
WhizzML Tutorials

The BigML Team

Version 1.18

MACHINE LEARNING MADE BEAUTIFULLY SIMPLE

Copyright © 2024, BigML, Inc.

Copyright© 2024, BigML, Inc., All rights reserved.

info@bigml.com

BigML and the BigML logo are trademarks or registered trademarks of BigML, Inc. in the United States
of America, the European Union, and other countries.

BigML Products are protected by US Patent No. 11,586,953 B2; 11,328,220 B2; 9,576,246 B2; 9,558,036
B1; 9,501,540 B2; 9,269,054 B1; 9,098,326 B1, NZ Patent No. 625855, and other patent-pending appli-
cations.

This work by BigML, Inc. is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. Based on work at http://bigml.com.

Last updated March 28, 2024

mailto:\protect info@bigml.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://bigml.com

About this Document

This document contains a collection of WhizzML tutorials, organized by complexity.

These are intended to help the user write his/her own WhizzML Scripts and Libraries.

Contents

I Beginner 2

1 Model or Ensemble? 3

1.1 Creating the Training and Testing Sets . 3
1.2 Creating Predictors . 4
1.3 Evaluating Predictors . 4
1.4 The Whole Work�ow . 4
1.5 Extension to Regression . 5
1.6 Summing Up . 5

2 Dataset Transform 6

2.1 Filtered-Dataset . 6
2.2 Excluded-Fields . 7
2.3 Present-Percent . 9
2.4 Missing-Count . 9

II Intermediate 11

3 Covariate Shift 12

3.1 Phi-Coe�cient . 12
3.1.1 Comb-Data . 13
3.1.2 Ids . 13
3.1.3 Model . 13
3.1.4 Eval . 13
3.1.5 Avg-Phi . 13

3.2 Comb-Data . 14
3.3 Split-Dataset . 14
3.4 Sample-Dataset . 15
3.5 Model-Evaluation . 15
3.6 Avg-Phi . 15

3.6.1 All Together: . 16
3.7 Multi-Phis . 17

4 Best-K 19

4.1 Code Overview . 19
4.2 Examples . 24

III Advanced 26

5 Gradient Boosting 27

5.1 Algorithm Overview . 27

iii

iv CONTENTS

5.2 Helper Functions . 28
5.3 Computing the Gradients Given Probabilities . 30
5.4 Learning the Gradient Models . 30
5.5 Scoring Instances with the Models . 31
5.6 Summing the Model Scores Into The Current Model . 31
5.7 Computing Probabilities From Scores . 32
5.8 Putting It All Together . 32
5.9 Conclusion . 33

6 Anomaly-Based Covariate Shift 34

6.1 Code Overview . 34
6.2 Examples . 38

Copyright © 2024, BigML, Inc.

Introduction

As you have read in the WhizzML Primer document,1 WhizzML is a powerful tool for automating
Machine Learning (ML) work�ows and implementing higher-level ML algorithms.

This document contains tutorials for writing these WhizzML work�ows and algorithms. The tutorials
are organized into three categories: Part I, Part II and Part III.

In the beginner tutorials, we go over each piece of the code in detail, explaining WhizzML language
concepts and its standard library. As the tutorials get more advanced, we leave these details behind to
focus on higher level concepts.

1https://bigml.com/whizzml

1

https://bigml.com/whizzml
https://bigml.com/whizzml

Part I

Beginner

We'll start with a few basic tutorials that demonstrate just a few of the most
basic features of WhizzML. It might be handy to have the WhizzML Reference
nearby as you go through these examples.

2

CHAPTER 1

Model or Ensemble?

In this tutorial, we'll do a simple test to determine whether a single tree or an ensemble is a better �t for
a given dataset. We'll go over every line of the code here, but you can also grab it from our WhizzML
examples repository1 on Github.

The idea here is simple: We can use WhizzML to build both single trees and ensembles of trees as
predictors. BigML can also conduct evaluations of predictors on datasets. So our script will:

� Split our datasets into two parts, training and testing

� Train a single tree on the training data

� Train an ensemble of trees on the training data

� Evaluate both on the testing data

� Compare the evaluations to decide which is better

1.1 Creating the Training and Testing Sets

The �rst thing we need to do is split our datasets into two parts. Taken together, these two functions do
exactly that.

;; Functions for creating the two dataset parts

;; and the model and ensemble from the training set.

(define (sample-dataset ds-id rate oob)

(create-dataset ds-id {"sample_rate" rate

"out_of_bag" oob

"seed" "whizzml-example"}))

(define (split-dataset ds-id rate)

(list (sample-dataset ds-id rate false)

(sample-dataset ds-id rate true)))

As you can see, the sample-dataset function takes three parameters, ds-id, which is the identi�er for
the input dataset, rate which is the amount of the data that we want to keep, and oob, a Boolean value
that says whether to use the sample speci�ed, or its complement. That is, if rate is 0.75 and oob is false,
we'll get 75% of the data in our sample. If oob is true, we'll get the other 25%.

This is important to our split as we want our training and testing data to be mutually exclusive (so
we can't �cheat� by training on testing points before the test). In fact, you can see this at work in
split-dataset. Here we return a list of two datasets created by sample-dataset, where the only

1https://github.com/whizzml/examples/tree/master/model-or-ensemble

3

https://github.com/whizzml/examples/tree/master/model-or-ensemble
https://github.com/whizzml/examples/tree/master/model-or-ensemble
https://github.com/whizzml/examples/tree/master/model-or-ensemble

4 Chapter 1. Model Or Ensemble?

parameter we've varied is oob. This will give us a two mutually exclusive datasets, one of which we'll use
to train, and the other to test.

1.2 Creating Predictors

The next thing we need to do is create our single tree and our ensemble. Given a dataset identi�er,
ds-id, creating a model from it with default con�guration parameters is as simple as calling the built-in
procedure create-model:

(create-model ds-id)

For the ensemble, we have the corresponding create-ensemble primitive, although in this case we will
want to also provide a con�guration parameter: the number of models in the forest, size:

(create-ensemble ds-id {"number_of_models" size})

In both cases, the create procedure will �rst check that the dataset that is used has reached its finished
state (i.e., has status code 5), waiting if necessary for it, and then request the creation of the corresponding
model or ensemble. The result of the call will be the identi�er of the new resource.

1.3 Evaluating Predictors

The last major step is to evaluate the models on the testing data. To that end, we can use the WhizzML
built-in `create-evaluation`, that takes as inputs the identi�er of the resource to evaluate (a model or an
ensemble in our case) and the identi�er of the test dataset to use for the evaluation. Thus, our code
performing evaluations will be very straightforward:

(create-evaluation model-id test-dataset-id)

(create-evaluation ensemble-id test-dataset-id)

These calls will return the corresponding evaluation identi�ers. We will want to, �rst, wait until they are
�nished, and, once they are completed, fetch them and extract from the full resource map the quantity
that we are going to use to assess the quality of our model or ensemble, namely, the average F-measure.
These two steps are encapsulated in the helper function quality-measure, that we de�ne as follows:

(define (quality-measure ev-id)

(let (ev (fetch (wait ev-id)))

(ev ["result" "model" "average_f_measure"])))

As you can see, we �rst call wait with the evaluation's identi�er to make sure the evaluation is �nished
before fetching it. wait will eventually return that identi�er again if everything is �ne, and then we use
that identi�er again as the argument of fetch, that recovers the full map of the evaluation. All that is
left is to access the nested �eld �average_f_measure� within that map:

{"result" {"model" {"average_f_measure" 0.5

"average_phi" 0.6

...}

...}

...}

As you can see, we use the evaluation map itself, ev, as a function to perform the lookup, passing to it
the path to the desired key as a list, ["result" "model" "average_f_measure"].

1.4 The Whole Work�ow

Finally, we're ready to put it all together.

Copyright © 2024, BigML, Inc.

Chapter 1. Model or Ensemble? 5

;; Function encapsulating the full workflow

(define (model-or-ensemble src-id)

(let (ds-id (create-dataset src-id) ;; full dataset

ids (split-dataset ds-id 0.8) ;; split it 80/20

train-id (ids 0) ;; the 80% for training

test-id (ids 1) ;; and 20% for evaluations

m-id (create-model train-id)

e-id (create-ensemble train-id {"number_of_models" 15})

m-f (quality-measure (create-evaluation m-id test-id))

e-f (quality-measure (create-evaluation e-id test-id)))

(log-info "model f " m-f " / ensemble f " e-f)

(if (> m-f e-f) m-id e-id)))

The �nal function looks basically like our itemized list at the top of this tutorial. We �rst create a dataset
using the input source identi�er. We then split this dataset using the function split-dataset above
that gives us a list of two sub-datasets. We can use the returned list as a procedure to pull out the �rst
and second elements of this list into train-id and test-id, respectively. We then make our single tree
and our ensemble and evaluate them both, pulling the value for the F-measure out of the evaluation.

Depending on which value for the F-measure is better, we return the identi�er of the better thing, and
we're done!

1.5 Extension to Regression

In the above code, we use a quality metric, the average value of F1, that is only available when our
problem is a classi�cation. For regressions (that is, models where our objective �eld is numeric), that
metric is not available and our script will raise an error.

We can easily �x the problem and extend our script so that it supports regression problems by picking
a convenient quality metric for them. A good choice is r_squared, which can be found nested following
the path ["result" "model" "r_squared"] in the evaluation map.

Instead of f-measure we will use a new function, quality-measure that will �rst try to �nd the average
F measure and, in case it is not found, will fallback to r_squared:

;; Function to extract a quality measure from the evaluation results

(define (quality-measure ev-id)

(let (ev (fetch (wait ev-id)))

(or (ev ["result" "model" "average_f_measure"] false)

(ev ["result" "model" "r_squared"] false)

(raise "The models couldn't be evaluated"))))

The implementation of this function also shows a simple example of error signaling using raise.

1.6 Summing Up

We have seen an example of how we can use WhizzML to do simple model selection with some basic code
and no external libraries. We have written our �rst simple functions to abstract away implementation
details, such as quality-measure, seen how to create and fetch BigML resources and access its properties,
and simple error handling.

Copyright © 2024, BigML, Inc.

CHAPTER 2

Dataset Transform

We'll start with a script that will remove a �eld from a dataset if it has �too much� missing data. As
those of you who have dealt with production data know, sometimes there are �elds which are missing a
lot of data. So much so, that we want to ignore the �eld altogether.

BigML will automatically detect bad �elds like this and ignore them automatically if we create a predictive
model. But what if we want to specify the required �completeness� of the data �eld? How can we eliminate
�elds that have, say, 95% non-missing data?

We can use WhizzML!

Let's Do it! Use the WhizzML reference guide1 if you need it along the way.

To reiterate our goal, we want to write a function that:

1. Given a dataset and a speci�ed threshold (e.g. 0.95)

2. Returns a new dataset with only the �elds that are more than 95% populated.

We can de�ne the base function here.

2.1 Filtered-Dataset

(define (filtered-dataset dataset-id threshold)

(create-and-wait-dataset {"origin_dataset" dataset-id

"excluded_fields" (excluded-fields

dataset-id

threshold)}))

Hey, slow down! Ok. Let's take it step-by-step.

We de�ne a new function called filtered-dataset that takes two arguments: Our starting dataset
dataset-id, and a threshold (e.g., 0.95)

(define (filtered-dataset dataset-id threshold) ...)

What do we want this function to do? We want it to return a new dataset, hence:

(create-and-wait-dataset ...)

But we don't just want any old dataset, we want one based o� our old dataset:

1https://bigml.com/whizzml

6

https://bigml.com/whizzml
https://bigml.com/whizzml

Chapter 2. Dataset Transform 7

"origin_dataset" dataset-id

And we also want to exclude some �elds from our old dataset!

"excluded_fields" (...)

Ah, but which �elds do we want to exclude? We can let a new function called excluded-fields �gure
that out for us.

But for now, all we need to know is that this new function (excluded-fields) takes two arguments: our
old dataset and our speci�ed threshold.

The line above becomes: (indentation removed for clarity)

"excluded_fields" (excluded-fields dataset-id threshold)

As we progress, keep in mind that we want this new function (excluded-fields) to return a list of �eld
names (e.g. ["field_1" "field_2" "field_3"])

Great! We de�ned our base function. Now we have to tell our new function, excluded-fields how to
give us the list that we want.

2.2 Excluded-Fields

(define (excluded-fields dataset-id threshold)

(let (data (fetch dataset-id)

all-field-names (data "input_fields")

total-rows (data "rows"))

(filter (lambda (field-name)

(> threshold (present-percent data field-name total-rows)))

all-field-names)))

Wow what? You can use that code for reference, but don't be intimidated. We'll go over each piece.

First we de�ne the function, declaring its two arguments: our original dataset, and the threshold we want
to use.

(define (excluded-fields dataset-id threshold) ...)

Before we write any more code, let's talk about the meat of this function. We want to look at all the
columns (�elds) of this dataset, and �nd the ones that are missing too much data. We'll keep the names
of these �bad� �elds so that we can exclude them from our new dataset.

To do this, we can use the function filter. It takes two arguments: a list and a predicate. filter will
return a new list composoed of the elements in the original list that satisfy the predicate. In our case,
the predicate is that the �eld has to have at least 95% of the data.

(filter predicate all-field-names)

;; ^ function ^ list

The �rst argument given to filter is our predicate. The predicate should be a function that either
evaluates to true or false based on each element of the list we pass to it. If the predicate returns true,
then that element of the list is kept. Otherwise, it is thrown out.

We can de�ne this predicate function using lambda.

lambda is like any other function de�nition. We have to tell it the name of the thing we are passing into
it

Copyright © 2024, BigML, Inc.

8 Chapter 2. Dataset Transform

(field-name)

and also tell it what we are going to do with that thing.

(> threshold <percent-of-data-that-the-field-has>)

In our case, we are checking to see if the threshold is greater than the amount of data present. We will
keep the field-name(s) that do not have enough data. (Because remember, these are the �elds that will
be excluded from our new dataset!)

Cool! But two things are still missing from our filter.

1. all-field-names

2. <percent of data that the field has>

How do we get these?

The �rst isn't too di�cult because BigML datasets have this information readily available. We just have
to fetch it from BigML �rst.

(fetch dataset-id)

and then specify which value we want to get.

((fetch dataset-id) "input_fields")

Nice.

To �gure out what percent of the rows are populated for a speci�c �eld, we get to. . . De�ne a new
function!

But before we do that, let's talk about some things we skipped over in our excluded-fields function.
Here it is again, for convenience.

(define (excluded-fields dataset-id threshold)

(let (data (fetch dataset-id)

all-field-names (data "input_fields")

total-rows (data "rows"))

(filter (lambda (field-name)

(> threshold (present-percent data field-name total-rows)))

all-field-names)))

What is let?

let is the preferred method for declaring local variables in WhizzML.

� We set the value of data to the result of (fetch dataset-id).

� We set the value of all-field-names to the result of (get data "input_fields").

� We set the value of total-rows to the result of (get data "rows"). (We didn't talk about this
yet. It's one of the values we need to pass to the present-percent function)

let is useful for a couple of reasons in this function. First, we use data twice. So we can avoid the
repetition of writing (fetch dataset-id) twice. Second, naming these variables at the top of the
function makes the rest much easier to read!

So to wrap up this excluded-fields function, let's talk through what it does again. First, it declares
local variables that we'll need. Then, it takes the list of all-field-names and �lters it based on a
function that checks its �present percent� of data points. We keep the names of the �elds that do not

meet our criteria. Cool!

Copyright © 2024, BigML, Inc.

Chapter 2. Dataset Transform 9

Now, we'll go over that present-percent function

2.3 Present-Percent

(define (present-percent data field-name total-rows)

(let (fields (data "fields"))

(- 1 (/ (missing-count field-name fields) total-rows))))

Ah. Not so bad.

To calculate the percentage of data points that are present in a given �eld, we need a few things. First
of all, the big collection of data from our dataset (data). Second, the name of the �eld we are inspecting
(field-name). Last, the total number of rows in our dataset (total-rows).

We'll set another local variable using let and call it fields. This is another object containing data
about each of the �elds. We'll be using it below.

(let (fields (data "fields")) ...)

Then, we divide the missing-count from the �eld by the total-rows. This gives us a �missing percent�

(/ (missing-count field-name fields) total-rows))

We subtract the �missing percent� from one and that gives us the �present percent�!

(- 1 (/ (missing-count field-name fields) total-rows))

But missing-count is another function! Yes it is!

2.4 Missing-Count

(define (missing-count field-name fields)

(fields [field-name "summary" "missing_count"]))

missing-count takes two arguments. First, the name of the �eld we are inspecting (field-name) and
second, the fields object we mentioned earlier. It holds a bunch of information about each of the dataset
�elds.

To get the count of missing rows of data from the �eld, we do this:

(fields [field-name "summary" "missing_count"])

It lets us access an inner value (i.e. 10) from a data object structured like so:

fields = {field-name:

{"summary":

{"missing_count": 10

"tags": ["cool" "fun"]}}

something-else: ...}

And. . . That's it! We have now written all the pieces to make our filtered-dataset function work!

All together, the code should look like this:

(define (missing-count field-name fields)

(fields [field_name "summary" "missing_count"]))

Copyright © 2024, BigML, Inc.

10 Chapter 2. Dataset Transform

(define (present-percent data field-name total-rows)

(let (fields (data "fields"))

(- 1 (/ (missing-count field-name fields) total-rows))))

(define (excluded-fields dataset-id threshold)

(let (data (fetch dataset-id)

all-field-names (data "input_fields")

total-rows (data "rows"))

(filter (lambda (field-name)

(> threshold (present-percent data field-name total-rows)))

all-field-names)))

(define (filtered-dataset dataset-id threshold)

(create-and-wait-dataset {"origin_dataset" dataset-id

"excluded_fields" (excluded-fields

dataset-id

threshold)}))

And we can run it just like this:

(filtered-dataset "dataset/83hs0sj3819sdkd92k" 0.75)

And get a result like this:

"dataset/..." - a new dataset without those empty �elds.

Copyright © 2024, BigML, Inc.

Part II

Intermediate

Now that we've mastered the basics, let's take a look at some more involved
work�ows. Here, we'll be dealing with multiple resource types and using many
of the standard library functions to accomplish our task.

11

CHAPTER 3

Covariate Shift

If this is your �rst time writing WhizzML, we suggest you start with one of the examples in Part I, since
we won't explain all the details in this walkthrough.

In this post, we'll write a WhizzML script that automates a process to investigate Covariate Shift. To
get an understanding of what we're trying to do, read this article �rst.1

Again, use the WhizzML reference guide2 if you need help along the way.

Our goal is to write a function that:

� Given two datasets (one that represents the data used to train a predictive model, one that repre-
sents production data)

� Returns an indication of whether the distribution of data has changed.

As we read in the article, the indicator of change in our data distribution is called the phi coefficient.
Our WhizzML script will return us this number, so lets name our base function phi-coefficient.

3.1 Phi-Coe�cient

(define (phi-coefficient training-dataset production-dataset seed)

(let (comb-data (combined-data training-dataset production-dataset)

ids (split-dataset comb-data 0.8 seed)

model (create-and-wait-model {"dataset" (ids 0)

"objective_field" "Origin"})

eval (model-evaluation model (ids 1)))

(avg-phi eval))

What are we doing here?

To start, the function takes three arguments. The �rst two are ids for our training and production
datasets, respectively. We call them training-dataset and production-dataset. The third argument,
seed, is used to make our sampling deterministic. We'll talk about this later.

There's quite a bit going on in this function, but it's all broken into manageable pieces. First, we use
let to set local variables. These local variables are the result of a few di�erent functions which we will
have to de�ne.

The local variables are comb-data, ids, model and eval. After these are set, we can compute the phi
coe�cient with the function avg-phi.

1http://blog.BigML.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
2https://bigml.com/whizzml

12

http://blog.BigML.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
https://bigml.com/whizzml
http://blog.BigML.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
https://bigml.com/whizzml

Chapter 3. Covariate Shift 13

3.1.1 Comb-Data

comb-data is the result of (combined-data training-dataset production-dataset)

Here we're combining the two datasets into one big dataset. But before they are combined, we have to
do a transformation on each dataset (add the �Origin� �eld). We'll talk about that transformation when
we de�ne combined-data.

The result of our comb-data dataset looks something like this:

| field_1 | field_2 | ... | "Origin" |

123 124 ... "Training"

123 124 ... "Production"

123 124 ... "Production"

123 124 ... "Training"

...

3.1.2 Ids

Next, we have a variable called ids. This is a list of dataset-ids that is the result of

(split-dataset comb-data 0.8 seed)

What our split-dataset function does is takes the comb-data (one big dataset) and randomly splits it
into two datasets. We split it so that we can train a predictive model with the larger portion of the split,
and then evaluate its performance on the smaller part.

The split-dataset function returns something like this

["dataset/83bf92b0b38gbgb" "dataset/83hf93gf012bg84b20"].

3.1.3 Model

model is a BigML predictive model resource. We are creating this model from the �rst element of our
ids list: "dataset" (head ids). The model is built to predict whether the value for the �Origin� �eld
is �Training� or �Production�. Thus, the �objective_�eld� is �Origin�. "objective_field" "Origin".

3.1.4 Eval

eval is a BigML evaluation resource. To create an evaluation, we need two arguments: a predictive
model and a dataset we want to test the model against. Our model is stored in model and our dataset
is the second element in the ids list, that is, the element in position 1: (ids 1)

3.1.5 Avg-Phi

We're done with the local variables, but what does the whole phi-coefficient function return - what's
our end product?

(avg-phi eval)

That line gives us the average phi score for the evaluation we just created. A bunch of information is
stored inside the eval data object that will be retrieved from BigML. But of course, we have to tell the
function avg-phi how to get what we want! We'll save that for later.

. . .

So we have built our base function and understand its components. Now we have to go back and build
the functions we haven't de�ned yet, speci�cally comb-data, split-dataset, model-evaluation and
avg-phi. We'll start with comb-data.

Copyright © 2024, BigML, Inc.

14 Chapter 3. Covariate Shift

3.2 Comb-Data

(define (combined-data training-dataset production-dataset)

(create-and-wait-dataset {"origin_datasets" [(train-data training-dataset)

(prod-data production-dataset)]}))

Again, this function combines two datasets. We tell BigML what datasets we want to combine using the
origin_datasets parameter and passing it a list of dataset ids.

But what are train-data and prod-data?

Those are helper functions that add the �Origin� �eld we talked about.

� train-data adds the �Origin� �eld with the value �Training� in each row

� prod-data adds the �Origin� �eld with the value �Production� in each row

They are de�ned here:

(define (train-data dataset-id)

(with-origin-field dataset-id "Training"))

(define (prod-data dataset-id)

(with-origin-field dataset-id "Production"))

Since we are doing pretty similar things in both functions, (adding an �Origin� �eld) we can separate
that logic into its own function. Here it is:

(define (with-origin-field dataset-id value)

(create-and-wait-dataset {"origin_dataset" dataset-id

"new_fields" [{"field" value

"name" "Origin"

"label" "Origin"}]}))

In that function we are. . .

� Creating a new dataset from an existing one "origin_dataset" dataset-id

� Adding a new �eld "new_fields" [...]

� Giving the new �eld a column name and label "name" "Origin" "label" "Origin"

� Setting the row's value "field" value.

The value will either be the string "Production" or "Training". This string is passed in as an argument
where prod-data and train-data are de�ned.

Nice. Now let's go over split-dataset.

3.3 Split-Dataset

(define (split-dataset dataset-id rate seed)

(list (sample-dataset dataset-id rate false seed)

(sample-dataset dataset-id rate true seed)))

� What are we splitting? dataset-id. The input dataset.

Copyright © 2024, BigML, Inc.

Chapter 3. Covariate Shift 15

� How are we splitting it - 80%/20%? 90%/10%? We can do whatever we want. This is determined
by rate.

� How are we going to shu�e our data before we split it? The seed determines this.

As you can see, we are sampling the same dataset twice. One sample will be used to build a predictive
model, the other will be used to evaluate the predictive model.

sample-dataset is another function. Here it is below:

3.4 Sample-Dataset

(define (sample-dataset dataset-id rate oob seed)

(create-and-wait-dataset {"sample_rate" rate

"origin_dataset" dataset-id

"out_of_bag" oob

"seed" seed}))

This function is what actually interacts with BigML. We create a new dataset, passing in the rate, the
original dataset (dataset-id), whether it is out_of_bag or not (we'll go over this) and the seed used to
determine how the original dataset was shu�ed.

Here's a little diagram that will help explain how the seed and out_of_bag (oob) work.

(seed = "123") (seed = "hi12")

(rate = 0.5) (rate = 0.5)

-Original Dataset- - New dataset - - Another dataset -

| Id | field_1| | Id | field_1| | Id | field_1|

1 "hello" 1 "hello" x 1 "hello" x

2 "hi" 2 "hi" x 2 "hi" oob

3 "ok" 3 "ok" oob 3 "ok" x

4 "yeah" 4 "yeah" oob 4 "yeah" oob

So if out_of_bag is set to true, we grab the rows labeled �oob�. Otherwise, we grab the ones marked �x�
The seed just changes which rows we label �oob� and �x�. The seed also enables this whole process to be
deterministic. So if you run the phi-coefficient function with the same seed (and the same datasets),
you'll get the same results!

Cool. That wraps up our sample-dataset and split-dataset functions. Next up, model-evaluation.

3.5 Model-Evaluation

(define (model-evaluation model-id dataset-id)

(create-and-wait-evaluation {"model" model-id "dataset" dataset-id}))

We apologize if you were hoping for something more exciting. This function is just a wrapper for the
method included with /whizzml, create-and-wait-evaluation. As you can see, we are simply creating
an evaluation with a model and a dataset.

Our last function is. . .

3.6 Avg-Phi

(define (avg-phi ev-id)

((fetch ev-id) ["result" "model" "average_phi"]))

Copyright © 2024, BigML, Inc.

16 Chapter 3. Covariate Shift

Pretty simple too!

We take the evaluation ev-id and fetch its data from BigML (fetch ev-id). Then we access the
average_phi attribute nested under �model� and �result�.

The data object looks like this:

(fetch ev-id) ;; -> { "result" { "model" { "average_phi" 0.834 }}}

. . .

And there we have it. A WhizzML script that helps predict covariate shift.

3.6.1 All Together:

(define (with-origin-field dataset-id value)

(create-and-wait-dataset {"origin_dataset" dataset-id

"new_fields" [{"field" value

"name" "Origin"

"label" "Origin"}]}))

(define (train-data dataset-id)

(with-origin-field dataset-id "Training"))

(define (prod-data dataset-id)

(with-origin-field dataset-id "Production"))

(define (combined-data training-dataset production-dataset)

(create-and-wait-dataset {"origin_datasets" [(train-data training-dataset)

(prod-data production-dataset)]}))

(define (sample-dataset dataset-id rate oob seed)

(create-and-wait-dataset {"sample_rate" rate

"origin_dataset" dataset-id

"out_of_bag" oob

"seed" seed}))

(define (split-dataset dataset-id rate seed)

(list (sample-dataset dataset-id rate false seed)

(sample-dataset dataset-id rate true seed)))

(define (model-evaluation model-id dataset-id)

(create-and-wait-evaluation {"model" model-id "dataset" dataset-id}))

(define (avg-phi ev-id)

((fetch ev-id) ["result" "model" "average_phi"]))

(define (phi-measure training-dataset production-dataset seed)

(let (comb-data (combined-data training-dataset production-dataset)

ids (split-dataset comb-data 0.8 seed)

model (create-and-wait-model {"dataset" (ids 0)

"objective_field" "Origin"})

ev-id (model-evaluation model (ids 1)))

(avg-phi ev-id)))

We can run our function like this:

Copyright © 2024, BigML, Inc.

Chapter 3. Covariate Shift 17

(phi-measure "datast/ei9202i390203" "dataset/s93999303f09" "test-run-1") -> 0.82

(phi-measure "datast/ei9202i390203" "dataset/s93999303f09" "test-run-2") -> -0.4

But. . .

As we read in the article, it is best to do this process several times and look at the average of the results.
How could we add some more code to to do this programmatically?

Here's one implementation.

3.7 Multi-Phis

(define (multi-phis n training-dataset production-dataset)

(loop (seeds (range 0 n) out [])

(if (= [] seeds)

{"list" out

"average" (/ (reduce + 0 out) (count out))}

(recur (tail seeds)

(append out (phi-coefficient training-dataset

production-dataset

(str "test-" (head seeds))))))))

Again, we are giving this function our training-dataset and production-dataset. But we are also
passing in n, which is the number of phi-coe�cients we want to calculate.

As you can see, we are de�ning a loop.

Within this loop, we set some variables.

� seeds, we give the default (starting) value of (range 0 n)

� If we pass in 4 for the value of n then the initial value of seeds = [0 1 2 3]

� out is our output. We will add the result of a phi-coefficient run each time through the loop.

� Initially, out = []

We also de�ne the end-scenario.

� If seeds is empty, then we return a map with the values list and average. (we'll explain these in
a bit)

� If seeds is not empty, we go back to the loop, but de�ne values for seeds and out.

� seeds = (tail seeds). This grabs everything but the �rst element of seeds

� So the �rst time through, it might be [0 1 2 3], then it will be [1 2 3], then [2 3]. . .

� out = (append out (phi-coefficient ...)) We take the result of our phi-coefficient func-
tion and add it to the out list.

� First time through, it's [], then [-0.0838], then [-0.0838, 0.1240] . . .

The seed we will use for each of these phi-coefficient runs will be "test-0", "test-1", "test-2" etc.
Thats what (str "test-" (head seeds)) is doing - joining the string "test-" with the �rst element
of the seeds list.

The last thing we should discuss is the end-case return value:

{"list" out

"average" (/ (reduce + 0 out) (count out))}

Copyright © 2024, BigML, Inc.

18 Chapter 3. Covariate Shift

The value of �list� (out) is just the list of phi-coe�cient values from each run. The �average� is. . . Yep.
The average of all the runs. reduce adds up the elements. count counts the number of elements. /

divides the �rst by the second.

You got it! The average of many phi-coe�cients between two datasets, to help predict covariate shift.

Example run3:

(multi-phis 3 "dataset/56c3af3f7e0a8d6cca01292e" "dataset/574ef59546522f61f2000444")

;; -> { :list [0.03824, -0.10747, -0.08768], :average -0.05230 }

Cool

Take a second and think about what you can accomplish now in a few clicks with this WhizzML Script.

1. Make a bunch of predictive models

2. Evaluate their performances

3. Get the knowledge of whether your data characteristics have changed

Sweet!

And even more powerful. . . The knowledge to automate your own processes!

3Since we used the same dataset for the Training and Production data, it guesses the wrong value for the �Origin� nearly

every time! That's why the phi-coe�cient values are all close to -1.

Copyright © 2024, BigML, Inc.

CHAPTER 4

Best-K

BigML has an implementation of G-means clustering built into the cluster API.1 G-means clustering is
an enhancement to K-means clustering that seeks to �nd the optimal value of K under the assumption
that the neighborhood of points around the centroid of a cluster should have a Gaussian distribution in
a certain sense.2 In our API, G-means clustering is invoked by omitting the number K of centroids for
K-means clustering, e.g :

(create-and-wait-cluster {"dataset" "dataset/57311df8b95b394f4e000111"

"critical_value" 5

"name" "G-means Clustering Example"})

Assuming a priori that clusters in a dataset conform to the assumptions of the G-means algorithm may
be inappropriate. In addition, the G-means method for determining K incrementally �ssions clusters and
adjusts the resulting clusters appropriately, so that in many cases not every value of K is considered.
This proclivity of the algorithm to split a cluster into two clusters is determined by the critical_value
parameter, but frequently there aren't principled ways to select its value.

Fortunately, using WhizzML we can implement an alternative to G-means for determiningK based on the
Pham-Dimov-Nguyen algorithm..3 Pham, Dimov, and Nguyen de�ne a measure of concentration f(K) on
a K-means clustering and use that as evaluation function to determine the best K. This tutorial presents
an example implementation of the PDN-based algorithm that �nds the best number K of centroids for
K-means clustering in an arbitrary range of Kmin to Kmax.

The full code for this tutorial is available in our whizzml examples repository4 on Github.

4.1 Code Overview

We �rst present a brief overview of the WhizzML functions in this package that implement the Pham-
Dinov-Nguyen approach to estimating the best number of centroids K for a K-means clustering. We then
review a few brief example functions using the top-level functions in the package.

(define (generate-clusters dataset args k-min k-max)

(let (dname ((fetch dataset) "name")

fargs (lambda(k)

(assoc args "dataset" dataset

"k" k

"name" (str dname " - cluster (k=" k ")")))

clist (map fargs (range k-min (+ 1 k-max)))

1https://bigml.com/developers/clusters
2https://blog.bigml.com/2015/02/24/divining-the-k-in-k-means-clustering/
3http://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf
4https://github.com/whizzml/examples/tree/master/best-k

19

https://bigml.com/developers/clusters
https://github.com/whizzml/examples/tree/master/best-k
https://bigml.com/developers/clusters
https://blog.bigml.com/2015/02/24/divining-the-k-in-k-means-clustering/
http://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf
https://github.com/whizzml/examples/tree/master/best-k

20 Chapter 4. Best-K

ids (create* "cluster" clist))

(map fetch (wait* ids))))

Inputs:

� dataset: (string) Dataset identi�er of the dataset to be clustered

� args: (map) Arguments for the cluster operation

� k-min: (number) Minimum value of K

� k-max: (number) Maximum value of K

Output: (list) Cluster metadata for created clusters

We begin with a function generate-clusters to create a collection of K-means clusterings for an arbi-
trary range k-min ≤ K ≤ k-max of centroids. The input map args for the WhizzML cluster function is
expanded to fargs with the input dataset, the number K of centroids, and the name for each cluster
instance. After setting up the list of arguments for generating each cluster in the collection, the routine
uses the common idiom create*, wait* to generate the returned set of candidate BigML Cluster objects
in parallel.5

(define (extract-eval-data cluster)

(let (id (cluster "resource")

k (cluster "k")

n (count (cluster "input_fields"))

within_ss (cluster ["clusters" "within_ss"])

total_ss (cluster ["clusters" "total_ss"]))

{"id" id "k" k "n" n "within_ss" within_ss "total_ss" total_ss}))

Inputs:

� cluster: (string) Cluster identi�er of the cluster

Output: (map) Cluster metadata used to compute the evaluation function f(K)

To simplify the implementation of the PDN algorithm, we next de�ne a helper function to extract certain
metadata items from the full metadata for a cluster. The metadata returned by extract-eval-data are
just the items needed to compute the PDN evaluation function f(K). These include the number K of
centroids in the K-means clustering, the number of covariates n considered in the K-means computation,
the total sum-squared distance between the items in the cluster and the cluster centroid for all clusters
Sk (within_ss), and �nally S1 available in the metadata for every cluster (total_ss).

We could have included this helper function in the generate-clusters function. We chose here to de�ne
it separately for illustrative purposes. Users may �nd other application-speci�c alternatives.

(define (alpha-func n)

(let (alpha_2 (- 1 (/ 3 (* 4 n)))

w (/ 5 6))

(lambda (k)

(if (<= k 2)

alpha_2

(+ (* (pow w (- k 2)) alpha_2) (- 1 (pow w (- k 2))))))))

Inputs:

� n: (number) Number of covariates

Output: (function) Weighting function α(K)

5The reader might have observed this routine illustrates how WhizzML is not a pure functional language. The primary

intent of WhizzML is to orchestrate BigML operations through side e�ects such as, in this case, creating BigML clusters

from a BigML dataset.

Copyright © 2024, BigML, Inc.

Chapter 4. Best-K 21

As discussed in more detail below, the Pham-Dimov-Nguyen algorithm is based on an evaluation function
f(K) that includes a weighting α(K) function parameterized on the number of covariates n. The weighting
function in the Pham-Dimov-Nguyen paper is in recursive form. This factory function returns the closed-
form equivalent:

α(K) =

 1− 3/4n k = 2

(5/6)k−2α(2) +
[
1− (5/6)k−2

]
k > 2

In the same manner as we do next with evaluation-func, we can implement α(K) as the partial
application of a function α(K,n) for n. We realize this partial function application as a factory function
apply-func. This factory function de�nes a closure that in turn includes n and returns an anonymous
function lambda(k) as α(K).

(define (evaluation-func n)

(let (fa (alpha-func n))

(lambda (k sk skm)

(if (or (<= k 1) (not skm) (zero? skm))

1

(/ sk (* (fa k) skm))))))

Inputs:

� n: (number) Number of covariates

Output: (function) Weighting function α(K)

The Pham-Dimov-Nguyen approach to �nding the bestK has at its core an evaluation function f(K). The
version in the Pham-Dimov-Nguyen paper is a function of a single argument K that internally includes
SK and SK−1 (the within_ss �eld of the cluster metadata map returned by extract-eval-data). The
form returned by this factory function has the SK and SK−1 values as arguments.

f(K,SK , SK−1) =

 1 k = 1 or SK−1 = 0 or SK−1 unde�ned

SK/[α(K)SK−1] otherwise

Following the conventions of functional programming languages we can implement f(K,SK , SK−1) as the
partial application of a function f(K,SK , SK−1, n) for n.

This factory function evaluation-func de�nes a closure that in turn includes n and returns an anony-
mous function lambda(k sk skm) as f(K,SK , SK−1). Note also that the weighting function α(K) in
the PDN evaluation f(K) could have been a subfunction inside this evaluation-func. As discussed
previously, for illustrative purposes we instead have implemented it as the returned result of a separate
factory function alpha-func.

(define (evaluate-clusters clusters)

(let (cmdata (map extract-eval-data clusters)

n ((cmdata 0) "n")

fe (evaluation-func n))

(loop (in cmdata

out []

ckz {})

(if (= [] in)

out

(let (ck (head in)

ckr (tail in)

k (ck "k")

within_ss (ck "within_ss")

within_ssz (if (<= k 2) (ck "total_ss") (ckz "within_ss"))

Copyright © 2024, BigML, Inc.

22 Chapter 4. Best-K

cko (assoc ck "fk" (fe k within_ss within_ssz)))

(recur ckr (append out cko) ck))))))

Inputs:

� clusters: (list) Cluster metadata maps ordered by K

Output: (list) Sequence of maps that have the �eld fk with the value f(K,SK , SK−1) added

Having de�ned a number of component functions, we pull them together in evaluate-clusters. This
function applies the Pham-Dimov-Nguyen evaluation function f(K) to a list that ranges over K of the
K-means clusters for a dataset. The result is a list over K of items that include the value of f(K).

In more detail, evaluate-clusters applies the evaluation function f(K,SK , SK−1) returned by evaluation-func
as fe to the cluster metadata returned by extract-eval-data as cmdata. The body of the function is
a loop that iterates over the in list of metadata maps returned by extract-eval-data and sequentially
builds the out list of metadata maps. Each map in the out list is the source map in the list list aug-
mented with the value f(K,SK , SK−1) as fk of the evaluation function fe applied to the data values K
and SK (within_ss) from the input map. In addition, the input cluster metadata map ck to an iteration
of the loop is passed back into the next iteration as the source ckz for the value of SK−1.

(define (clean-clusters evaluations cluster-id logf)

(for (x evaluations)

(let (id (x "id")

_ (if logf (log-info "Testing for deletion " id " " cluster-id)))

(if (!= id cluster-id)

(prog (delete id)

(if logf (log-info "Deleted " id))))))

cluster-id)

Inputs:

� evaluations: (list) Sequence of maps of evaulation results for the clusters

� cluster-id: (string) Cluster to save (not delete)

� logf: (boolean) Flag to enable logging

Output: (string) Returns the cluster-id supplied as an input.

Before we de�ne the �nal, top-level functions we de�ne two more helper functions. The �rst is this
straightforward helper function clean-clusters that deletes the BigML cluster objects created as inter-
mediate computation results, except for the cluster speci�ed by cluster-id.

(define (best-cluster dataset args k)

(let (dname ((fetch dataset) "name")

ckargs (assoc args "dataset" dataset

"k" k

"name" (str dname " - cluster (k=" k ")")))

(create-and-wait-cluster ckargs)))

Inputs:

� dataset: (string) Identi�er of dataset to be processed with the cluster operation.

� cluster-arg: (map) Arguments for cluster function

� k: (number) Number of centroids for cluster operation

Output: (string) Returns the cluster-id of the created cluster.

The second helper function best-cluster is also required by some of our top-level functions. It performs
a single K-means clustering with the speci�ed number K of centroids. The input map args for the

Copyright © 2024, BigML, Inc.

Chapter 4. Best-K 23

WhizzML cluster function is expanded to ckargs with the identi�er of the input dataset, the number
K of centroids k, and the name for the cluster instance.

(define (evaluate-k-means dataset args k-min k-max clean logf)

(let (clusters (generate-clusters dataset args k-min k-max)

evaluations (evaluate-clusters clusters))

(if clean

(clean-clusters evaluations "" logf))

evaluations))

Inputs:

� dataset: (string) identi�er of dataset to be processed with the cluster operation.

� args: (map) Arguments for cluster function

� k-min: (number) Minimum value of K

� k-max: (number) Maximum value of K

� clean: (boolean) Flag to delete all but the optimal cluster

� logf: (boolean) Flag to enable logging

Output: (list) Pham-Dimov-Nguyen evaluations of the clusters.

This function combines the generate-clusters and evaluate-clusters functions to create a list of
K-means clusters with a range of centroids and a list of metadata maps that include the Pham-Dimov-
Nguyen evaluation function f(K) values for those clusters.

The args argument is a map that one can use to optionally specify all of the parameters for the K-means
cluster function except the dataset, the number of centroids k, and the cluster name parameters. (See the
the BigML developer documentation6 for details.) The dataset, args, and k-min and k-max, are passed
directly to the generate-clusters function. The list of cluster metadata for the clusters it creates is
passed directly to the evaluate-clusters function.

This function can be used as top-level function to just return the list of Pham-Dimov-Nguyen evaluation
functions f(K) result over the speci�ed number of centroids k-min to k-max (inclusive). When called
as top-level function, the clean parameter can be speci�ed as true to automatically delete the BigML
cluster objects created after the PDN evaluations are computed. Setting the boolean parameter logf to
true causes generation of log data.

(define (best-k-means dataset args k-min k-max best-args clean logf)

(let (evaluations (evaluate-k-means dataset args k-min k-max false logf)

_ (if logf (log-info "Evaluations " evaluations))

besteval (min-key (lambda (x) (x "fk")) evaluations)

_ (if logf (log-info "Best " besteval))

cluster-id (if (= args best-args)

(besteval "id")

(best-cluster dataset best-args (besteval "k"))))

(if clean

(clean-clusters evaluations cluster-id logf))

cluster-id))

Inputs:

� dataset: (string) identi�er of dataset to be processed with the cluster operation.

� cluster-arg: (map) Arguments for cluster function

� k-min: (number) Minimum value of K

6https://bigml.com/developers/clusters#cl_cluster_arguments

Copyright © 2024, BigML, Inc.

https://bigml.com/developers/clusters#cl_cluster_arguments
https://bigml.com/developers/clusters#cl_cluster_arguments

24 Chapter 4. Best-K

� k-max: (number) Maximum value of K

� clean: (boolean) Flag to delete all but the optimal cluster

� logf: (boolean) Flag to enable logging

Output: (string) Cluster identi�er of best K-means cluster as determined by Pham-Dimov-Nguyen
evaulation function.

This top-level function uses the Pham-Dimov-Nguyen algorithm to create the best K-means clustering
and returns the identi�er of the BigML cluster object for the number of centroids K that results in the
smallest (best) value of the PDN evaluation function f(K).

The clusters-args and best-args parameters are maps that one can use to optionally specify all of the
parameters for the cluster function except the dataset, the number of centroids k, and the cluster name
parameters (See the the BigML developer documentation7 for details). args is used in the search phase
to �nd the best K. best-args allows one to specify di�erent args for the �nal stage of clustering with the
best K. In particular, one might do clustering on a subset of the dataset during the search phase to save
time and other resources, then do the best clustering on the full dataset. If best-args matches args,
the result for the best K generated with args during the search phase is returned by best-k-means.
If best-args di�ers from args, the dataset is re-clustered with the best K and the identi�er of that
cluster is returned by best-k-means.

This function is called by best-batchcentroid to do the actual clustering. It can also be called directly if
one only needs the best WhizzML cluster object and not the full WhizzML batchcentroid and annotated
dataset.

(define (best-batchcentroid dataset args k-min k-max best-args clean logf)

(let (cluster-id (best-k-means dataset args k-min k-max best-args clean logf)

batchcentroid-id (create-and-wait-batchcentroid {"cluster" cluster-id

"dataset" dataset

"output_dataset" true

"all_fields" true}))

batchcentroid-id))

Inputs:

� dataset: (string) Identi�er of dataset to be processed with the cluster operation.

� cluster-arg: (map) Arguments for cluster function

� k-min: (number) Minimum value of K

� k-max: (number) Maximum value of K

� clean: (boolean) Flag to delete all but the optimal cluster

� logf: (boolean) Flag to enable logging

Output: (string) Identi�er of created batchcentroid

This �nal top-level routine �rst uses the best-k-means function to generate a best K-means clustering
determined by the Pham-Dimov-Nguyen evaluation function f(K). It then creates a BigML batchcentroid
object and BigML dataset annotated with clusters numbers in the best K-means clustering of the supplied
dataset.

4.2 Examples

We conclude with a few brief examples of how to use the top-level functions and some additional appli-
cation suggestions.

7https://bigml.com/developers/clusters#cl_cluster_arguments

Copyright © 2024, BigML, Inc.

https://bigml.com/developers/clusters#cl_cluster_arguments
https://bigml.com/developers/clusters#cl_cluster_arguments

Chapter 4. Best-K 25

Using the Top-Level Functions The main top-level function can be called to generate the best
BigML batchcentroid and an annotated BigML dataset for an input dataset with the identi�er ds-id
as:

(define batchcentroid-id (best-batchcentroid ds-id {} 1 10 {} false false))

If only the best K-means BigML cluster object is required, perhaps for evaluating di�erent ranges of
k-min to k-max, one can use the top-level function:

(define cluster-id (best-k-means ds-id {} 1 10 {} false false))

Finally, if one only seeks the list of Pham-Dimov-Nguyen evaluation function f(K) results for the K-means
clusterings for k-min to k-max, one can use the top-level function:

(define evaluations (evaluate-k-means ds-id {} 1 10 false false))

Specifying clean as true causes these top-level functions to delete the intermediate BigML datasets
created during the computation. Other information generated during execution of function can be logged
by specifying logf as true.

Using args and best-args The input args can be used to specify a custom map of arguments for
the BigML cluster function that generates the collection of clusters for k-min to k-max in the evaluation
phase. Similarly, the input best-args in the best-k-means and best-batchcentroid functions can be
used to specify a custom map of arguments for the K-means cluster operation with the best number K
of centroids.

As an example, suppose we have a dataset that has two �elds depvar1 and depvar2 that we consider
to be dependent variables predicted from the remaining �elds of the dataset. We'd like to discover the
best number of clusters when only the remaining �elds are considered by the K-means algorithm. In
addition, we believe we can get a reasonable estimate for the best K if we only use 20% of the dataset in
the evaluation phase. We can limit the K-means cluster computations according to these constraints by
specifying

(define ds-id "dataset/...")

(define cfargs {"excluded_fields" ["depvar1" "depvar2"]})

(define cargs (assoc cfargs "seed" "test seed" "out_of_bag" false "sample_rate" 0.2))

(define evaluations (evaluate-k-means ds-id cargs 1 10 false false))

(define cluster-id (best-k-means ds-id cargs 1 10 cfargs false false))

(define batchcentroid-id (best-batchcentroid ds-id cargs 1 10 cfargs false false))

Segmented Searches for the Best K In some cases we might have a �rst guess for the best K.
When we run the evaluations over an initial range k-min to k-max we �nd that the values of f(K) over
that range do not exhibit a clear and unambiguous minimum. Rather than re-run the evaluations over
the initial range k-min to k-max, we can simply rerun it over additional subranges.

For instance, we can run:

(define evaluations (evaluate-k-means ds-id cargs 1 10 false false))

(define evaluations (evaluate-k-means ds-id cargs 10 20 false false))

(define evaluations (evaluate-k-means ds-id cargs 20 30 false false))

to cover the total range k-min = 1 to k-min = 30.

There is one detail to note here. The initial value f(Kmin) for Kmin > 1 is an approximation. By
overlapping the ranges as shown in the example, the initial value for any Kmin > 1 can be discarded. In
this case, f(K) over the full range 1 ≤ K ≤ 30 can be assembled by composing f(K) for 1 ≤ K ≤ 10
from the �rst run, 11 ≤ K ≤ 20 from the second run, and 21 ≤ K ≤ 30 from the third run.

Copyright © 2024, BigML, Inc.

Part III

Advanced

The purpose of the Advanced tutorials is to demonstrate porting high-level
Machine Learning algorithms to the WhizzML language. Writing the scripts in
this section requires a thorough understanding of Machine Learning concepts.
To this end, lower level WhizzML concepts will not be explained in detail here.
For more basic instruction regarding the WhizzML language, refer to the Part I
or Part II tutorials, or the WhizzML Language Reference guide.

26

CHAPTER 5

Gradient Boosting

Gradient tree boosting has become one of the more popular algorithms in the machine learning world,
thanks in part to a number of open-source software packages as well as some high pro�le public successes.

The algorithm is, as bagged classi�ers and random forests, an ensemble of weak learners, combined to
make a strong one. The primary di�erence with boosting is that each successive weak model is, in a
sense, trained on the mistakes of the previously learned models. With gradient boosting, a gradient is
calculated with respect to the current model collection, and each model represents a gradient �step� in
that direction.

Because the gradient steps are expressed as trees, one way to code this algorithm is using WhizzML to
specify and string together the various steps in the algorithm, and allow BigML's computing infrastructure
to handle the heavy lifting of calculation over all points in the dataset and the individual modeling steps.

The full code for this tutorial is available in our whizzml examples repository1 on Github.

Advanced Tutorial Alert! This tutorial is pretty advanced. It assumes a signi�cant level of comfort
with WhizzML and with a bit of high-ish level mathematics. If you feel like you're in over your head,
you can always head back to the Part I or the Part II sections to get your feet on �rmer ground before
you continue here.

It might also be helpful to have some of the other WhizzML reference material2 on hand to help you as
you follow along.

5.1 Algorithm Overview

As mentioned above, gradient tree boosting is an iterative algorithm that learns an ensemble of decision
trees. Each tree is trained on the mistakes of all previous trees, and so each tree represents a step towards
more correct predictions.

Gradient tree boosting is a gradient descent algorithm in the most general sense of that term, in which an
objective function is minimized via gradient descent. Normally, however, the gradient steps to be taken
are computed analytically from a parameterized model by di�erentiating the objective with respect to
these parameters. In gradient tree boosting, we have only the predictions of the model on the training
data as our expression of the current model parameters. Thus, we compute the gradient at each of the
training data points and use decision trees to craft an approximate representation.

More speci�cally, suppose our current predictions for the training data are represented as an n×k matrix
of probabilities, where n is the number of points and k is the number of classes. These probabilities are
expressions of the model parameters. Without going into the actual objective function used, it turns out
that a reasonable approximation for the gradient at the training data points is simply ŷ − pi, where ŷ is
1 if the true class is class i ∈ 1 . . . k and 0 otherwise.

1https://github.com/whizzml/examples/tree/master/gradient-boosting
2https://bigml.com/whizzml

27

https://github.com/whizzml/examples/tree/master/gradient-boosting
https://bigml.com/whizzml
https://github.com/whizzml/examples/tree/master/gradient-boosting
https://bigml.com/whizzml

28 Chapter 5. Gradient Boosting

We then train a model (rather, k models, one for each class) to approximate this di�erence at each of the
training points, then uses the model to predict the value on the training data. Why is this necessary, as
we know the value of the objective at these points already (that's how we trained the model!)? First, as
it's important that we don't over�t the training data, we'll learn a �shallow� tree so the predictions will
be di�erent from the true values, and should be a good proxy for the predictions we'd see on new data.

With the predictions for this gradient �step� in hand, we can sum them onto our current running sum of
gradient steps, then use the softmax transform to turn these sums into probabilities. We use the softmax
function here for more than just convenience; the objective function that we glossed over two paragraphs
ago has this softmax operation as an important part of it, so not using it here would be mathematically
invalid.

With these probabilities in hand, we can recompute the gradient at the training points and iterate the
algorithm. The algorithm stops generally if you reach some predetermined number of iterations or cease
to make improvement for a while (we'll do the later here).

You're left �nally with an m × k matrix of models, where m is the number of gradient steps you took
and k is the number of classes. To predict probabilities for a new point, predict a score for that point
with each model, sum these scores �down the columns� so you're left with k sums, one for each class,
then apply the softmax transform to get your per-class probabilities.

Yes, this is a lot of information. And we're ignoring quite a bit; we're not going to mess with learning
rates, shrinkage, or regularization. But you could if you wanted! Check out these slides3 for more
information if you want to dig deeper.

All right, enough exposition. Let's write some code.

5.2 Helper Functions

Before we get into the guts of the algorithm, we're going to introduce a few helper functions.

;; A constant added to the generated field names to let us know that

;; we generated them

(define boost-id "__bmlboost")

;; The names of the fields contain ground truth - if there are k

;; classes, this is k columns, one for each class. If the true class

;; for a given point is the nth class, the value in column in for that

;; point is 1, else it is zero.

(define (truth-names nclasses)

(map (lambda (i) (str boost-id "_truth_" i)) (range nclasses)))

;; For each of the "names" classes below, we are generating field

;; names, one for each class, at each iteration of the algorithm.

;; This generates a unique field name given a prefix `name` and an

;; iteration number.

(define (field-names nclasses iteration name)

(map (lambda (i) (str boost-id "_" name "_" i "_iter_" iteration))

(range nclasses)))

;; The names for the fields containing the total scores (the running

;; sum of all gradient steps) at iteration `iteration`

(define (sum-names nclasses iteration)

(field-names nclasses iteration "sum"))

;; The names for the fields containing the scores at iteration `iteration`

3https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Copyright © 2024, BigML, Inc.

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Chapter 5. Gradient Boosting 29

(define (pred-names nclasses iteration)

(field-names nclasses iteration "prediction"))

;; Field names for the softmax probabilities at iteration `iteration`

(define (softmax-names nclasses iteration)

(field-names nclasses iteration "softmax"))

;; The field name for the gradients (the objective for each class) at

;; each iteration

(define (grad-names nclasses iteration)

(field-names nclasses iteration "gradient"))

As we make our way through the algorithm, we're going to create a lot of new columns in our dataset.
We'll create new columns for the gradients at each step, the running sums at each step, and the predictions
of the gradient trees at each step. These functions will return unique names for each type of column; one
for each class at any given iteration of the algorithm

;; Helper methods to add fields to the given dataset using flatline

;; expressions

(define (make-fields names exprs)

(let (make-field (lambda (i) {"name" (names i) "field" (exprs i)}))

(map make-field (range (min (count exprs) (count names))))))

(define (add-fields dataset new-fields input-ids)

(let (req {"origin_dataset" dataset "new_fields" new-fields})

(if (empty? input-ids)

(create-and-wait-dataset req)

(create-and-wait-dataset (assoc req "input_fields" input-ids)))))

Here's how we'll actually create all of those new columns. The top function make-fields takes a list
of column names and list of �atline expressions. It then creates a list of maps with the names and
expressions in each one. The bottom function takes this list, puts into a BigML resource request and
creates a copy of the argument dataset with the new columns appended. If input-ids is speci�ed, it
retains only those �elds from the original dataset.

Wait, you haven't heard of �atline? That's BigML's DSL for dataset transformation. As you'll see, using
WhizzML to compose �atline expressions that transform your data allows you to do a ton of interesting
things. You can get more familiar with �atline by perusing the user's guide here.4

;; Get the original input fields from the dataset, to make sure we use

;; the same fields to learn at each iteration.

(define (get-inputs fields)

(let (not-generated? (lambda (astr) (not (contains-string? boost-id astr)))

is-input? (lambda (fid) (not-generated? ((fields fid) "name"))))

(filter is-input? (keys fields))))

;; Get the objective field ids for the given iteration

(define (get-objectives fields nclasses iteration)

(let (gnames (grad-names nclasses iteration))

(map (lambda (name) (id-from-fields fields name)) gnames)))

;; Get the total number of classes for the problem from the field

;; descriptor

(define (get-num-classes dataset obj-id)

(let (obj ((get-fields dataset) obj-id))

4https://github.com/bigmlcom/flatline/blob/master/user-manual.md

Copyright © 2024, BigML, Inc.

https://github.com/bigmlcom/flatline/blob/master/user-manual.md
https://github.com/bigmlcom/flatline/blob/master/user-manual.md

30 Chapter 5. Gradient Boosting

(count (obj ["summary" "categories"]))))

Finally, a few miscellaneous helpers: get-num-classes does what it says on the box, gets the number of
classes in the objective �eld. get-inputs gets the original input �elds for the dataset, a handy thing to
know when you're adding a whole bunch of columns at each iteration, get-objectives gets the �eld ids
of the objective �elds (one for each class) with the gradient columns at a given iteration.

5.3 Computing the Gradients Given Probabilities

Recall that the �rst thing we have to do is compute the gradient at each of the training data points.
We're going to use �atline to subtract the currently predicted probability for each class from the true
objective value, then put that value in a new set of columns (again, one for each class).

This requires us to have a predicted probability for each point. During the �rst iteration, we're just going
to assume all classes have equal probability.

;; Compute the gradient given the ground truth fields and the current

;; probabilities

(define (compute-gradient dataset nclasses iteration)

(let (next-names (grad-names nclasses iteration)

preds (if (> iteration 0)

(map (lambda (n) (flatline "(f {{n}})"))

(softmax-names nclasses iteration))

(repeat nclasses (str (/ 1 nclasses))))

tns (truth-names nclasses)

fexp (lambda (idx)

(let (actual (tns idx)

predicted (preds idx))

(flatline "(- (f {{actual}}) {predicted})")))

new-fields (make-fields next-names (map fexp (range nclasses))))

(add-fields dataset new-fields [])))

We �rst get the names of the columns where we're going to put the gradient values in next-names.
Then we get the currently predicted probabilities for each class. If it's an iteration other than the
�rst, we compose a �atline expression that pulls out the value from the appropriate column, given by
softmax-names.

We can then write a little internal function, fexp, which subtracts the two columns values. Of course, we
have to (map fexp (range nclasses)) so that we get an expression for each class, then use new-fields
and add-fields to add them to the dataset.

5.4 Learning the Gradient Models

Now that we have our collection of gradient columns, we're going to learn a tree to represent each one.

;; Learn a set of trees over the objective fields, one for each class

(define (learn-trees dataset nclasses iteration)

(let (fs (get-fields dataset)

iids (get-inputs fs)

oids (get-objectives fs nclasses iteration)

req {"dataset" dataset "input_fields" iids}

create (lambda (oid) (create-model (assoc req "objective_field" oid)))

ids (map create oids)

_ (wait-forever* ids))

ids))

Copyright © 2024, BigML, Inc.

Chapter 5. Gradient Boosting 31

Here we get the input and objectives for each model (remember, get-inputs returns the original input
�elds for the data, minus the �elds we've generated ourselves). The input �elds will always be the same,
but we will learn one model per objective �eld (that is, one per class).

We do this with the inline function create, which takes the template req for the model request and adds
an objective �eld. We then (map create oids) to create one model for each objective in oids and wait
for them to complete.

5.5 Scoring Instances with the Models

The next step is to use our learned models to predict gradient values for the training data.

;; Predict the value of the gradient for all points in the dataset

;; Need to predict one at a time so we can preserve all fields

(define (batch-predict dataset iteration mod-ids)

(let (pnames (pred-names (count mod-ids) iteration))

(loop (last-ds dataset mids mod-ids names pnames)

(if (empty? mids)

last-ds

(let (req {"all_fields" true

"output_dataset" true

"model" (head mids)

"dataset" last-ds

"prediction_name" (head names)}

bp (create-and-wait-batchprediction req)

new-ds ((fetch bp) "output_dataset_resource")

_ (wait-forever new-ds))

(recur new-ds (tail mids) (tail names)))))))

This code works by �rst getting names for the columns where we'll put the predictions (pnames). We
then loop over these names and the corresponding model identi�ers, creating a batchprediction for each
one. We'll do these serially, as we want to preserve predictions from previous models when we make a
new one, so the dataset created by the �rst batchprediction will provide the input �elds for the second,
and so on for each model.

Note that we have to create-and-wait-batchprediction and later wait separately for the created
dataset; the readiness of the batch prediction does not imply readiness for the output dataset resource.

5.6 Summing the Model Scores Into The Current Model

Now we have to sum our predicted scores into our running totals. We'll use �atline again.

;; Sum the last set of predictions with the current set of sums to get

;; new scores

(define (create-sums dataset nclasses iteration)

(let (this-preds (pred-names nclasses iteration)

this-sums (sum-names nclasses iteration)

last-sums (if (> iteration 1) (sum-names nclasses (- iteration 1)) [])

fexp (lambda (idx)

(let (this-pred (this-preds idx))

(if (empty? last-sums)

(flatline "(f {{this-pred}})")

(let (last-sum (last-sums idx))

(flatline "(+ (f {{this-pred}}) (f {{last-sum}}))")))))

new-fields (make-fields this-sums (map fexp (range nclasses))))

(add-fields dataset new-fields [])))

Copyright © 2024, BigML, Inc.

32 Chapter 5. Gradient Boosting

This looks a lot like the function we used to compute the gradient and follows the same general pattern.
First we pull out the names �source� and �destination� columns for the �atline operation (in this case,
last-sums and this-preds, and this-sums respectively.

We then create a function fexp that will take a class index i, pick out the ith name from each of the
aforementioned lists, and compose the �atline expression that adds the two columns. Of course, if we're
on the �rst iteration of the algorithm ((empty? last-sums)) then the current sum is just the current
prediction.

We can then (map fexp (range classes)) to do this for each class, resulting in a new running sum for
each class. Finally, we use make-fields and add-fields to add the list of new columns to the dataset.

5.7 Computing Probabilities From Scores

Essentially the last step in the algorithm is to turn the set of running sums into probabilities that can
feed into the next iteration of the algorithm. For this we'll use the softmax transform to massage the
values into a proper distribution. What is it? Suppose you've got k classes and a score for each class
s1, s2, . . . , sk. We de�ne the probability pi for class i as:

pi =
esi∑
j e

sj

so that the probability vector is the vector of scores exponentiated, then normalized.

;; Create the softmax probabilities from the given scores

(define (create-softmax-probs dataset nclasses iteration)

(let (this-sums (sum-names nclasses iteration)

this-softmaxs (softmax-names nclasses iteration)

fl-exp (lambda (name) (flatline "(exp (f {{name}}))"))

exp-sum (str "(+ " (join " " (map fl-exp this-sums)) ")")

fexp (lambda (name) (str "(/ " (fl-exp name) " " exp-sum ")"))

new-fields (make-fields this-softmaxs (map fexp this-sums)))

(add-fields dataset new-fields [])))

Again, we rely on �atline to do the heavy lifting. We get the source and destination columns as before in
this-sums and this-softmaxs. We then compose a �atline expression equivalent to the above equation.
Note that we do it by parts here for convenience, �rst de�ning an �exponentiator� in fl-exp, then the
denominator in exp-sum, and �nally the closure that will make the �nal expression for each column in
fexp. One more invocation of new-fields and add-fields and we have our new probabilities.

5.8 Putting It All Together

Having the new probabilities in place we can iterate the above steps:

;; Strings together prediction, summing, softmax-ing, and computing

;; the gradient

(define (create-fields dataset iteration mod-ids)

(let (nclasses (count mod-ids)

pred-ds (batch-predict dataset iteration mod-ids)

sum-ds (create-sums pred-ds nclasses iteration)

prob-ds (create-softmax-probs sum-ds nclasses iteration))

(compute-gradient prob-ds nclasses iteration)))

Here we assume that we start with trained models, and execute an entire iteration using the functions
de�ned above, so that we come all the way back to the point where we can train models again.

All that's left is to iterate that function until a stopping condition, along with a few set up and tear down
steps.

Copyright © 2024, BigML, Inc.

Chapter 5. Gradient Boosting 33

(define (gradient-boost dataset)

(let (objective (dataset-get-objective-id dataset)

inputs (default-inputs dataset objective)

nclasses (get-num-classes dataset objective)

formatted (format dataset nclasses inputs objective))

(loop (ds formatted

iteration 1

total-imp 0

imp-1 0

imp-2 0

models [])

(log-info "Iteration " iteration)

(let (sets (bootstrap ds iteration)

train (sets 0)

test (sets 1)

last-gradient (sum-gradient test nclasses (- iteration 1))

_ (log-info "Gradient: " last-gradient)

new-models (learn-trees train nclasses (- iteration 1))

new-test (create-fields test iteration new-models)

this-gradient (sum-gradient new-test nclasses iteration)

_ (log-info "Gradient: " this-gradient)

this-imp (- last-gradient this-gradient)

pct (* (/ (+ this-imp imp-1 imp-2) (+ this-imp total-imp)) 100))

(log-info "Improvement over last 3 iterations: " pct "%")

;; Stop arbitrarily at 1% improvement over last three iterations

(if (> pct 1)

(recur (create-fields ds iteration new-models)

(+ iteration 1)

(+ total-imp this-imp)

this-imp

imp-1

(append models new-models))

models)))))

It seems like a lot, but the main bits are the stopping condition (we keep track of the last three total
gradient magnitudes and stop if they represent less than 1% of the total improvement) and also the fact
that we learn over a bootstrap sample of our original dataset. That is, at each iteration we learn over
some of the dataset and check improvement over the other part. As such, we have to call create-fields
on both the training and the test sets

5.9 Conclusion

We've implemented a �vanilla� version of gradient tree boosting in WhizzML. Hopefully, we've proven
along the way that it's possible to implement many complex machine learning algorithms in WhizzML,
and thereby gain the power of BigML's infrastructure behind your implementation.

Copyright © 2024, BigML, Inc.

CHAPTER 6

Anomaly-Based Covariate Shift

Detecting Covariate Shift and Dataset Shift in new production data relative to previously trained predic-
tive models is always a challenge. BigML has discussed a method for doing this1 based on the Matthews
Correlation Coe�cient (Phi Coe�cient) computed from the confusion matrix for a predictive model.
A tutorial also describes a WhizzML package for implementing this method (see the "Covariate Shift"
section). This tutorial describes an alternative method that can be easily implemented using WhizzML
that can be useful for some types of data.

In the alternative method we describe here, we use the WhizzML anomaly detection functions. The
method computes an average anomaly score of the production dataset relative to the model training
dataset as a measure of the covariate shift between the training dataset and the production dataset. An
anomaly detector is trained from the same dataset used to train the model. This anomaly detector is
then used to derive a batch anomaly score for the production dataset. Finally, the average value of that
batch anomaly score is computed as an indicator of covariate shift.

The full code for this tutorial is available in our whizzml examples repository2 on Github.

6.1 Code Overview

We �rst review the functions in the package to explain the anomaly-based approach to covariate-shift
estimation.

(define (sample-dataset dst-id rate oob seed)

(create-and-wait-dataset {"sample_rate" rate

"origin_dataset" dst-id

"out_of_bag" oob

"seed" seed}))

Inputs:

� dst-id: (string) ID of the dataset to be sampled.

� rate: (float) A value between 0 and 1 that speci�es the size of the bagged sample. For
example, 0.8 means that 80% of original dataset is in the bagged sample.

� oob: (boolean) Selects whether we want the bagged (false) chunk of data or the out of bag
(true) chunk. For example, if the rate is 0.75, and oob is false, we get 75% of the data. If
oob is true, we get the other 25%.

� seed: (string) A string used to make the sampling deterministic (repeatable)

Output: (string) ID of the new dataset object.

1https://blog.bigml.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
2https://github.com/whizzml/examples/tree/master/anomaly-shift

34

https://blog.bigml.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
https://github.com/whizzml/examples/tree/master/anomaly-shift
https://blog.bigml.com/2014/01/03/simple-machine-learning-to-detect-covariate-shift/
https://github.com/whizzml/examples/tree/master/anomaly-shift

Chapter 6. Anomaly-Based Covariate Shift 35

To build a practical anomaly-based covariate shift detector, we need to derive sample from the anomaly
detector training dataset and the production dataset. This helper routine wraps the basic dataset creation
function to isolate con�guration of that function so that it can be easily modi�ed to support other sampling
options in other applications. This basic version simply creates a deterministic sample determined by
seed parameter of a size determined jointly by rate and oob from the source dataset speci�ed by dst-id.

(define (anomaly-evaluation anomaly-id dst-id)

(create-and-wait-batchanomalyscore {"anomaly" anomaly-id

"dataset" dst-id

"all_fields" true

"output_dataset" true }))

Inputs:

� anomaly-id: (string) ID of the anomaly detector object.

� dst-id: (string) ID of the production dataset object.

Output: (string) ID of the created batchanomalyscore object.

We also will need to apply an anomaly detector derived from a training dataset to a production dataset.
As with the sample-dataset, this helper routine wraps the WhizzML batch anomaly score computation
function to isolate the con�guration information so that it can be easily modi�ed to use other evaluation
options. This basic version simply applies the anomaly detector speci�ed by anomaly-id to the dataset
speci�ed by dst-id and returns a BigML batchanomalyscore object. Because we specify all_fields

and output_dataset as true in the WhizzML function to create the batchanomalyscore object, the
returned metadata includes a reference to a dataset that includes the original production dataset with each
item annotated with an additional member that contains the anomaly score for the item and additional
metadata that includes the anomaly score results for the whole dataset.

(define (avg-anomaly evdst-id)

(let (evdst (fetch evdst-id)

score-field (evdst ["objective_field" "id"])

sum (evdst ["fields" score-field "summary" "sum"])

population (evdst ["fields" score-field "summary" "population"]))

(/ sum population)))

Inputs:

� evdst-id: (string) ID of the batch anomaly score dataset object.

Output: (float) Average batch anomaly score from the results in the batch anomaly score dataset
object.

Finally, we encapsulate the computation of the average anomaly score for the production dataset as a
helper function that computes the average anomaly score from the annotated production dataset object
returned by anomaly-evaluation. The metadata for this augmented production dataset object includes
a ["objective_field" "id"] member that contains the name of the score-field for the member
with the object that has summary anomaly score results for the production dataset. The quotient
of the members ["fields" score-field "summary" "sum"] and ["fields" score-field "summary"

"population"] in that anomaly score member is returned as the average batch anomaly score for the
production dataset object evdst-id.

(define (anomaly-measure train-dst train-exc prod-dst prod-exc seed clean)

(let (traino-dst (sample-dataset train-dst 0.8 false seed)

prodo-dst (sample-dataset prod-dst 0.8 true seed)

anomaly (create-and-wait-anomaly {"dataset" traino-dst

"excluded_fields" train-exc})

ev-id (anomaly-evaluation anomaly prodo-dst)

evdst-id ((fetch ev-id) ["output_dataset_resource"])

_ (wait evdst-id)

Copyright © 2024, BigML, Inc.

36 Chapter 6. Anomaly-Based Covariate Shift

score (avg-anomaly evdst-id))

(if clean

(prog (delete evdst-id)

(delete ev-id)

(delete anomaly)

(delete prodo-dst)

(delete traino-dst)))

score))

Inputs:

� train-dst: (string) ID of the training dataset.

� train-exc: (list) Fields to exclude from the training dataset.

� prod-dst: (string) ID of the production dataset.

� prod-exc: (list) Fields to exclude from the production dataset.

� seed: (string) A string used to make the sampling deterministic (see the "sample-dataset"
function).

� clean: (boolean) Delete intermediate datasets before exiting the function.

Output: (float) The average anomaly score between 0 and 1.

This top-level function combines the previous helper functions to compute the average anomaly score for
a single production dataset relative to an anomaly detector built from the training dataset.

The function accepts a training dataset train-dst and a production dataset prod-dst along with a
seed string to force deterministic sampling of both. 80% of the training dataset traino-dst is used to
train an anomaly detector anomaly, ignoring the �elds in the list train-exc. 20% of the production
dataset prodo-dst is then evaluated with the anomaly detector to produce a BigML batchanomalyscore
object ev-id. The batchanomalyscore ev-id metadata has the ID evdst-id for the annotated version
of the production dataset. The metadata for this dataset includes the anomaly score information used
by avg-anomaly to compute an average anomaly score for the sample of the production dataset.

Finally, if clean is speci�ed as true the intermediate objects created by the function are deleted before
the function returns the score.

(define (anomaly-loop train-dst

train-exc

prod-dst

prod-exc

seed

niter

clean

logf)

(loop (iter 1

scores-list [])

(if logf

(log-info "Iteration " iter))

(let (score (anomaly-measure train-dst

train-exc

prod-dst

prod-exc

(str seed " " iter)

clean)

scores-list (append scores-list score))

(if logf

(log-info "Iteration " iter scores-list))

(if (< iter niter)

(recur (+ iter 1)

Copyright © 2024, BigML, Inc.

Chapter 6. Anomaly-Based Covariate Shift 37

scores-list)

scores-list))))

Inputs:

� train-dst: (string) ID of the training dataset.

� train-exc: (list) Fields to exclude from the training dataset.

� prod-dst: (string) ID of the production dataset.

� prod-exc: (list) Fields to exclude from the production dataset.

� seed: (string) A string used to make the sampling deterministic (see the "sample-dataset"
function).

� niter: (number) Number of iterations.

� clean: (boolean) Delete intermediate datasets before exiting the function.

� logf: (boolean) Enables logging.

Output: (list) A list of average anomaly scores between 0 and 1 for speci�ed datasets over niter trials.

To facilitate logging and to illustrate the implementation of multiple train-evaluate iterations in way that
can be easily augmented in speci�c applications, we implement iteration over the anomaly-measure as
an explicit loop function.

The loop function inputs are an iteration count iter and a list of scores computed thus far scores-list.
Each iteration of the loop generates a unique seed value for sampling the training and production datasets
and computes the anomaly score with anomaly-measure. That score is appended to the scores-list.
If niter iterations have not been completed, the iteration count is updated and the loop repeated.

(define (anomaly-measures train-dst

train-exc

prod-dst

prod-exc

seed

niter

clean

logf)

(let (values (anomaly-loop train-dst

train-exc

prod-dst

prod-exc

seed

niter

clean

logf))

values))

Inputs:

� train-dst: (string) ID of the training dataset.

� train-exc: (list) Fields to exclude from the training dataset.

� prod-dst: (string) ID of the production dataset.

� prod-exc: (list) Fields to exclude from the production dataset.

� seed: (string) A string used to make the sampling deterministic (see the "sample-dataset"
function).

� niter: (number) Number of iterations.

� clean: (boolean) Delete intermediate datasets before exiting the function.

Copyright © 2024, BigML, Inc.

38 Chapter 6. Anomaly-Based Covariate Shift

� logf: (boolean) Enables logging.

Output: (list) A list of average anomaly scores between 0 and 1 for the speci�ed datasets over niter
trials.

This top-level function computes a list of niter average anomaly scores for pairs of samples of the training
dataset train-dst and the production dataset prod-dst. For illustration purposes we implement this
function as a wrapper function around the anomaly-loop function that does the actual work and pass all
of the input values including those mentioned and train-exc, prod-exc, seed, clean, and logf directly
to that function. For other applications, alternative looping structures could be implemented.

(define (anomaly-estimate train-dst

train-exc

prod-dst

prod-exc

seed

niter

clean

logf)

(let (values (anomaly-measures train-dst

train-exc

prod-dst

prod-exc

seed

niter

clean

logf)

sum (reduce + 0 values)

cnt (count values))

(/ sum cnt)))

Inputs:

� train-dst: (string) ID of the training dataset.

� train-exc: (list) Fields to exclude from the training dataset.

� prod-dst: (string) ID of the production dataset.

� prod-exc: (list) Fields to exclude from the production dataset.

� seed: (string) A string used to make the sampling deterministic (see the "sample-dataset"
function).

� niter: (number) Number of iterations.

� clean: (boolean) Delete intermediate datasets before exiting the function.

� logf: (boolean) Enables logging.

Output: (float) The average anomaly scores between 0 and 1 for the speci�ed datasets for the niter
trials.

Finally, in this top-level function we use anomaly-measures to compute a list of niter average anomaly
scores for pairs of samples of the training dataset train-dst and the production dataset prod-dst. We
then compute the average of the scores in that list and return that as a single measure of the covariate
shift between the training dataset train-dst and the production dataset prod-dst.

6.2 Examples

We end this tutorial description with a few examples of how to use the top-level functions.

If we only want an estimate of the data shift computed from a single pair of samples from the training
dataset and the production dataset, we can use the top-level function:

Copyright © 2024, BigML, Inc.

Chapter 6. Anomaly-Based Covariate Shift 39

(define cvshift-one (anomaly-measure "dataset/..."

[]

"dataset/..."

[]

"test-run-1"

false))

In this example we don't exclude any of the �elds from the training dataset and specify that we would
like to preserve all of the intermediate objects created in the computation by specifying clean as false.

Suppose next that we are concerned our training or production datasets aren't uniform in some sense.
Suppose also that the datasets include a dependent variable idvar that di�ers consistently between the
two datasets potentially a�ecting the anomaly score. In this case, we can use the top-level function that
generates a series of anomaly scores:

(define cvshift-set (anomaly-measures "dataset/..."

["idvar"]

"dataset/..."

["idvar"]

"test-run"

20

true

true))

Here we specify we want a series of 20 train-evaluate iterations and that logging information should be
generated by specifying logf as true. To manage storage on our BigML account we also de�ne clean

as true to delete all intermediate objects each iteration.

Finally, we can run a series of train-evaluate trials and then compute the average of the anomaly scores
using the �nal top-level function as:

(define cvshift-avg (anomaly-estimate "dataset/..."

["idvar"]

"dataset/..."

["idvar"]

"test-run"

20

true

true))

In this case we specify the same sequence of anomaly score computations and then take the average
returned by the function as our estimate of covariate-shift between the training dataset train-dst and
the production dataset prod-dst.

Copyright © 2024, BigML, Inc.

	I Beginner
	Model or Ensemble?
	Creating the Training and Testing Sets
	Creating Predictors
	Evaluating Predictors
	The Whole Workflow
	Extension to regression
	Summing Up

	Dataset Transform
	filtered-dataset
	excluded-fields
	present-percent
	missing-count

	II Intermediate
	Covariate Shift
	phi-coefficient
	comb-data
	ids
	model
	eval
	avg-phi

	comb-data
	split-dataset
	sample-dataset
	model-evaluation
	avg-phi
	All together:

	multi-phis

	Best-k
	Code Overview
	Examples

	III Advanced
	Gradient Boosting
	Algorithm Overview
	Helper Functions
	Computing the Gradients Given Probabilities
	Learning the Gradient Models
	Scoring Instances with the Models
	Summing the Model Scores into The Current Model
	Computing Probabilities From Scores
	Putting It All Together
	Conclusion

	Anomaly-based Covariate Shift
	Code Overview
	Examples

