integration test that uses Spock and Selenium to showcase the possibilities offered by the
integration of the two frameworks.

As usual, the recipe uses Gradle to build the reference web application and the tests.

The Petclinic web application can be started by launching the following Gradle command in
your shell from the groovy-test/spock/web folder:

gradle tomcatRunWar

If the application starts without errors, the shell should eventually display the
following message:

The Server is running at http://localhost:8080/petclinic

Testing with Groovy

18

Take some time to familiarize yourself with the Petclinic application by directing your browser
to http://localhost:8080/petclinic and browsing around the website:

How to do it...
The following steps will describe the key concepts for writing your own behavior-driven unit
and integration tests:

1.	 Let's start by taking a look at the dependencies required to implement a Spock-based
test suite:
testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
testCompile group: 'org.seleniumhq.selenium',
 name: 'selenium-java', version: '2.16.1'
testCompile group: 'junit', name: 'junit', version: '4.10'
testCompile 'org.hamcrest:hamcrest-core:1.2'
testRuntime 'cglib:cglib-nodep:2.2'
testRuntime 'org.objenesis:objenesis:1.2'

2.	 This is what a BDD unit test for the application's business logic looks like:
package org.springframework.samples.petclinic.model
import spock.lang.*
class OwnerTest extends Specification {
 def "test pet and owner" () {
 given:
 def p = new Pet()
 def o = new Owner()
 when:
 p.setName("fido")
 then:

Chapter 11

19

 o.getPet("fido") == null
 o.getPet("Fido") == null
 when:
 o.addPet(p)
 then:
 o.getPet("fido").equals(p)
 o.getPet("Fido").equals(p)
 }
}

The test is named OwnerTest.groovy, and it is available in the spock/web/src/
test folder of the main groovy-test project that comes with this chapter.

3.	 The third test in this recipe mixes Spock and Selenium, the web testing framework
already discussed in Writing functional tests for web applications recipe:

package org.cookbook.groovy.spock

import static java.util.concurrent.TimeUnit.SECONDS
import org.openqa.selenium.By
import org.openqa.selenium.WebElement
import org.openqa.selenium.htmlunit.HtmlUnitDriver
import spock.lang.Shared

import spock.lang.Specification

class HomeSpecification extends Specification {

 static final HOME = 'http://localhost:9966/petclinic
'
 @Shared
 def driver = new HtmlUnitDriver(true)

 def setup() {
 driver.manage().timeouts().implicitlyWait 10, SECONDS
 }

 def 'user enters home page'() {
 when:
 driver.get(HOME)
 then:
 driver.title == 'PetClinic :: ' +
 'a Spring Framework demonstration'
 }

 def 'user clicks on menus'() {

Testing with Groovy

20

 when:
 driver.get(HOME)
 def vets = driver.findElement(By.linkText('Veterinarians'))
 vets.click()
 then:
 driver.currentUrl ==
 'http://localhost:9966/petclinic/vets.html'
 }
}

The test above is available in the spock/specs/src/test folder of the
accompanying project.

How it works...
The first step of this recipe lays out the dependencies required to set up a Spock-based BDD
test suite. Spock requires Java 5 or higher, and it's pretty picky with regard to the matching
Groovy version to use. In the case of this recipe, as we are using Groovy 2.x, we set the
dependency to the 0.7-groovy-2.0 version of the Spock framework.

The full build.gradle file is located in the spock/specs folder of the recipe's code.

The first test case demonstrated in the recipe is a direct conversion of a JUnit test written by
Spring for the Petclinic application. This is the original test written in Java:

public class OwnerTests {
 @Test
 public void testHasPet() {
 Owner owner = new Owner();
 Pet fido = new Pet();
 fido.setName("Fido");
 assertNull(owner.getPet("Fido"));
 assertNull(owner.getPet("fido"));
 owner.addPet(fido);
 assertEquals(fido, owner.getPet("Fido"));
 assertEquals(fido, owner.getPet("fido"));
 }
}

All we need to import in the Spock test is spock.lang.* that contains the most important
types for writing specifications. A Spock test extends from spock.lang.Specification.
The name of a specification normally relates to the system or system operation under
test. In the case of the Groovy test at step 2, we reused the original Java test name, but it
would have been better renamed to something more meaningful for a specification such as
OwnerPetSpec. The class Specification exposes a number of practical methods for
implementing specifications. Additionally, it tells JUnit to run the specification with Sputnik,
Spock's own JUnit runner. Thanks to Sputnik, Spock specifications can be executed by all IDEs
and build tools.

Chapter 11

21

Following the class definition, we have the feature method:

def 'test pet and owner'() {
 ...
}

Feature methods lie at the core of a specification. They contain the description of the features
(properties, aspects) that define the system that is under specification test. Feature methods
are conventionally named with String literals: it's a good idea to choose meaningful names
for feature methods.

In the test above, we are testing that: given two entities, pet and owner, the getPet method
of the owner instance will return null until the pet is not assigned to the owner, and that the
getPet method will accept both "fido" and "Fido" in order to verify the ownership.

Conceptually, a feature method consists of four phases:

ff Set up the feature's fixture
ff Provide an input to the system under specification (stimulus)
ff Describe the response expected from the system
ff Clean up

Whereas the first and last phases are optional, the stimulus and response phases are always
present and may occur more than once.

Each phase is defined by blocks: blocks are defined by a label and extend to the beginning of
the next block or the end of the method. In the test at step 2, we can see 3 types of blocks:

ff In the given block, data gets initialized
ff The when and then blocks always occur together. They describe a stimulus and the

expected response. Whereas when blocks may contain arbitrary code; then blocks
are restricted to conditions, exception checking, interactions, and variable definitions.

The first test case has two when/then pairs. A pet is assigned the name "fido", and the test
verifies that calling getPet on an owner object only returns something if the pet is actually
"owned" by the owner.

The second test is slightly more complex because it employs the Selenium framework to
execute a web integration test with a BDD flavor. The test is located in the groovy-test/
spock/specs/src/test folder. You can launch it by typing gradle test from the
groovy-test/spock/specs folder. The test takes care of starting the web container and
run the application under test, Petclinic. The test starts by defining a shared Selenium driver
marked with the @Shared annotation, which is visible by all the feature methods. The first
feature method simply opens the Petclinic main page and checks that the title matches the
specification. The second feature method uses the Selenium API to select a link, click on it,
and verify that the link brings the user to the right page. The verification is performed against
the currentUrl of the browser that is expected to match the URL of the link we clicked on.

Testing with Groovy

22

See also
ff http://dannorth.net/introducing-bdd/

ff http://en.wikipedia.org/wiki/Behavior-driven_development

ff https://code.google.com/p/spock/

ff https://github.com/spring-projects/spring-petclinic/

Testing the database with Groovy
When developing data-driven applications, which perform operations against a database
such as SELECT or DELETE, we normally unit test these applications by mocking the data
layer. The reason is that launching or connecting to a full-fledged database when running
a bunch of unit tests slows down the test execution and introduces a strong dependency.
Should our database be down, all our tests would fail. Furthermore, testing against
a database imposes that the database is in a well-known state, or, alternatively, it is
completely empty. This is often not possible.

However, at some point we need to be able to test our data layer, regardless of the technology
(JDBC and ORM), and that cannot be done without accessing a real database. Either our
SQL queries or our ORM mapping have to be tested for correctness. This will verify that the
database schema matches the queries—either generated or hand written.

For many years, the king of the database-driven test frameworks has been DBUnit. DBUnit
performs the following operations to help you with database testing:

ff Exporting data from the database to flat XML files: each test can then load data
from these files

ff Restoring the original state of the database before executing the test

ff Comparing the actual data in the database and the expected datasets
in order to determine the success or failure of a particular test

ff Deleting any changes made after the test is complete

In this recipe, we will explore the DBUnit API and how Groovy can simplify their consumption.

Getting ready
This recipe doesn't ask for much of a setup, as we are reusing the test infrastructure defined
in the, Unit testing Java code with Groovy recipe. The only required step is adding few
dependencies to the build.gradle script:

testCompile 'org.dbunit:dbunit:2.4.9'
testRuntime 'org.hsqldb:hsqldb:2.3.0'
testRuntime 'org.slf4j:slf4j-api:1.7.5'

Chapter 11

23

The first dependency is DBUnit itself. The second dependency is HSQLDB (HyperSQL), a Java-
based database that will be embedded in the test. We used HSQLDB in almost every recipe of
Chapter 7, Working with Databases in Groovy.

How to do it...
The following steps will present an approach for database testing using DBUnit.

1.	 Create a new JUnit test in the test folder of the project defined in the first recipe of this
chapter. Name the test class DBUnitTest. As usual, pay attention to the package
name and don't forget to create the proper folders under src/test/groovy:
package org.groovy.cookbook.dbunit

import static org.junit.Assert.*

import groovy.sql.Sql
import groovy.xml.StreamingMarkupBuilder
import org.dbunit.JdbcDatabaseTester
import org.dbunit.database.*
import org.dbunit.dataset.xml.*
import org.junit.Before
import org.junit.BeforeClass
import org.junit.Test

class DbUnitTest {

 ...

}

2.	 Add the following methods for setting up the database:
def tester

final static DB_DRIVER = 'org.hsqldb.jdbcDriver'
final static DB_CONFIG = ['jdbc:hsqldb:db/sample', 'sa', '']

@BeforeClass
static void schema() {
 Sql.newInstance(*DB_CONFIG, DB_DRIVER).execute('''
 drop table if exists post;
 drop table if exists author;
 create table author(
 id integer primary key,
 name varchar(500)

Testing with Groovy

24

);
 create table post(
 id integer primary key,
 title varchar(500),
 text longvarchar,
 author integer not null,
 foreign key (author) references author(id)
);
 ''')
}

@Before
void setUp() {
 tester = new JdbcDatabaseTester(DB_DRIVER, *DB_CONFIG)
}

3.	 Finally, let's add two test methods:

@Test
void testSelectWithId() {
 tester.dataSet = dataSet {
 author id: 1, name: 'Admin'
 post id: 1,
 author: 1,
 title: 'DBUnit testing for everyone!',
 text: 'How to use DBUnit to rock your tests'
 }
 tester.onSetup()

 def row = firstRow('''
 select id, title, text
 from post where id = ?
 ''', [1])

 assertEquals(1, row.id)
 assertEquals('Testing db with dbunit is easy',
 row.title)
}

@Test
void testSelectWithAuthorName() {
 tester.dataSet = dataSet {
 author id: 1, name: 'testName'
 post id: 1,
 author: 1,

Chapter 11

25

 title: 'Testing a sql join',
 text: 'some text...'
 }
 tester.onSetup()

 def row = firstRow('''
 select p.id, p.title, p.text
 from post p
 left join author a
 on a.id = p.author
 where a.name = ?
 ''', ['testName'])

 assertEquals(1, row.id)
 assertEquals('some text...', row.text)
}

def firstRow(query, List args) {
 Sql.newInstance(DB_DRIVER, *DB_CONFIG).firstRow(query, args)
}

def dataSet(dataClosure) {
 new FlatXmlDataSet(
 new StringReader(
 new StreamingMarkupBuilder().
 bind{dataset dataClosure}.toString()
)
)
}

How it works...
In step 1, we have a bunch of imports mostly related to DBUnit, but also
StreamingMarkupBuilder that is going to be used later. The DB_CONFIG list contains
the connection data required to access the database. Using the Groovy spread (*) operator,
we convert the collection into individual parameters for the Sql.newInstance method.

Step 2 contains the methods to initialize the database. The static schema method (annotated
with @BeforeClass gets executed at the beginning of the test) connects to the in-memory
HSQLDB database and executes the schema creation script. Two tables are created, post and
author—a basic structure for a blogging platform.

The second initialization method (setup) executed for each test method creates a new
JdbcDatabaseTester, a DBUnit object responsible for holding the database connection
and configuring/executing the datasets.

Testing with Groovy

26

Let's look at the test methods. Both test methods populate the tables with some data
taken from a dataset. A dataset, in DBUnit, is an abstraction to manipulate tabular data,
represented by the org.dbunit.dataset.IDataSet interface. In other words, a dataset
contains the data with which we seed the database before running our test in order to place
the database into a well-known state.

There are several implementations of the IDataSet interface; each implementation is
specialized in dealing with a specific data format:

ff FlatXmlDataSet reads and writes a DBUnit specific XML format

ff XmlDataSet reads and writes more verbose XML data

ff XlsDataSet reads from Excel files

For a complete list of dataset providers, please check the official DBUnit documentation on
datasets: http://dbunit.sourceforge.net/components.html#IDataSet.

In both tests, we set the dataset by calling the dataSet method. This method accepts a
closure, which transforms the data structure (basically, List of Map) defined in the test
into XML using the StreamingMarkupBuilder. The dataset is transformed from this:

author id: 1, name: 'Admin'
post id: 1,
 author: 1,
 title: 'Testing db with dbunit is easy',
 text: 'How to use DBUnit to rock your tests'

to this:

<author id='1' name='Admin' />
<post id='1'
 author='1'
 title='Testing db with dbunit is easy'
 text='How to use DBUnit to rock your tests'/>

Each test method needs to explicitly invoke the onSetup method of the
JdbcDatabaseTester to insert the dataset in the database. Both test methods are similar
in the type of test they perform. First, the test inserts a dataset into the database, and then
it asserts that a SQL query returns the expected result. In real life, you'd probably have some
kind of data layer Data Access Object (DAO) that would be the class under test. The data
layer would expose methods, such as saveUser or getSalaryByEmployeeId, which would
access the database to perform the requested operations. With DBUnit, it's easy to verify that
data are correctly persisted or fetched from the database, and, by using Groovy elegance,
we can make the tests less verbose and easy to read.

Chapter 11

27

See also
ff http://dbunit.sourceforge.net

ff http://dbunit.sourceforge.net/components.html#IDataSet

ff http://hsqldb.org/

ff Chapter 7, Working with Databases in Groovy

Using Groovy in soapUI
soapUI is a popular tool used for web service testing and, recently, load testing too.
It's easy to run, configure, and use; thanks to a polished Java Swing GUI as well as the
command line interface.

Out of the box, the open source version of soapUI comes with several features:

ff WS-* standards support: Specifically, soapUI supports most of the web service
specifications such as WS-Security and WS-Addressing, among others

ff Service mocking: With soapUI, it's easy to simulate a web service before it is
created, for testing out the clients

ff Scripting: soapUI supports Groovy and JavaScript to run before and after
processing operations

ff Functional testing: soapUI can run functional tests against web services,
web applications, and JDBC data sources

ff Performance testing: With just a few clicks, you can generate performance
and load tests quickly using soapUI

ff Test automation: soapUI is easy to integrate into testing frameworks, such as JUnit,
and to launch by build tools such as Maven or Gradle

In this recipe, we are going to use soapUI to test the US holiday date web service that
we already encountered in the Testing SOAP web services recipe. soapUI has support for
Groovy scripting, which we will use to make our soapUI test more efficient and useful.

Getting ready
Download and install the open source version of soapUI, available on the product's page
website (http://www.soapui.org/). Note that this recipe will also work with the Pro
version of the product, should you already own a license. At the time of writing, the latest
soapUI version is v4.5.2.

Testing with Groovy

28

How to do it...
Following the soapUI installation, you should launch it in order to proceed with the
following steps:

1.	 From the workspace, create a new soapUI project (File | New soapUI project).
Assign a name to the project and fill the WADL/WSDL input with the base service
URL, http://www.holidaywebservice.com, concatenated with the WSDL
path - /Holidays/US/Dates/USHolidayDates.asmx?WSDL. Leave all the
other options as default:

2.	 soapUI connects to the web service and fetches all the available operations, creating
sample requests for each operation. Expand the GetEaster operation on the left
pane (USHolidayDateSoap interface) and double-click on Request 1. A SOAP
request pane should appear: replace the ? symbol inside the <dat:year> node with
a valid year (for example, 1977). Fire the request by clicking on the big green arrow
and enjoy the response from the server:

Chapter 11

29

3.	 Now, it's finally time to create the test. Right-click on the Request 1 element below
the GetEaster operation and from the pop-up menu, select Add to TestCase:

4.	 soapUI requests the name for the test suite, a container for all our test cases: use any
meaningful name, for example, HolidaysTestSuite. Once we get the test suite
name sorted, we will be prompted with the name of the test case; we can fill in the
input with EasterTestCase.

5.	 Lastly, soapUI will ask for the test method name; we already selected GetEaster so
we can leave all the options as default. After clicking on OK, a new EasterTestCase
will be added to the tree in the left pane. Expand the node and double-click on
GetEaster to pull up our test case console. We will use Groovy to process the
input and the output of the request by creating more steps.

6.	 From the test console, select the properties tab and click on the small + button to
add a new property. Name it year and set its value to 2011. Create another property
called dateToParse and leave its value empty for the moment, we will use it later.

Testing with Groovy

30

7.	 The year property that we just created replaces the input for our SOAP request.
Double-click on the GetEaster node from the left pane, under Test Steps, to show
the XML request. Delete any content between the <dat:year> tags, click on your
mouse's right button, select Get Data and Test Case:[Get Easter], Property[year].
This will update the request's XML and place a snippet between the <dat:year>
tags that retrieves the year's value from the property created previously:

8.	 Let's add some Groovy code to the test. Select the Test Steps node, click the mouse's
right button, select Add Step and Groovy Script. Name it LogYearToTest. If the
new step shows up below the GetEaster node, drag it above it.

9.	 Double-click on the newly created Groovy step and insert the following Groovy snippet
in the code editor:
def testCase = testRunner.testCase
def year = testCase.getPropertyValue('year')
log.info("testing with data: ${year}")

The console comes with some injected components such as log and testRunner,
which is a controller for our test case. The code above simply extracts the year
property we created before and logs it.

10.	 Let's create a new test step, this time of type Property Transfer. This type of test step
is required to transfer values between steps. Name it and double-click on the newly
created node. The window is roughly divided into two sections: the source (from which
we extract the result) and target (the property in which the result will be copied).

Chapter 11

31

11.	 Click on the small + icon in the transfer step window and create a new variable name,
EasterDate. From the Source drop-down, select the GetEaster SOAP step. Select
Response from the Property drop-down. Finally, add the following XPath snippet in
the large text box area below the Source drop-down:
declare namespace dat =
 'http://www.27seconds.com/Holidays/US/Dates/';
//dat:GetEasterResponse[1]/dat:GetEasterResult[1]

The snippet is a simple XPath that identifies the node that is extracted from
the response.

12.	 In the Target drop-down, select the EasterTestCase test case and pick
dateToParse in the Property drop-down (remember, we created this
property at the beginning of the recipe):

13.	 Now, it's time to create the last step of our test case. Under the Property Transfer
step, let's create a second Groovy Script step with the name ParseDate and add
the following Groovy code:
import static java.util.Calendar.*
def testCase = testRunner.testCase
def dateStr = testCase.getPropertyValue('dateToParse')
def date = Date.parse("yyyy-MM-dd'T'HH:mm:ss", dateStr)
int parsedYear = date.toCalendar().get(YEAR)
int currentYear = new Date().toCalendar().get(YEAR)
assert (currentYear - parsedYear == 2)

Testing with Groovy

32

14.	 You can now run the full test case by double-clicking on the EasterTestCase node
in the left pane and clicking on the green arrow on the windows that appears. If the
test passes, the green dots sitting next to each step should be green. Otherwise, you
should see some red dots and a description of the error.

How it works...
soapUI is essentially a test tool. The goal of the recipe was to create a test case for one of the
operations, specifically the GetEaster method. The method accepts a single parameter, the
year, and returns the actual Easter day and month for the given year.

The test case we just created is composed of four steps:

ff The first step logs the value of the property we use in the SOAP request

ff The second step is the actual SOAP request

ff The third step extracts the date value from the SOAP response and transfers it to a
property named dateToParse using XPath

ff The last step uses Groovy to parse the date returned from the web service and verify
that the year returned is 2 years behind the current year

Chapter 11

33

There's more...
With this recipe, we have only scratched the surface of the powerful possibilities of using
soapUI with Groovy. It is possible, for instance, to read data from a file or spreadsheet and
populate the requests with different information (for example, usernames, passwords,
identifiers). More sophisticated assertions can be done using database data to verify
that the returned information is correct.

See also
ff http://www.soapui.org

ff http://www.holidaywebservice.com

ff http://groovy.codehaus.org/groovy-jdk/java/util/Date.html

ff http://www.w3.org/TR/xpath20/

Using JMeter and Groovy for load testing
Apache JMeter is an open source application, designed to test the performance of client/
server applications such as web applications, web service based APIs, or even FTP
applications. Thanks to its ease-of-use and wide set of features, JMeter is a very popular
testing tool. It is written in Java and exposes API for added extensibility and flexibility.

JMeter acts as the client of the service that has to be tested for performance metrics. It
spawns one or more concurrent requests and measures the response time of the server
under test. The metrics are not limited to response time, but JMeter can also monitor other
resources such as CPU loads or memory usage. By leveraging its scripting capabilities,
which we will discuss in this recipe, JMeter can be used effectively as a tool for functional
test automation.

Testing with Groovy

34

In the course of this recipe, we will learn how to execute a Groovy script from JMeter to
manipulate and present the information returned from the test. We are going to make several
requests to a web service that returns a random joke about Chuck Norris in a JSON format.
For example:

{
 "type":"success",
 "value":{
 "id":101,
 "joke":
 "Chuck Norris can cut through a hot knife with butter.",
 "categories":[
 "nerdy"
]
 }
}

We will use Groovy to calculate the frequency of words for each joke. For this recipe,
we assume that the reader has some familiarity with JMeter (...and Chuck Norris!).

Getting ready
Before starting with the recipe, download the latest version of JMeter (v2.9 at the time of writing)
from the product website: https://jmeter.apache.org/download_jmeter.cgi. Unzip
the archive and copy the following JAR files from the Groovy 2 distribution folder to the lib/ext
folder inside the JMeter installation:

ff groovy-all-2.1.x.jar

ff groovy-jsr223-2.1.x.jar

ff asm-4.0.jar

ff asm-analysis-4.0.jar

ff asm-commons-4.0.jar

ff asm-tree-4.0.jar

ff asm-util-4.0.jar

ff antlr-2.7.7.jar

This step will enable the Groovy integration in JMeter.

Chapter 11

35

How to do it...
To start JMeter, execute the jmeter.sh script on Unix or OSX, or the jmeter.bat script
under Windows.

1.	 Let's start with a fresh new project:

2.	 Right-click on the Test Plan element and select the Add | Threads (Users) |
Thread Group:

Testing with Groovy

36

3.	 The Thread Group allows the configuration of concurrent repetition of child elements.
Let's set up the Thread Group to run only one thread with the Loop Count value set
to 50:

4.	 Right-click on the Thread Group element and select the Add | Sampler | HTTP
Request menu item.

5.	 Configure the Sampler to make the requests to our quote service. Change the Server
name or IP: field to api.icndb.com and the Path: field to /jokes/random:

6.	 Right-click on the HTTP Request and select Add | Post Processors | JSR223
Postprocessors.

Chapter 11

37

7.	 From the Language drop-down, select Groovy and in the script text area add the
following code:
import groovy.json.JsonSlurper
import groovy.transform.*

@Synchronized
def calculateFrequency() {

 def frequency = vars.getObject('frequency') ?: [:]

 def res = prev.responseDataAsString
 println prev.isStopTest()
 def slurper = new JsonSlurper()
 def result = slurper.parseText(res)

 def joke = result.value.joke
 def words = joke.split(' ')

 words.each {
 def w = it.replaceAll(/[,;.?]$/,'').
 replaceAll(/"/, '')
 def num = frequency.get(w)
 num ? frequency.put(w, num + 1) : frequency.put(w, 1)
 }

 vars.putObject('frequency', frequency)

}

calculateFrequency()

8.	 Right-click on the Thread Group again and select Add | Sampler | Debug Sampler.
This sampler is used to keep a track of the test variables across the requests.

9.	 Finally, right-click on the Thread Group once again and select Add | Listener | View
Result in Tree.

10.	 Select the View Result Tree node and launch the test plan by clicking on the green
arrow on the top bar.

Testing with Groovy

38

11.	 Select any Debug Sampler item in the list and click on Response data. The
Response data pane contains a list of JMeter variables, including the variable
frequency populated by the Groovy script and the list of words extracted from the
jokes and their frequency:

How it works...
Due to the complexity of JMeter, we cannot dig too deep into the large number of components
that can be composed to achieve very sophisticated functional and stress tests.

In the JMeter configuration of this recipe, we have three components:

ff An HTTP Sampler that runs the requested number of HTTP GET, either sequentially
or concurrently (that depends on the thread group configuration and the Number of
Threads (users) property's value).

ff A JSR223 Post Processor that is applied after each HTTP request, and that
is configured to run the Groovy script displayed at step 7. The JSR-223 is the
specification for the Java SE scripting API. It was created as a part of JCP (Java
Community Process) and added to the core of Java.

ff A Debug Sampler, which we use to display the content of the variable populated by
the scrip.

The Groovy script that is executed at each HTTP request accesses the global vars variable to
retrieve a Map containing the word frequency data:

def frequency = vars.getObject('frequency')

Chapter 11

39

A script can stick any kind of object into the vars variable. After figuring out if the Map exists
or has to be created, the script accesses another variable, named prev.

def res = prev.responseDataAsString

prev returns an object of type org.apache.jmeter.samplers.SampleResult that is
the result of the sample—in our case the HTTP response returned from the HTTP GET. We
know that the response contains a JSON stream, so we parse the JSON payload, and we run
a basic frequency algorithm that splits the words by space and removes some unwanted
characters from each word using regular expressions (see the Searching strings with regular
expressions recipe in Chapter 3, Using Groovy Language Features). Finally, the Map containing
the frequency data is put back into the global vars variable.

The script is actually one function annotated with the @Synchronized keyword. The
annotation creates a lock variable, and the code is synchronized on that lock variable. The
synchronization is required because JMeter is normally configured so that several threads
simulate realistic user activity. Therefore, we don't want to incur data consistency problems
when accessing the global variable.

See also
ff https://jmeter.apache.org/

ff http://www.jcp.org/en/jsr/detail?id=223

ff The Embedding Groovy into Java recipe in Chapter 2, Using Groovy Ecosystem

