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Abstract12

We present a new constructive model of univalent type theory based on cubical sets. Unlike prior13

work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made14

possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not15

necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in16

Agda that these fibrations are closed under the type formers of cubical type theory and that the17

model satisfies the univalence axiom. By applying the construction in the presence of diagonal18

cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical19

set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we20

also obtain a Quillen model structure.21
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1 Introduction37

Cubical set models provide a constructive justification for Voevodsky’s univalence axiom38

and higher inductive types, as introduced in Homotopy Type Theory and Univalent Found-39

ations (HoTT/UF) [38]. In this paper we develop a general axiomatization encompassing40

many existing cubical set models, allowing us to better understand the relationship between41

them and prove results about the entire class of models simultaneously.42

The first model of HoTT/UF was developed by Voevodsky using Kan simplicial sets [26]43

and relies crucially on classical logic [9]. A major source of open problems in HoTT/UF has44
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23:2 Unifying Cubical Models of Univalent Type Theory

been the quest for constructive models; besides recent progress on a constructive variation of45

the Kan simplicial set model [23], the most fruitful approaches have been based on cubical46

sets. This was pioneered by the Bezem, Coquand and Huber (BCH) model [7, 8], which uses47

presheaves on the symmetric monoidal cube category. These cubical sets have degeneracy48

and face maps, but it is not possible to take the diagonal face of a square. An important49

feature of cubical sets, relative to simplicial sets, is that the product of representable cubical50

sets is again representable. This makes it possible to represent n-dimensional terms as51

ordinary terms in a context of n variables, each ranging over the interval object I. The lack52

of diagonals in the BCH model corresponds to a lack of contraction for these contexts; the53

BCH model is substructural. This complicates giving a type-theoretic presentation; more54

fundamentally, it is unclear how to formulate and construct higher inductive types.55

A natural approach, then, is to instead allow diagonals and study cartesian cubical sets,56

which model structural interval contexts. The base category here has a compact description57

as the free finite product category on an interval object [4, 29]. Cartesian cubical sets are58

hence better-suited as a basis for cubical type theory, and they are known to support higher59

inductive types. However, constructing univalent universes was an open problem for many60

years. The difficulties in modeling univalent universes motivated Cohen, Coquand, Huber61

and Mörtberg (CCHM) [15] to consider a cube category with even more structure, namely62

connections (∧ and ∨) and an involutive reversal operation (¬) satisfying the axioms of63

a De Morgan algebra. Using these additional operations, they gave the first cubical set64

model of univalent type theory with higher inductive types, as well as the first cubical type65

theory. It was later observed by Orton and Pitts (OP) [28] that the CCHM constructions66

do not require the full structure of a De Morgan algebra; a so-called “connection algebra”67

suffices. As a special case, there is a cubical category where the connection algebra is the free68

bounded distributive lattice. We call the resulting presheaf category Dedekind cubical sets,69

following Awodey, as the number of elements of Hom(In, I) are the Dedekind numbers [5].70

Angiuli, Favonia, and Harper (AFH) [3] showed that that a model of HoTT/UF could also71

be developed in cartesian cubical sets without connections or reversals; their computational72

model was then adapted to an Orton-Pitts style construction by Angiuli et al. (ABCFHL) [2].73

In short, a wide variety of cube categories give rise to models of univalent type theory.74

Moreover, the underlying cube category is not the only parameter: one must also formulate75

Kan composition, i.e., choose a class of fibrations. Kan composition, a cubical analogue of the76

lifting condition in Kan simplicial sets, ensures that Path types induce a notion of equality.77

A representative special case of composition is coercion. Given a type A that depends on a78

dimension variable i : I, coercion establishes a relationship between the elements of A(r/i)79

and A(s/i) for various r, s : I. The nature of this relationship varies from model to model. In80

CCHM, the simplest case, coercion provides a map coe0→1
i.A : A(0/i)→ A(1/i). In AFH, on81

the other hand, there is an operation coer→si.A : A(r/i)→ A(s/i) for every r, s : I, together82

with an equation coer→ri.A a = a : A(r/i). Other model constructions use intermediate points83

between these two extremes. For example, OP include 0→ 1 and 1→ 0. A more expressive84

cube category can compensate for a more limited form of coercion; in CCHM, coercions85

ε→ s and r → ε for ε : {0, 1} are derivable from the primitive 0→ 1 coercion.86

In its general form, Kan composition coerces a cube while preserving some part of its87

boundary, a generalization necessary in order to derive coercion for Path types. The choice88

of allowable boundary shapes is a third parameter; from the model categorical perspective,89

it corresponds to a choice of generating cofibrations. In CCHM cubical sets, a boundary90

is specified by a collection of (conjunctions of) faces of the form (r = 0) or (r = 1). For91

cartesian cubes, AFH took the crucial step of also including (r = s) boundary constraints,92
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Diagonals Additional structure Kan operations Diagonal cofibrations
BCH 0 → r, 1 → r

CCHM X ∧, ∨, ¬ (De Morgan) 0 → 1
Dedekind X ∧, ∨ (distributive lattice) 0 → 1, 1 → 0

OP X ∧, ∨ (connection algebra) 0 → 1, 1 → 0
AFH/ABCFHL X r → s X

Table 1 Varieties of cubical models of HoTT/UF.

corresponding to diagonal faces of cubes. Model categorically, this corresponds to including93

the diagonal on the interval as a generating cofibration, i.e. to assume diagonal cofibrations.94

We collect the existing cubical set models in Table 1. As a general rule, these constructions95

can still be conducted in a setting with additional structure. For example, both the CCHM96

and ABCFHL model constructions can both be carried out in cubical sets with connections,97

reversals, and diagonal cofibrations. (The exception is BCH, which apparently relies crucially98

on the absence of diagonal maps.) The constructions produce the same notions of fibration99

where they are mutually applicable, as is observed for the CCHM and ABCFHL models in100

[2, Sec. 3.4]. What is lacking, however, is a single construction that applies in all cases.101

Contributions102

Our main contribution is a unification of the structural cubical models (i.e., all but BCH)103

as instances of a single construction. This is achieved by axiomatizing a class of models in104

the internal language style of Orton and Pitts [28], based on a “weak” variation of cartesian105

Kan composition. This notion of fibration specializes to the AFH definition in the presence106

of diagonal cofibrations (Section 2.3.1) and to the CCHM definition in the presence of107

connections and reversals (Section 2.3.2). The “weak” fibrations are closed under basic type108

formers (Section 2.4), Glue types (Section 2.5), and fibrant univalent universes (Section 2.6),109

thus give rise to a model of HoTT/UF. Furthermore, we obtain algebraic weak factorization110

systems of cofibrations and trivial fibrations (Section 3.2) and of trivial cofibrations and111

fibrations (Section 3.3). Finally, we verify that a theorem of Sattler [32, Thm. 2.8] applies,112

allowing us to obtain a model structure (Section 3.4) from the factorization systems.113

2 A general axiomatization114

Following Orton and Pitts [28], we construct models of cubical type theory from locally115

cartesian closed categories C: we describe a collection of axioms in the internal language of116

such categories, then use the language as a tool to show that any category satisfying the117

axioms induces a class of fibrations closed under various type formers. Rather than relying118

on an impredicative universe of propositions, as Orton and Pitts do, we follow Licata, Orton,119

Pitts and Spitters (LOPS) [27] and work in a predicative theory. We use Agda [1] extended120

with postulates for function extensionality and uniqueness of identity proofs to simulate the121

internal type theory of a locally cartesian closed category.1122

1 The formalization and additional material can be found at https://github.com/mortberg/gen-cart.
For a summary of where all of the results in the paper can be found, see https://github.com/mortberg/
gen-cart/blob/master/agda/unifying-summary.agda.
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23:4 Unifying Cubical Models of Univalent Type Theory

We adopt Agda’s (ultimately Nuprl’s) syntax here, writing (x : A)→ B x for dependent123

and A→ B for non-dependent functions. We assume a non-cumulative hierarchy of universes124

U0 : U1 : . . . ; here, we leave levels implicit and write U for simplicity, but they are explicit125

in the formalization. Among Agda’s inductive types, we need identity types (written u = v126

and with a single constructor refl), an empty type ⊥ : U , and sum types A ] B (with127

constructors inl and inr). We write Σ(x : A), B x for dependent and A×B for non-dependent128

product types. Following HoTT/UF, we define the type of (homotopy) propositions as129

hProp , Σ(A : U), (x y : A) → x = y. We assume a propositional truncation operation130

‖−‖ : U → hProp universally approximating any type as an hProp. We then define disjunction131

P ∨Q of propositions P and Q as the propositional truncation ‖P ]Q‖. The negation of a132

type ¬A is defined as A→ ⊥; this is always a proposition.133

This type theory can be interpreted in any presheaf topos [25], in particular the various134

cubical and simplicial set categories, assuming enough Grothendieck universes. The standard135

example throughout the paper is the category of cartesian cubical sets.136

2.1 The interval and Path types137

The axiomatic requirements on C begin with an interval type I : U with endpoints 0 : I and138

1 : I. We require I to be connected (ax1) and 0, 1 to be distinct (ax2).139

ax1 : (P : I→ U)→ ((i : I)→ P i ] ¬(P i))→ ((i : I)→ P i) ] ((i : I)→ ¬(P i))140

ax2 : ¬(0 = 1)141
142

Given A : I→ U , we define the type of paths in A as Path(A) , (i : I)→ A i. Given a : A 0143

and b : A 1, we write a ∼ b , Σ(p : Path(A)), (p 0 = a)× (p 1 = b). Given p : a ∼ b and r : I,144

we write p @ r for the application of fst p to r, which satisfies p @ 0 = a and p @ 1 = b.145

2.2 Cofibrant propositions146

Next, we assume a universe à la Tarski of generating cofibrant propositions Φ : U supporting147

the following operations. We write [ _ ] : Φ→ hProp for the decoding function and stipulate148

that it interprets the code constructors appropriately.149

(_ ≈ 0) : I→ Φ ax3 : (i : I)→ [ (i ≈ 0) ] = (i = 0)150

(_ ≈ 1) : I→ Φ ax4 : (i : I)→ [ (i ≈ 1) ] = (i = 1)151

∨ : Φ→ Φ→ Φ ax5 : (ϕψ : Φ)→ [ϕ ∨ ψ ] = [ϕ ] ∨ [ψ ]152
153

Note that we have two bottom elements, (0 ≈ 1) and (1 ≈ 0). The decoding of these154

imply each other, but we need not assume they are equal. The same holds for the two top155

elements (0 ≈ 0) and (1 ≈ 1). Note that for all A : U , we have elim⊥ : [ (0 ≈ 1) ]→ A by ax2.156

I Remark 1. If C is a topos, we can take Φ to be the subobject classifier Ω. To obtain a157

constructive presheaf model, we can instead take Φ to be the subobject of Ω of sieves with158

decidable image at each stage. However, the axiomatization of Φ does not presume the159

existence of a subobject classifier; nor does it require that inter-derivable cofibrations are160

equal. This is similar to the approach taken in [2, 27], where Φ , Σ(A : U), cof A is specified161

by a predicate cof : U → U on types. However, our variation requires that Φ is a small type,162

which is needed to construct identity types while preserving universe level.163

A partial element of A is a term f : [ϕ ] → A. Given such a partial element f and an164

element x : A, we define the extension relation f ↗ x , (u : [ϕ ])→ f u = x, so that f ↗ x165
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is the type of proofs that the partial element f extends to the total element x. Following [15],166

we write A[ϕ 7→ f ] , Σ(x : A), f ↗ x for the type of all elements of A extending f . Given a167

partial path f : [ϕ ]→ Path(A) and r : I, we write f · r , λu.f u r : [ϕ ]→ A r.168

This completes the basic set of axioms, which will suffice to interpret the Σ-, Π-, Path169

types and basic datatypes. We defer the introduction of two final axioms to Section 2.5,170

where we will need them to interpret (strict) Glue types.171

2.3 Fibration structures172

Using the interval and the universe of cofibrant propositions, we can now define our notion173

of fibration structure, a weaker variation on the fibration structures used in [2, 3].174

I Definition 2 (Weak composition). Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a weak composition structure is given by two operations

wcom : (s : I)→ (A s)[ϕ 7→ f · s] wcom : fst (wcom r) ∼ fstx0

satisfying (i : I) → f · r ↗ wcom @ i. We write WComp r A ϕ f x0 for the type of such175

weak composition structures, i.e.,176

WComp r A ϕ f x0 , Σ (wcom : ...),Σ(wcom : ...), (i : I)→ f · r ↗ wcom @ i177

In contrast with [2, 3], we do not require that the equality wcom r A ϕ f x0 r = x0 holds178

strictly. Instead, the wcom operation enforces the equation up to a path constant on ϕ. We179

say that wcom r A ϕ f x0 s composes r → s in A, and refer to f as the tube and x0 as the180

cap of the composition. We refer to wcom as the “cap path”, as it relates wcom r A ϕ f x0 r181

to the cap x0.182

I Example 3. We can illustrate the above choice of terminology with the following example.183

The composition problem is given by the tube u0 and u1 at (j ≈ 0) and (j ≈ 1) together184

with a cap x0 at (i ≈ r). The composition from r to i is the interior of the square on the185

right, while the cap path is the gray path connecting the composition at r to x0.186

i
j

k

u0 u1

x0

7→
u0 u1

x0
187

I Definition 4 (Weak fibrations and fibration structures). A weak fibration (A,α) over Γ : U188

is a family A : Γ→ U equipped with a fibration structure α : isFib A, where189

isFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))(x0 : A(p r)[ϕ 7→ f · r])190

→WComp r (A ◦ p) ϕ f x0191
192

We write Fib Γ , Σ(A : Γ→ U), isFib A for the type of weak fibrations over Γ. As in [28,193

Def. 5.8], we obtain a category with families (CwF) [21] where the families over Γ : U are194

(A,α) : Fib Γ and elements of such a family are dependent functions in (x : Γ)→ A x. Given195

P : Fib Γ and σ : ∆→ Γ, we write P [σ] : Fib ∆ for the reindexing of P along σ.196

I Remark 5. When discussing the model structure in Section 3.4, we will use the term197

fibration for the usual external notion of a map that has the right lifting property against198

trivial cofibrations. Whenever this overloading of terminology might be confusing we use the199

terms weak fibration and fibration structure when referring to the internal notions.200
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23:6 Unifying Cubical Models of Univalent Type Theory

Given α : isFib A, s : I and r, p, ϕ, f and x0 as in Definition 4, we introduce the following201

more readable notation for the composites provided by α.202

wcomr→s
α p [ϕ 7→ f ]x0 , fst (fst (α r p ϕ f x0) s) : A (p s)203

wcomr
α p [ϕ 7→ f ]x0 , fst (snd (α r p ϕ f x0)) : (wcomr→r

α p [ϕ 7→ f ]x0) ∼ fstx0204
205

Given ϕ,ψ : Φ, we follow [15] and write [ϕ 7→ f, ψ 7→ g] : [ϕ ∨ ψ ]→ A for the union of206

partial elements f : [ϕ ]→ A and g : [ψ ]→ A that agree where they are both defined, i.e.207

such that ∀(u : [ϕ ]) (v : [ψ ]).f u = g v. This generalizes directly to [ϕ1 7→ f1, ..., ϕn 7→ fn].208

We say that a proposition A : hProp is cofibrant if it is logically equivalent to the decoding209

of a generating cofibrant proposition, i.e. isCofProp A , Σ(ϕ : Φ), A↔ [ϕ ]. When r, s : I210

are such that (r = s) is cofibrant, we will be able to “improve” weak composition r → s to211

obtain a strict composition that is exactly equal to its cap when r = s.212

I Definition 6 (Strict composition). Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and213

x0 : (A r)[ϕ 7→ f · i], a strict composition structure is given by an operation214

scom : (s : I)→ isCofProp(r = s)→ (A s)[ϕ 7→ f · s]215

satisfying fst (scom r c) = fstx0 for all c : isCofProp(r = r).216

We will leave the argument isCofProp(r = s) implicit. Writing SComp r A ϕ f x0 for217

the type of strict composition operations on A, we define strict fibrations as follows.218

I Definition 7 (Strict fibrations). A strict fibration (A,α) over Γ : U is a family A : Γ→ U219

equipped with a strict fibration structure α : isSFib A, where220

isSFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))(x0 : A(p r)[ϕ 7→ f · r])221

→ SComp r (A ◦ p) ϕ f x0222
223

I Lemma 8 (Strictification). Given Γ : U and A : Γ→ U , there is a map isFib A→ isSFib A.224

Proof. Given α : isFib A and r, p, ϕ, f and x0 as in Definition 7, let

w , wcomr→s
α p [ϕ 7→ f ]x0 w , wcomr

α p [ϕ 7→ f ]x0

Given s : I, we define the following term that corrects the (r = s) face of w using w.225

scom s , wcom0→1
α (λ_.p s) [ϕ 7→ λu _.f u s, (r = s) 7→ λ_ i.w @ i]w J226

In particular, as (r = ε) and (ε = r) are always cofibrant for ε : {0, 1}, we have strict227

composition operations ε→ r and r → ε in any fibration. Defining 0 , 1 and 1 , 0, we note228

that the weak compositions ε→ ε are already strict, as the cap condition is vacuous.229

2.3.1 AFH fibrations230

We now compare our definition of fibration to that of existing cartesian cubical type theories231

and models. A key feature of these is the use of diagonal cofibrations, which correspond to232

an operation (_ ≈ _) : I→ I→ Φ decoding as follows.233

ax∆ : (r s : I)→ [ (r ≈ s) ] = (r = s)234
235

The form of fibration used in these models was originally proposed by Coquand [16], but it236

was initially unclear how to model univalent universes. AFH observed that the problems237

could be dealt with by introducing diagonal cofibrations, and used them to give a complete238

computational semantics of univalent type theory (we hence refer to these as “AFH fibrations”).239

These ideas were then adapted in ABCFHL to give an Orton-Pitts style model construction.240
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I Definition 9 (AFH composition). Given r : I, A : I → U , ϕ : Φ, f : [ϕ ] → Path(A) and241

x0 : (A r)[ϕ 7→ f ·i], an AFH composition structure is given by com : (s : I)→ (A s)[ϕ 7→ f ·s]242

satisfying fst (com r) = fstx0. We write AFHComp r A ϕ f x0 for the type of such AFH243

composition structures, and write244

isAFHFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))245

(x0 : A(p r)[ϕ 7→ f · r])→ AFHComp r (A ◦ p) ϕ f x0246
247

When isAFHFib is taken as the definition of fibration, it seems that diagonal cofibrations248

are crucial to construct fibrant univalent universes of fibrant types. Specifically, they are249

needed to ensure that composition in Glue/V types and the universe satisfies the strict cap250

condition. In the presence of diagonal cofibrations, our definition of fibration coincides with251

isAFHFib.252

I Theorem 10. Given Γ : U and A : Γ→ U , we have isAFHFib A iff we have isFib A.2253

Proof. Any AFH composition structure induces a weak composition structure, as any equality254

can be turned into a path. For the converse direction, apply Lemma 8 with ax∆. J255

I Remark 11. Awodey [6] has formulated a categorical notion of unbiased fibrations and256

shown that this coincides with AFH fibrations; it thus also coincides with weak composition257

in the presence of diagonal cofibrations.258

2.3.2 CCHM fibrations259

Next, we compare with the CCHM definition of fibration. Following Orton and Pitts [28],260

we assume operations u, t : I→ I→ I satisfying the axioms of a connection algebra.261

axu : (r : I)→ (0 u r = 0 = r u 0) ∧ (1 u r = r = r u 1)262

axt : (r : I)→ (0 t r = r = r t 0) ∧ (1 t r = 1 = r t 1)263
264

I Remark 12. A connection algebra is weaker than the De Morgan algebra used in CCHM:265

there is no reversal ¬ : I→ I and the connections need not form a distributive lattice. Thus,266

Orton and Pitts [28] obtain a construction that applies to both CCHM and Dedekind cubical267

sets, compensating for the lack of reversals by parametrizing the composition operation by268

ε : {0, 1}. Following Orton and Pitts, we continue to call this “CCHM composition” despite269

the superficial difference from the operation defined in [15].270

I Definition 13 (CCHM composition). Given ε : {0, 1}, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A)271

and x0 : (A ε)[ϕ 7→ f · i], a CCHM composition structure is a term com : (A ε)[ϕ 7→ f · ε].272

We write CCHMComp ε A ϕ f x0 for the type of such CCHM composition structures, and273

isCCHMFib A , (ε : {0, 1})(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))274

(x0 : A(p ε)[ϕ 7→ f · r])→ CCHMComp ε (A ◦ p) ϕ f x0275
276

A key result in CCHM is that connections and composition 0 → 1 suffice to derive277

composition 0→ r (i.e. Kan filling). The following result shows that we can in fact derive278

all of the cartesian composition operations, except for the strict equality for r → r. This279

clarifies the relationship between CCHM and AFH composition. As CCHM only requires280

compositions ε→ ε, diagonal cofibrations are not needed for Glue types and the universe.281

2 This is already observed for weak coercion in [2, Sec. 2.7].
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I Theorem 14. Given Γ : U and A : Γ→ U , we have isCCHMFib A iff we have isFib A.282

Proof. We can go from isFib A to isCCHMFib A by simply instantiating r with ε and s with283

ε. For the other direction, let r, p, ϕ, f and x0 be as in Definition 4. First, we define the284

following term, which composes from A (p r) to A (p (j ∧ r)) for any j : I.285

q j , com1→0
α (λi.p ((j ∨ i) ∧ r))

[
ϕ 7→ λu i.f u ((j ∨ i) ∧ r)
(j = 1) 7→ λ_ _.x0

]
x0286

We can then define weak composition to s : I.287

wcom s , com0→1
α (λi.p (i ∧ s)) [ϕ 7→ λu i.f u (i ∧ s), (0 ≈ 1) 7→ elim⊥] (q 0)288

The cap path is defined as follows.289

wcom , λ(j : I).com0→1
α (λi.p ((j ∨ i) ∧ r))

[
ϕ 7→ λu i.f u ((j ∨ i) ∧ r)
(j = 1) 7→ λ_ _.x0

]
(q j) J290

2.4 Fibration structures for basic type formers291

The collection of fibrations is closed under all of the basic type formers of cubical type292

theory: Σ-, Π-, Path types and any basic datatypes that C supports. The arguments are very293

similar to those of [2, 3], but additional adjustments are necessary to compensate for the294

new weakness. We include the proof for Σ-types in order to illustrate this in detail.295

I Theorem 15 (Fibrant Σ-types). Given Γ : U , A : Γ→ U , B : (Σ(x : Γ), A x)→ U , we have296

isFibΣ : isFib A→ isFib B → isFib (Σ A B)297

where (Σ A B) x , Σ(a : A x), B (x, a).298

Proof. Let α : isFib A and β : isFib B and r, p, ϕ, f and x0 be as in Definition 4. We first299

define the composite and cap path for the first components of the open box.300

wA i , wcomr→i
α p [ϕ 7→ λu j. fst (f u j)] (fstx0)301

wA , wcomr
α p [ϕ 7→ λu j. fst (f u j)] (fstx0)302

303

To define the composite of the second components, we first adjust the type of the cap.304

For this, we use a strict composition 1→ k in B, which is derivable from β per Lemma 8.305

b k , scom1→k
β (λj.(p r, wA @ j)) [ϕ 7→ λu _. snd (f u r)] (sndx0)306

When k is 0, this is the corrected cap of our composition in B.307

wB , wcomr→s
β (λi.(p i, wA i)) [ϕ 7→ λu i. snd (f u i)] (b 0)308

wB , wcomr
β (λi.(p i, wA i)) [ϕ 7→ λu i. snd (f u i)] (b 0)309

310

Composition in the pair type is then defined to be the pair wcom s , (wA s, wB). For311

the cap path, we combine the cap path wB for the composition in B with the path b that312

relates b 0 to sndx0 over wA.313

c t , wcom1→0
β (λj.(p r, wA @ j))

ϕ 7→ λu _. snd (f u r)
(t = 0) 7→ λ_ j.wB @ j

(t = 1) 7→ λ_ _. sndx0

 (b t)314

We then let wcom , λ(t : I).(wA @ t, c t). J315
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The case for Π-types is similar to that of Σ-types: the proof roughly follows that of strict316

composition, but additional composites have to be inserted to mediate between composites317

and their caps. The proofs for Path types and natural numbers are essentially identical to318

those of [2, 3]. We omit the details here, but the interested reader may consult [13, Sec. 3] or319

our Agda formalization. It is also straightforward to verify that these definitions are stable320

under reindexing, so that we obtain a CwF that supports Σ-, Π- and Path types. This CwF321

also supports natural numbers if C has a natural numbers object.322

2.5 Glueing323

Glue types were introduced in [15, Sec. 6] to unify the proofs that the universe of fibrant324

types is fibrant and univalent. This construction also occurs implicitly in the proof that the325

universe is univalent in the Kan simplicial set model [26, Thm. 3.4.1]. The construction of326

these types in the internal language was described in detail by Orton and Pitts [28, Sec. 6].327

In this section we only briefly sketch their construction; apart from the proof of Theorem 17,328

there are no major differences.329

I Definition 16 (Glueing). Given ϕ : Φ, A : [ϕ ]→ U , B : U and f : (x : [ϕ ])→ A x→ B,330

we define Glue ϕ A B f : U as follows.331

Glue ϕ A B f , Σ(a : (x : [ϕ ])→ A x),Σ(b : B), (x : [ϕ ])→ f x (a x) = b332

Elements of this type are thus pairs (a, b) where a is a partial element of A and b is an333

element of B such that f applied to a extends to b. When ϕ is >, the Glue type is isomorphic334

to A. The Glue operator lifts to a fiberwise operation on families of types, which we also call335

Glue. To prove that it takes fibrations to fibrations, however, we must also require that f is336

an equivalence. There are various ways to express this; we follow Voevodsky and say that f337

is an equivalence when its fibers are contractible [38, 39]. We write A ' B for the type of338

equivalences between A and B.339

I Theorem 17 (Fibrant Glue types). Given Γ : U , ϕ : Γ → Φ, A : (x : Γ) → [ϕ x ] → U ,340

B : Γ → U and f : (x : Γ) (v : [ϕ x ]) → A x v → B x. If f has the structure of an341

equivalence then there is a function isFibGlue : isFib A→ isFib B → isFib (Glue ϕ A B f).342

The proof of this theorem is a variation of the one of [2]; as with Σ-types, some additional343

compositions are needed to compensate for the weakness. We refer the interested reader to344

the detailed type theoretic presentation in [13, Sec. 4.2] and to the Agda formalization.345

Note that the fibrancy of these types does not require any additional axioms. However,346

they are weaker than the Glue types of [15]: they are not strictly equal to A when ϕ is >,347

only isomorphic. In order to prove univalence and fibrancy of the universe, we first need348

to strictify. Writing A ∼= B for the type of isomorphisms between A and B, we require the349

following strictness axiom (ax9 in [28]).350

ax6 : (ϕ : Φ) (A : [ϕ ]→ U) (B : U) (s : (u : [ϕ ])→ A u ∼= B)→351

Σ(B′ : U),Σ(s′ : B′ ∼= B), (u : [ϕ ])→ (A u, s u) = (B′, s′)352
353

Using this axiom, we can perform the same construction as in [28, Def. 6.1] and obtain354

a type SGlue ϕ A B f that satisfies the desired equation strictly and is isomorphic to355

Glue ϕ A B f . We then transport the weak fibration structure from Glue to SGlue along this356

isomorphism. However, the weak composition operation that we obtain this way will not357
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necessarily reduce to the composition operation of A when ϕ is >. In order to correct this,358

we assume an operation ∀ : (I→ Φ)→ Φ satisfying the following.359

ax7 : (ϕ : I→ Φ)→ [ ∀ϕ ] = (i : I)→ [ϕ i ]360
361

Using this axiom, we can perform the same “alignment” as in [28, Thm. 6.13] and obtain362

a weak fibration structure for SGlue that reduces that of A when ϕ is >.363

2.5.1 Univalence364

Voevodsky’s univalence axiom states that the canonical map idtoequiv : (A ∼ B)→ (A ' B)365

is an equivalence. This formulation of univalence assumes a universe of (fibrant) types. As366

we have not yet constructed a universe, we instead define a variation of univalence that uses367

a primitive notion of lines between types. For Γ : U and A,B : Fib Γ, we define368

A ∼U B , Σ(P : Fib (Γ× I)), P [(id, 0)] = A× P [(id, 1)] = B369

I Theorem 18 (Univalence for ∼U ). We have (A ∼U B) ' (fstA ' fstB).370

Proof. This is equivalent3 to the existence of a term ua : A ' B → A ∼U B such that371

idtoequiv ◦ ua = id. The ua term follows directly from SGlue in the standard way [28, Thm.372

7.2]. The inverse condition can be proven by unfolding the algorithm for weak composition373

in SGlue, in analogy with [28, Thm. 7.3]. J374

This model hence satisfies this variation of the univalence axiom. Following [27], we may375

also construct a universe and prove the standard formulation of the univalence axiom.376

2.6 Fibrant univalent universes377

The universe construction of LOPS [27] can be performed in a modal extension of type378

theory called crisp type theory. Andrea Vezzosi has developed an extension of Agda with the379

crisp modality called Agda-[. However, this was only recently incorporated into the standard380

version of Agda, so we have not formally verified the content of this section.381

A key component in the LOPS universe construction is a special feature of the interval382

in the various cubical set categories: it is tiny, i.e. exponentiation by it has a right adjoint.383

This is not true for ∆1, so the following theorem does not apply to Kan simplicial sets.384

I Theorem 19 (Universe construction). If I is tiny, then we can construct a universe U with385

a fibration El that is classifying in the sense of [27, Thm. 5.2].386

Proof. We need to check that the assumptions of [27, Thm. 5.2] are satisfied. First of all,387

the arguments of isFib and WComp can be rearranged to match [27, Def. 2.2]. We then388

need to check that axioms (1)–(4) in [27] hold. The first two are function extensionality389

and uniqueness of identity proofs, which we are assuming. The other two are disjointness of390

endpoints and that ⊥ is a cofibrant proposition, both of which follow from ax2. J391

We next need to show that this universe has a weak fibration structure, is closed under all392

of the type formers of cubical type theory, and satisfies the univalence axiom. This has been393

formalized in Agda-[ for AFH fibrations in [2], and we do not expect any difficulty doing the394

3 This was originally pointed out by Daniel R. Licata in https://groups.google.com/forum/#!msg/
homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ.

https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
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same here, the only difference being the strictness of the cap equation. For a type theoretic395

proof that the universe is fibrant and univalent using the fibration structures in this paper,396

see [13, Sec. 4.3 and 4.4].397

3 Model structures on cubical sets398

We will now prove that our definition of fibration structures forms part of a Quillen model399

structure. This helps to clarify the relation between our definition and already established400

and well known definitions in homotopical algebra. We assume the reader is familiar401

with standard concepts in homotopical algebra such as model structures, algebraic weak402

factorization systems (awfs’s), and the Leibniz adjunction. See e.g. [31] for these definitions.403

Further details, including proofs of these results, are available in [14]. We have also404

defined the two factorization systems in Agda by postulating the existence of W -types with405

reductions [36], a simple class of (extensional) higher inductive types.406

We will use some extra notational conventions for this section. We write δi : 1→ I for407

i : {0, 1} for the endpoint inclusions. We use the subscript B when working with objects in a408

slice category C/B. In particular, we have an interval object IB defined as the projection409

I×B → B, with obvious endpoint maps δBi : 1B → IB .410

3.1 Cofibrantly generated awfs’s411

To construct a model structure, we first need to define two weak factorization systems, one412

for cofibrations and trivial fibrations and one for trivial cofibrations and fibrations. In both413

cases, we will use the following definitions and theorems from [36] and [34].414

I Definition 20 ([36, Def. 6.1]). Let m be a map in a slice category C/I and let f be a415

map in another slice category C/J . A family of lifting problems of m against f consists of416

an object K, together with maps σ : K → I and τ : K → J and a lifting problem of σ∗(m)417

against τ∗(f) in C/K.418

We say m has the fibered left lifting property against f and f has the fibered right lifting419

property against m if every family of lifting problems has a diagonal filler.420

A family of lifting problems K,σ, τ, p, q is universal if for any other family of lifting421

problems K ′, σ′, τ ′, p′, q′, there is a unique map t : K ′ → K such that σ′ = t ◦ σ, τ ′ = t ◦ τ ,422

p′ = t∗(p) and q′ = t∗(q).423

I Proposition 21 ([34, Prop. 3.2.4], [36, Def. 6.2]). Universal lifting problems exist.424

I Proposition 22 ([34, Prop. 3.2.5]). f has the fibered right lifting property against m iff425

the universal lifting problem has a filler.426

I Definition 23. A fibered algebraic weak factorization system or fibered awfs consists427

of an algebraic weak factorization system (LJ , RJ) on each slice category C/J preserved by428

reindexing (up to isomorphism).429

A fibered awfs is cofibrantly generated if there exists a map m in some slice category C/I430

such that for each J and each map f in C/J , RJ algebra structures on f correspond precisely431

to diagonal fillers of the universal lifting problem of m against f .432

The following theorem will allow us to construct the two weak factorization systems of433

the model structure.434

I Theorem 24. Let m be a map in some slice category C/I. The fibered awfs cofibrantly435

generated by m exists if either of the two conditions below are satisfied.436
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1. C is an internal category of presheaves in a locally cartesian closed category with finite437

colimits, disjoint sums and W -types, and m is a locally decidable monomorphism.438

2. C is a ΠW -pretopos (e.g. C is a topos with natural number object), and it satisfies the439

axiom weakly initial set of covers (WISC).440

Proof. If (1) holds, apply [36, Thm. 6.14], and if (2) holds, apply [36, Cor. 6.12]. J441

3.2 Cofibration and trivial fibration awfs442

We can view the cofibrant propositions [− ] : Φ→ hProp as a monomorphism > : Φtrue � Φ,443

where Φtrue , Σ(ϕ : Φ), [ϕ ] = >.444

I Definition 25 (Generating cofibrations). Let m : A→ B be a map in a slice category C/I.445

We say m is a generating cofibration if either of the equivalent conditions below holds.446

1.
∑
I m is a pullback of >.447

2. m is a pullback of I∗(>) : I∗(Φtrue)→ I∗(Φ) in C/I.448

I Proposition 26. Generating cofibrations are closed under pullbacks and binary unions.449

Every isomorphism is a generating cofibration.450

I Proposition 27. Let f : X → Y be a map in a slice C/J . The following are equivalent.451

1. f has the fibered right lifting property against >, viewed as a map Φtrue → 1Φ in C/Φ.452

2. f has the fibered right lifting property against generating cofibrations of the form A→ 1B453

in slice categories C/B.454

3. f has the fibered right lifting property against every generating cofibration.455

4. f has the right lifting property against every generating cofibration in C/J .456

I Definition 28 (Trivial fibrations and cofibrations). If a map f : X → Y in a slice category457

C/J satisfies one, and so all, of the equivalent conditions in Proposition 27 we say that f is458

a trivial fibration. A map m in a slice category C/I is a cofibration if it has the fibered left459

lifting property against every trivial fibration.460

When working in Agda we found it helpful to use an alternative definition of trivial461

fibration following [15, Sec. 5.1]. We say that a type A : U is contractible if the type SContr A462

is inhabited, where we define SContr A , (ϕ : Φ)→ (t : [ϕ]→ A)→ A[ϕ 7→ t]. We define a463

map f : X → Y to be a trivial fibration if every fiber is contractible.464

If m and C satisfy the necessary conditions to apply Theorem 24 then there is an awfs465

(C,F t) where the class underlying F t is precisely the class of trivial fibrations. We refer to466

maps in the class underlying C as cofibrations.467

3.3 Trivial cofibration and fibration awfs468

We now give a more abstract characterization of weak fibrations (Definition 4) and define an469

awfs where the right maps are weak fibrations. Following Gambino and Sattler [24], we use470

the Leibniz adjunction to describe fibrations, writing ×̂B and ˆhomB(−,−) for the Leibniz471

product and exponential constructed in a slice category C/B. We also use the following472

notion of weak lifting property. This definition (although not the name) has been used before473

in homotopical algebra by Dold [20] and also by Reedy [30]. Note however that the definition474

of fibration considered by Dold is weaker than the one here, as one may see from Lemma 8.475
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I Definition 29 (Weak left lifting property). Let m : A → B and f : X → Y . We say m476

has the weak left lifting property against f if for every commutative square, as in the solid477

lines below, there is a diagonal map, as in the dotted line below, such that the lower triangle478

commutes strictly, and the upper triangle commutes up to a homotopy h : j ◦m ∼ a such479

that f ◦ h is constant. We refer to such diagonal maps as weak fillers.480

A X

B Y

a

m
∼

f

b

481

I Theorem 30. A map f : X → Y is a weak fibration if and only if for every object B,482

every map r : 1B → IB and generating cofibration m : A→ 1B in C/B, r has the weak left483

lifting property against ˆhomB(m, f).484

Proof. Working in C/B, r has the weak left lifting property against ˆhomB(m, f) iff every485

lifting problem of r ×̂Bm against f has a weak filler satisfying the additional condition of486

being strict on A. This holds for all B, r and m and every choice of lifting problem iff it holds487

for the universal lifting problem of ∆ ×̂I×Φ> against f , where ∆ is the map 1I×Φ → II×Φ in488

C/(I× Φ) defined as the diagonal map I× Φ→ I× I× Φ. Such fillers of the universal lifting489

problem correspond precisely to WComp terms. J490

In order to obtain an awfs, we show that the above is equivalent to an alternative definition491

using the mapping cylinder factorization, which we recall is defined as below.492

I Definition 31 (Mapping cylinder factorization). Let m : A→ B. We define the mapping493

cylinder factorization to be the maps A L(m)−→ Cyl(m) R(m)−→ B, defined as follows. We first494

define Cyl(m) as the pushout of δA0 and m, writing ι0 : I×A→ Cyl(m) and ι1 : B → Cyl(m)495

for the pushout inclusions. We define L(m) to be ι0 ◦ δA1 and define R(m) to be the unique496

map such that R(m) ◦ ι0 = m ◦ π1 and R(m) ◦ ι1 = 1B.497

I Theorem 32. Let f be a map in C. Then f is a weak fibration if and only if it has the498

fibered right lifting property against the map LI×Φ(∆) ×̂I×Φ> in the slice category C/(I×Φ).499

Using this alternative definition, we can apply Theorem 24 to obtain an awfs (Ct, F )500

where F is precisely the class of weak fibrations. We refer to maps in Ct as trivial cofibrations.501

3.4 The model structure502

Now that we have defined the awfs’s (C,F t) and (Ct, F ), we use Sattler’s [32, Thm. 2.8] in503

order to obtain a model structure on C.504

I Lemma 33. The awfs’s (C,F t) and (Ct, F ) have the following key properties.505

1. The functor ˆhom(δi,−) maps fibrations to trivial fibrations.506

2. The functor ˆhom([δ0, δ1],−) preserves fibrations and trivial fibrations.507

3. Every cofibration is a monomorphism.508

4. Cofibrations are stable under pullback.509

I Theorem 34. Suppose that C satisfies axioms ax1–ax5 and that every fibration is U-small510

for some universe of small fibrations where the underlying object U is fibrant, and that C and511

Φ satisfy one of the conditions required to apply Theorem 24.512

Let (C,F t) be the awfs defined in Section 3.2 and let (Ct, F ) be the awfs defined in513

Section 3.3 (restricted to C/1). Then C and F form the cofibrations and fibrations of a514

(uniquely determined) model structure on C.515
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Proof. By Sattler’s [32, Thm. 2.8] it suffices to check the following conditions.516

1. The span property holds.517

2. Trivial fibrations satisfy 2-out-of-3 relative to fibrations.518

3. Fibrations and trivial fibrations extend along trivial cofibrations.519

4. The wfs (Ct, F ) satisfies the Frobenius property.520

Conditions (1) and (2) follow from the key properties (1) and (2) in Lemma 33 by521

essentially the same arguments used by Sattler in [32, Sec. 4].522

Trivial fibrations extend along all cofibrations, by the same argument used by Sattler523

in [32, Lem. 3.9] together with the key properties (3) and (4) in Lemma 33.524

As Sattler remarks in [32, Rem. 7.6], to show fibrations extend along trivial cofibrations525

it suffices to show every fibration belongs to a universe U where the underlying object is526

fibrant, which we assumed.527

Finally, (Ct, F ) is Frobenius by the existence of fibration structures on Π-types and the528

adjunction between pullback and dependent product. J529

In particular, if ax6 and ax7 hold and I is tiny, we can use the construction of U from530

Section 2.6 together with the proof of fibrancy in [13, Sec. 4.3].531

The model structure obtained this way is “minimal” in the following sense [14, Sec. 1.6].532

I Theorem 35. The class Ct is as small as possible subject to the following two conditions.533

1. For every object B, the map δB0 : B → B × I belongs to Ct.534

2. C and Ct form the cofibrations and trivial cofibrations of a model structure.535

4 Identity types and higher inductive types536

We have formalized three constructions of identity types in Agda, each of which requires537

additional assumptions. The first follows [15, Sec. 9.1]; this requires a dominance on Φ and538

extensionality for cofibrant propositions. The second approach uses the (C,F t) factorization539

system following [33], while the third approach uses the (Ct, F ) factorization system following540

[12, 11]. These rely on W -types with reductions to obtain the factorization systems. We541

refer the interested reader to the Agda formalization for details.542

A crucial component for modeling universes closed under higher inductive types is the543

decomposition of composition into homogeneous composition and coercion [12, 18]. A544

type A : Γ → U supports weak homogeneous composition if all of its fibers support weak545

composition, i.e. for all (x : Γ) the type A x has a weak composition structure. Supporting546

weak coercion corresponds to having weak composition only in the case when ϕ is ⊥ (i.e.,547

the tube is empty). We have formalized that a type has weak composition if and only if548

it has weak homogeneous composition and weak coercion. This makes it possible for us to549

follow the same approach as in [12, 18] to model higher inductive types. We refer the reader550

to [13, Sec. 5.1] for the construction of a circle type in this setting.551

5 Conclusions552

We have proved that any locally cartesian closed category C with I and Φ satisfying ax1–ax7553

and where I is tiny provides a constructive model of HoTT/UF. Examples of such categories554

are CCHM and Dedekind cubical sets as proven in [28, Sec. 8], and cartesian cubical sets as555

proven in [2, Sec. 3.2]. Our conditions hold for cubical assemblies [37] and also apply to new556

variants of cubical assemblies based on cartesian cubes rather than Dedekind cubes.557
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Our construction of a model structure also applies to all of the above examples. As558

observed by Sattler [32, Cor. 8.5], the LOPS construction of a universe does not apply for559

simplicial sets because the interval is not tiny, but one can still obtain a model structure560

using the non-constructive theorem that the definition of Kan fibration here is equivalent to561

the classical definition using horn inclusions.562

From the perspective of practical implementation and usability, the type theory corres-563

ponding to this model is inferior to the type theories it generalizes: equalities that are strict564

in the specialized type theories here only hold up to paths, so additional path algebra is565

necessary to implement composition at the various types. The objective is rather to present566

a theory with which the mathematical properties of the various type theories and models567

can be studied simultaneously.568

Future work569

Now that we have given a unified construction for the various cubical models, the natural570

next step is to use it to establish relationships between its various instantiations. One option571

is to prove homotopy canonicity for the type theory using categorical gluing as in [19]. This572

would show that closed terms of natural number type written in weak cartesian type theory573

evaluate to the same numeral in any of the existing cubical type theories.574

The construction may also be useful for uniformly analyzing the model structures induced575

by different choices of cube category and generating cofibrations. Sattler has observed [17]576

that the CCHM and ABCFHL constructions give model structures that are not Quillen577

equivalent to spaces. However, the question is open for Dedekind cubes. One might also578

investigate the relationships between the various cubical model structures.579

Finally, the program of unification remains unfinished, as the BCH model is not an580

instance of our construction. Indeed, our approach seems ill-suited to BCH, as it crucially581

involves the diagonal (r = s) of compositions r → s. It is unclear to us whether BCH can be582

naturally accommodated; it may simply be a fundamentally different construction.583

5.1 Related work584

As the notion of fibration defined in this paper coincides with the one of Orton and Pitts [28]585

in the presence of a connection algebra, and this is equivalent to the Gambino-Sattler586

definition [24], we recover the model structure of Sattler [32] when the category also has587

connections. Another presentation of this model structure on CCHM and Dedekind cubical588

sets can be found in Boulier’s Ph.D. thesis [10], formalized in the Coq proof assistant. Since589

an equivalent definition of fibration was used by Van den Berg and Frumin in [22], when our590

model structure exists we can recover theirs by restricting to fibrant objects. However, our591

proof does not apply to their main example of the effective topos because it is unknown how592

to construct a universe satisfying ax6 in this setting (see [35, Thm. 5.7]).593

Furthermore, as we recover AFH fibrations when we assume diagonal cofibrations, we594

also recover the model structure on cartesian cubical sets sketched by Coquand based on595

Sattler’s model structure [17]. Awodey [4] uses a variation of composition 0→ r and 1→ r596

to construct an awfs on cartesian cubical sets, but it is unclear whether this is sufficient to597

obtain a model structure. Awodey has recently [6] introduced a notion of “unbiased fibrations”598

that are equivalent to AFH fibrations, so the resulting model structure is also a special599

case of ours when we assume diagonal cofibrations. Our generalization hence clarifies the600

relationship between some of the various model structures on different cubical set categories.601
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