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HZ Appendix 6: Iterative estimation methods

Topics:

• Basic methods: Newton, Gauss-Newton, gradient descent.

• Levenberg-Marquardt.

• Sparse Levenberg-Marquardt.

• Applications to homography, fundamental matrix, bundle
adjustment.

• Sparse methods for equations solving.

• Robust cost functions.

• Parameterization.

Lecture notes which I found useful
(methods for non-linear least squares problems):

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
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Iterative estimation methods

Problem: how to find minimum of non-linear functions?
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Iterative estimation methods

Problem: how to find minimum of non-linear functions?

Examples of HZ problems:
-homography estimation.
-fundamental matrix estimation.
-multiple image bundle adjustment.
-camera calibration (Zhang paper).

Examples of my recent problems:
-optimization of skeleton geometry given marker data.
-optimization of skeleton pose given marker data.

Central approach of Appendix 6: Levenberg-Marquardt.

Questions: Pronunciation? Why LM?
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Newton iteration

Goal: minimizeX = f (P) for P.
X is the measurement vector.
P is the parameter vector.
f is some non-linear function.
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P is the parameter vector.
f is some non-linear function.

In other words:
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Newton iteration

Goal: minimizeX = f (P) for P.
X is the measurement vector.
P is the parameter vector.
f is some non-linear function.

In other words:
Minimize ε = X − f(P).

We assumef is locally linear at eachPi, then
f(Pi + ∆i) = f(Pi) + Ji∆i,
where matrixJi is the Jacobian∂f/∂P atPi.

So we want to minimize‖εi + Ji∆i‖ for some vector∆i.

Find∆i either using normal equations:JTiJi∆ = −J
T

i εi

or using pseudo-inverse:∆i = −J
+
i εi.

Iterate until convergence . . . p.4/35
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Gauss-Newton method

Suppose we want to minimize some cost function
g(P) = 1

2
‖ε(P)‖2 = 1

2
ε(P)Tε(P).
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Suppose we want to minimize some cost function
g(P) = 1

2
‖ε(P)‖2 = 1

2
ε(P)Tε(P).

We may expand in a Taylor series up to second degree
g(P + ∆) = g + gP∆ + ∆TgPP∆/2,
where subscriptP denotes differentiation.
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ε(P)Tε(P).

We may expand in a Taylor series up to second degree
g(P + ∆) = g + gP∆ + ∆TgPP∆/2,
where subscriptP denotes differentiation.
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Suppose we want to minimize some cost function
g(P) = 1

2
‖ε(P)‖2 = 1

2
ε(P)Tε(P).

We may expand in a Taylor series up to second degree
g(P + ∆) = g + gP∆ + ∆TgPP∆/2,
where subscriptP denotes differentiation.

Differentiating w.r.t.∆, setting to zero results ingPP∆ = −gP.
Using this equation we could compute∆ if we knewgPP andgP.

Gradient vector:gP = εT
P
ε = J

Tε. Intuition?

Hessian:gPP = εT
P
εP + εT

PP
ε ≈ J

T
J. Assume linear again . . .

p.5/35



UNIVERSITEIT

VAN

AMSTERDAM

Gauss-Newton method

Suppose we want to minimize some cost function
g(P) = 1

2
‖ε(P)‖2 = 1

2
ε(P)Tε(P).

We may expand in a Taylor series up to second degree
g(P + ∆) = g + gP∆ + ∆TgPP∆/2,
where subscriptP denotes differentiation.

Differentiating w.r.t.∆, setting to zero results ingPP∆ = −gP.
Using this equation we could compute∆ if we knewgPP andgP.

Gradient vector:gP = εT
P
ε = J

Tε. Intuition?

Hessian:gPP = εT
P
εP + εT

PP
ε ≈ J

T
J. Assume linear again . . .

Putting it all together we getJTJ∆ = −J
Tε.

So we arrive at the normal equations again.
(So what was the point?)
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Gradient descent

Gradient descent or steepest descent searches in the direction of
most rapid decrease−gP = −εT

P
ε.
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Gradient descent or steepest descent searches in the direction of
most rapid decrease−gP = −εT

P
ε.

So we take stepsλ∆ = −gP whereλ controls the step size and is
found through line search.
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Gradient descent

Gradient descent or steepest descent searches in the direction of
most rapid decrease−gP = −εT

P
ε.

So we take stepsλ∆ = −gP whereλ controls the step size and is
found through line search.

A problem is zig-zagging which can cause slow convergence:
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Levenberg-Marquardt

Levenberg-Marquardt is a blend of Gauss-Newton and gradient
descent. Update equation:

(JTJ + λI)∆ = −J
Tε.
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Levenberg-Marquardt

Levenberg-Marquardt is a blend of Gauss-Newton and gradient
descent. Update equation:

(JTJ + λI)∆ = −J
Tε.

Algorithm:

• Initially setλ = 10−3.

• Try update equation.

• If improvement: divideλ by 10. I.e., shift towards Gauss-Newton.

• Else: multiplyλ by 10. I.e., shift towards gradient descent.

p.7/35



UNIVERSITEIT

VAN

AMSTERDAM

Levenberg-Marquardt

Levenberg-Marquardt is a blend of Gauss-Newton and gradient
descent. Update equation:

(JTJ + λI)∆ = −J
Tε.

Algorithm:

• Initially setλ = 10−3.

• Try update equation.

• If improvement: divideλ by 10. I.e., shift towards Gauss-Newton.

• Else: multiplyλ by 10. I.e., shift towards gradient descent.

The idea is (?):
-take big gradient descent steps far away from minimum.
-take Gauss-Newton steps near (hopefully quadratic) minimum.
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Sparse Levenberg-Marquardt 1/2

In many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even
from O(n3) to O(n)).
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In many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even
from O(n3) to O(n)).

In the example, the parameters are partitioned into two blocks:
P = (aT ,bT )T

The Jacobian then has the formJ = [A|B], with

A = [∂X̂/∂a], B = [∂X̂/∂b].
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Sparse Levenberg-Marquardt 1/2

In many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even
from O(n3) to O(n)).

In the example, the parameters are partitioned into two blocks:
P = (aT ,bT )T

The Jacobian then has the formJ = [A|B], with

A = [∂X̂/∂a], B = [∂X̂/∂b].

UsingA andB, the normal equations(JTJ)∆ = −J
Tε take on

the the form
[

AT A AT B

BT A BT B

](
δa

δb

)
=

(
AT ε

BT ε

)
.
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Sparse Levenberg-Marquardt 2/2

If the normal equations are written as (what’s with the∗?)
[

U
∗

W

W
T

V
∗

](
δa

δb

)
=

(
εA

εB

)
,

we can rewrite this to
[

U
∗ − WV

∗−1
W

T 0

W
T

V
∗

](
δa

δb

)
=

(
εA − WV

∗−1εB

εB

)

by multiplying on the left by

[
I WV

∗−1

0 I

]
.

Now first solve the top half, then the lower half using
back-substitution.
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Robust cost functions 2/5

Squared-error is not usable unless outliers are filtered out.
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• Corrupted Gaussian: blend two Gaussians, one for inliers and one for outliers.

Disadvantages: not convex.
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Disadvantages: not a PDF, not convex.

• Corrupted Gaussian: blend two Gaussians, one for inliers and one for outliers.

Disadvantages: not convex.

• Cauchy: (?).

disadvantages: not convex.

• L1: absolute error (not squared).

Disadvantages: not differentiable at 0, minimum is not at a single point when summed.
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Alternatives:
• Blake-Zisserman: outliers are given a constant cost.

Disadvantages: not a PDF, not convex.

• Corrupted Gaussian: blend two Gaussians, one for inliers and one for outliers.

Disadvantages: not convex.

• Cauchy: (?).

disadvantages: not convex.

• L1: absolute error (not squared).

Disadvantages: not differentiable at 0, minimum is not at a single point when summed.

• Huber cost function: like L1, but ’rounded’.

Disadvantages: non-continuous derivative from2nd order and up.
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Robust cost functions 2/5

Squared-error is not usable unless outliers are filtered out.

Alternatives:
• Blake-Zisserman: outliers are given a constant cost.

Disadvantages: not a PDF, not convex.

• Corrupted Gaussian: blend two Gaussians, one for inliers and one for outliers.

Disadvantages: not convex.

• Cauchy: (?).

disadvantages: not convex.

• L1: absolute error (not squared).

Disadvantages: not differentiable at 0, minimum is not at a single point when summed.

• Huber cost function: like L1, but ’rounded’.

Disadvantages: non-continuous derivative from2nd order and up.

• Pseudo Huber: like Huber, but with continuous derivatives.
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Robust cost functions 3/5

Figure A.6.5
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Robust cost functions 4/5

Figure A.6.6
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Robust cost functions 5/5

Summary:

• Squared-error cost function is very susceptible to outliers.
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Summary:

• Squared-error cost function is very susceptible to outliers.

• The non-convex functions (like L1 and corrupted Gaussian)
may be good, but they have local minima. So do not use
them unless already close to true minimum.
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Robust cost functions 5/5

Summary:

• Squared-error cost function is very susceptible to outliers.

• The non-convex functions (like L1 and corrupted Gaussian)
may be good, but they have local minima. So do not use
them unless already close to true minimum.

• Best: Huber and Pseudo-Huber.
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Fooling LM implementations

Most implementations of Levenberg-Marquardt use the squared
error cost function. What if you want a different cost functionC
instead?
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Fooling LM implementations

Most implementations of Levenberg-Marquardt use the squared
error cost function. What if you want a different cost functionC
instead?

Replace the each differenceδi with a weighted version

δ′i = wiδi

such that
‖δi‖

2 = w2
i ‖δi‖

2 = C(‖δi‖).
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Fooling LM implementations

Most implementations of Levenberg-Marquardt use the squared
error cost function. What if you want a different cost functionC
instead?

Replace the each differenceδi with a weighted version

δ′i = wiδi

such that
‖δi‖

2 = w2
i ‖δi‖

2 = C(‖δi‖).

Thus

wi =

√
C(‖δi‖)

‖δi‖
.

(confusion aboutδ being a vector? why not scalar?) p.15/35
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Parameterization for Levenberg-Marquardt

A good parameterization for use with LM is singularity free (at
least in area visited during optimization). This means:

• continuous,

• differentiable,

• one-to-one.
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Parameterization for Levenberg-Marquardt

A good parameterization for use with LM is singularity free (at
least in area visited during optimization). This means:

• continuous,

• differentiable,

• one-to-one.

So latitude-longitude is not suitable to parameterize sphere.

And Euler angles are not suitable to parameterize rotations.

Gauge freedom?

Variance?

p.16/35



UNIVERSITEIT

VAN

AMSTERDAM

Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.

Angle-axis (3-vector) representation: 3 elements, 3 d.o.f.
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Angle-axis (3-vector) representation: 3 elements, 3 d.o.f.

Observations:(these are mostly just general observations about log(rotation))

• Identity rotation:t = 0.
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Angle-axis (3-vector) representation: 3 elements, 3 d.o.f.

Observations:(these are mostly just general observations about log(rotation))

• Identity rotation:t = 0.

• Inverse rotation:−t.

• Small rotation: the rotation matrix isI + [t]×.

• For small rotations:R(t1)R(t2) ≈ R(t1 + t2).
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3-D rotation matrix: 9 elements, only 3 degrees of freedom.

Angle-axis (3-vector) representation: 3 elements, 3 d.o.f.

Observations:(these are mostly just general observations about log(rotation))

• Identity rotation:t = 0.

• Inverse rotation:−t.

• Small rotation: the rotation matrix isI + [t]×.

• For small rotations:R(t1)R(t2) ≈ R(t1 + t2).

• All rotations can be represented byt with ‖t‖ ≤ π. When

‖t‖ = n2π, (n positive integer) you get identity rotation

again (singularity).
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Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.

Angle-axis (3-vector) representation: 3 elements, 3 d.o.f.

Observations:(these are mostly just general observations about log(rotation))

• Identity rotation:t = 0.

• Inverse rotation:−t.

• Small rotation: the rotation matrix isI + [t]×.

• For small rotations:R(t1)R(t2) ≈ R(t1 + t2).

• All rotations can be represented byt with ‖t‖ ≤ π. When

‖t‖ = n2π, (n positive integer) you get identity rotation

again (singularity).

• Normalization: stay away from‖t‖ = 2π. p.17/35
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Parameterization of homogeneous vectors

Let v be an-D-vector (already stripped of ‘extra’ homogeneous
coordinate?).

Then parameterize it asn + 1 vector:
v̄ = (sinc(‖v‖/2)vT , cos(‖v‖/2))T .
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Parameterization of the n-sphere

How to parameterize unit vectorsx?

Compute Householder matrix (reflection) such that
Hv(x)x = (0, . . . , 0, 1)T.
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Parameterization of the n-sphere

How to parameterize unit vectorsx?

Compute Householder matrix (reflection) such that
Hv(x)x = (0, . . . , 0, 1)T.

(i) f(y) = ŷ/‖ŷ‖ whereŷ = (yT , 1)T , (?)
(ii) f(y) = (sinc(‖y‖/2)yT , cos(‖y‖/2))T (?).
both have a Jacobian∂f/∂y = [I|0]T .
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Parameterization of the n-sphere

How to parameterize unit vectorsx?

Compute Householder matrix (reflection) such that
Hv(x)x = (0, . . . , 0, 1)T.

(i) f(y) = ŷ/‖ŷ‖ whereŷ = (yT , 1)T , (?)
(ii) f(y) = (sinc(‖y‖/2)yT , cos(‖y‖/2))T (?).
both have a Jacobian∂f/∂y = [I|0]T .

So ‘constrained’ Jacobian can be computed

J =
∂C

∂y
=

∂C

∂x

∂x

∂y
=

∂C

∂x
Hv(x)x[I|0]T .
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Zhang Paper

Zhengyou Zhang

A Flexible New Technique for Camera Calibration

(1998)
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Zhang Paper

Zhengyou Zhang

A Flexible New Technique for Camera Calibration

(1998)

As implemented for:

Matlab The Camera Calibration Toolbox for Matlab

C++ Intel OpenCV
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Internal Camera Calibration 1/4

Primary use of the Zhang algorithm is internal camera
calibration. It computes:

• focal centercx andcy.

• focal lengthfx andfy.

• skews (optional).
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Internal Camera Calibration 1/4

Primary use of the Zhang algorithm is internal camera
calibration. It computes:

• focal centercx andcy.

• focal lengthfx andfy.

• skews (optional).

In short, the camera intrinsic matrix:

A =




fx s cx

0 fy cy

0 0 1




p.21/35
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Internal Camera Calibration 2/4

The Zhang algorithm also computes radial lens distortion
parameters[k1, k2, k3, k4].

The original paper uses
xd = x + x (k1 (x2 + y2) + k2 (x2 + y2)2),
yd = y + y (k1 (x2 + y2) + k2 (x2 + y2)2),
wherex andy are normalized image coordinates andxd andyd

are the distorted coordinates.
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Internal Camera Calibration 2/4

The Zhang algorithm also computes radial lens distortion
parameters[k1, k2, k3, k4].

The original paper uses
xd = x + x (k1 (x2 + y2) + k2 (x2 + y2)2),
yd = y + y (k1 (x2 + y2) + k2 (x2 + y2)2),
wherex andy are normalized image coordinates andxd andyd

are the distorted coordinates.

But the implementations use a more complex model
xd = x + x (k1(x

2 + y2) + k2 (x2 + y2)2) + xtd,
yd = y + y (k1(x

2 + y2) + k2 (x2 + y2)2) + ytd,
where
xtd = 2k3 x y + k4 (3 x2 + y2),
ytd = 2k4 x y + k3 (x2 + 3 y2).

p.22/35
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Internal Camera Calibration 3/4

Example of internal camera calibration parameters.

Camera: PixeLINK A741, 2/3 inch CMOS sensor, 1280x1024.
Lens: Cosmicar 8.5mm fixed focal length.

fx = 1272.872 pixels= 8.528mm
fy = 1272.988 pixels= 8.529mm
cx = 632.740
cy = 507.648
k1 = −0.204
k2 = 0.171
k3 = −0.00074896
k4 = 0.00008878
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Internal Camera Calibration 4/4

Show lens distortion in DASiS video viewer. . .
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External Camera Calibration

The Zhang algorithm may also be used for external camera
calibration.

Camera rotation and translation are computed as side-product of
internal calibration.

If two cameras see the same calibration pattern at the same time,
their relative position and orientation may be computed.
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Overall approach

• Measure projected position of points in a plane (e.g.,
checkerboard).
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Overall approach

• Measure projected position of points in a plane (e.g.,
checkerboard).

• Do so for at least two different camera orientations.

• Setup equations in order to estimate camera intrinsics.

• Given camera intrinsics, estimate extrinsics.

• Estimate radial distortion.

• Use Levenberg-Marquardt to optimize initial estimates.

p.26/35
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Basic Equations

Plane (‘checkerboard’) is atZ = 0.
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Basic Equations

Plane (‘checkerboard’) is atZ = 0.

Homogeneous 2-D image point:̃m.
Homogeneous 3-D world point:̃M = [X Y 0 1]T .

Projection:

sm̃ = A[R t]M̃ =



α γ u0

0 β v0

0 0 1


 [r1 r2 r3 t] [X Y 0 1]T =

A [r1 r2 t] [X Y 1]T
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Homography, constraints

An homographyH can be estimated between known points on
the calibration object and the measured world points.

H = [h1 h2 h3] = λA[r1 r2 t]
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H = [h1 h2 h3] = λA[r1 r2 t]

We demand:
C1: rT

1 r2 = 0 (r1, r2 orthogonal),
C2: rT

1 r1 = rT
2 r2 (r1, r2 have same length).
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Homography, constraints

An homographyH can be estimated between known points on
the calibration object and the measured world points.

H = [h1 h2 h3] = λA[r1 r2 t]

We demand:
C1: rT

1 r2 = 0 (r1, r2 orthogonal),
C2: rT

1 r1 = rT
2 r2 (r1, r2 have same length).

We know:
h1 = λAr1 → r1 = λ−1A−1h1

h2 = λAr2 → r2 = λ−1A−1h2

So the constraints are:
C1: hT

1 A−T A−1 h2 = 0,
C2: hT

1 A−T A−1 h1 = hT
2 A−T A−1 h2.
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Closed-form solution using constraints 1/4

Using the constraints, we can first findA, followed byR andt.
Let

B = A−T A−1 =




B11 B12 B13

B12 B22 B23

B13 B23 B33




=




1
α2 − γ

α2β

v0γ−u0β

α2β

− γ

α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0

β2

v0γ−u0β

α2β
−γ(v0γ−u0β)

α2β2 − v0

β2

(v0γ−u0β)2

α2β2 +
v2

0

β2 + 1


.

This allows to solve forα, β, etc.
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Closed-form solution using constraints 2/4

If we reshuffle the six unique elements ofB into a vector
b = [B11, B12, B22, B13, B23, B33],

we can rewrite both constraints as
hT

i Bhj = vT
ijb,

where
vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2,

hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]
T ,

ultimately resulting in[
vT

12

(v11 − v22)
T

]
b = 0.
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Closed-form solution using constraints 3/4

Next, stack all the equations fromn measurements (estimated
homographies) of the plane (‘checkerboard’):

Vb = 0,

whereV is a2n × 6 matrix. Solve as usual using the SVD.
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Closed-form solution using constraints 4/4

OnceA is known, we can obtainr1, r2 andt:

r1 = λ−1A−1h1,
r2 = λ−1A−1h2,
t = λ−1A−1h3.
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Closed-form solution using constraints 4/4

OnceA is known, we can obtainr1, r2 andt:

r1 = λ−1A−1h1,
r2 = λ−1A−1h2,
t = λ−1A−1h3.

Now Zhang says
r3 = r1 × r2,
and use SVD to make matrixR orthogonal, i.e.,
R = UVT .

I say:
Maker1, r2 orthogonal in least-squares sense.
The computer3 = r1 × r2.
Is simpler and boils down to the same thing.
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Radial distortion

Using the camera intrinsics and extrinsics undistorted
coordinates of points (corners on the checkerboard) can be
approximated. These is used to solve fork1, k2:

 (u − u0)(x2 + y2) (u − u0)(x2 + y2)2

(v − v0)(x2 + y2) (v − v0)(x2 + y2)2




 k1

k2


 =


 ŭ − u

v̆ − v


.
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Radial distortion

Using the camera intrinsics and extrinsics undistorted
coordinates of points (corners on the checkerboard) can be
approximated. These is used to solve fork1, k2:

 (u − u0)(x2 + y2) (u − u0)(x2 + y2)2

(v − v0)(x2 + y2) (v − v0)(x2 + y2)2




 k1

k2


 =


 ŭ − u

v̆ − v


.

These equations are stacked (D[k1 k2]
T = d) and we solve least

squares [k1 k2]
T = (DTD)−1DTd.

Then iterate both algorithm (internal+external, radial) until

convergence.
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Maximum likelihood estimation

Optimize: use Levenberg-Marquardt to find minimum of
∑n

i=1

∑m

j=1 ‖mij − m̆(A, k1, k2,Ri, ti, Mi)‖
2

(n images,m points per image)

All done . . .
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Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

p.35/35



UNIVERSITEIT

VAN

AMSTERDAM

Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

• 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

p.35/35



UNIVERSITEIT

VAN

AMSTERDAM

Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

• 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

• Systematic non-planarity of checkerboard has more effect
than random noise (duh).

p.35/35



UNIVERSITEIT

VAN

AMSTERDAM

Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

• 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

• Systematic non-planarity of checkerboard has more effect
than random noise (duh).

• Cylindrical non-planarity is worse than spherical
non-planarity (cylindrical more common in practice?).

p.35/35



UNIVERSITEIT

VAN

AMSTERDAM

Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

• 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

• Systematic non-planarity of checkerboard has more effect
than random noise (duh).

• Cylindrical non-planarity is worse than spherical
non-planarity (cylindrical more common in practice?).

• Even with systematic non-planarity, results still usable.

p.35/35



UNIVERSITEIT

VAN

AMSTERDAM

Notable experimental results

• Using three different images, the results are pretty good.
Results keep getting better with more images.

• 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

• Systematic non-planarity of checkerboard has more effect
than random noise (duh).

• Cylindrical non-planarity is worse than spherical
non-planarity (cylindrical more common in practice?).

• Even with systematic non-planarity, results still usable.

• Error in compute sensor center seems not to have too much
effect in 3-D reconstruction.
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