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e Basic methods: Newton, Gauss-Newton, gradient descent.
e Levenberg-Marquardt.
e Sparse Levenberg-Marquardt.

e Applications to homography, fundamental matrix, bundle
adjustment.

e Sparse methods for equations solving.
e Robust cost functions.
e Parameterization.

Lecture notes which | found useful
(methods for non-linear least squares problems):

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
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| ter ative estimation methods

Problem: how to find minimum of non-linear functions?
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Problem: how to find minimum of non-linear functions?

Examples of HZ problems:
-homography estimation.
-fundamental matrix estimation.
-multiple image bundle adjustment.
-camera calibration (Zhang paper).
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| ter ative estimation methods

Problem: how to find minimum of non-linear functions?

Examples of HZ problems:
-homography estimation.
-fundamental matrix estimation.
-multiple image bundle adjustment.
-camera calibration (Zhang paper).

Examples of my recent problems:
-optimization of skeleton geometry given marker data.
-optimization of skeleton pose given marker data.

Central approach of Appendix 6: Levenberg-Marquardit.

Questions: Pronunciation? Why LM?
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Newton iter ation

Goal: minimizeX = f(P) for P.
X Is the measurement vector.
P Is the parameter vector.

f Is some non-linear function.
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Goal: minimizeX = f(P) for P.
X IS the measurement vector.

P Is the parameter vector.
f Is some non-linear function.

In other words:
Minimizee = X — f(P).

Newton iter ation
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Newton iter ation

Goal: minimizeX = f(P) for P.
X Is the measurement vector.
P Is the parameter vector.

f Is some non-linear function.

In other words:

Minimizee = X — f(P).

We assumé is locally linear at eacli?;, then
f(P, + A;) =f(P;) + J;A,,

where matrixJ; is the Jacobiafdf /0P atP;.
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Newton iter ation

Goal: minimizeX = f(P) for P.
X Is the measurement vector.
P Is the parameter vector.

f Is some non-linear function.

In other words:
Minimizee = X — f(P).

We assumé is locally linear at eacli?;, then
f(P; + A;) = £(P;) + A,
where matrixJ; is the Jacobiaf /0P atP;.

So we want to minimizée; + J;A;|| for some vector);.
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e Goal: minimizeX = f(P) for P.
X 1s the measurement vector.
P is the parameter vector.
f 1Is some non-linear function.

In other words:
Minimize e = X — f(P).

We assumé is locally linear at eacli?;, then
f(P, + A;) = f(P;) + J; A,
where matrixJ; is the Jacobiafdf /0P atP;.

So we want to minimizée; + J;A,;|| for some vector\,.

Find A; either using normal equations; J;A = —J'¢;
or using pseudo-inversey; = —J¢;.

Iterate until convergence . . . 0.4/35



Gauss-Newton method

Suppose we want to minimize some cost function
g(P) = 5|le(P)||* = ;€(P)e(P).
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Gauss-Newton method

Suppose we want to minimize some cost function

g(P) = 3[e(P)||* = 3€(P)e(P).

We may expand in a Taylor series up to second degree
g(P+A)=g+gpA+ AlgppA/2,
where subscripP denotes differentiation.
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Gauss-Newton method

Suppose we want to minimize some cost function
g(P) = zle(P)[* = 2e(P)"e(P).

2

We may expand in a Taylor series up to second degree
gP+A) =g+ gpA+ AlgppA/2,
where subscripP denotes differentiation.

Differentiating w.r.t.A, setting to zero results pp A = —gp.
Using this equation we could computeif we knew gpp andgp.

Gradient vectoryp = epe = J'e. Intuition?
Hessiangpp = ep€p + eppe &~ J'J.  Assume linear again . . .
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Gauss-Newton method

Suppose we want to minimize some cost function
g(P) = zle(P)[* = 2e(P)"e(P).

2

We may expand in a Taylor series up to second degree
gP+A) =g+ gpA+ AlgppA/2,
where subscripP denotes differentiation.

Differentiating w.r.t.A, setting to zero results pp A = —gp.
Using this equation we could computeif we knew gpp andgp.

Gradient vectoryp = epe = J'e. Intuition?
Hessiangpp = ep€p + eppe &~ J'J.  Assume linear again . . .

Putting it all together we get’ JA = —J'e.
So we arrive at the normal equations again.

(So what was the point?)
p.5/35



Gradient descent

Gradient descent or steepest descent searches in theahretct
most rapid decreasegp = —epe.
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Gradient descent

Gradient descent or steepest descent searches in theahretct
most rapid decreasegp = —epe.

So we take stepSA = —gp Where\ controls the step size and is
found through line search.
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Gradient descent

Gradient descent or steepest descent searches in theahretct
most rapid decreasegp = —epe.

So we take stepSA = —gp Where\ controls the step size and is
found through line search.

A problem is zig-zagging which can cause slow convergence:

f

STAR&

¥
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L evenberg-M arquar dt

Levenberg-Marquardt is a blend of Gauss-Newton and gradien
descent. Update equation:

(J'J+ AI)A = —J'e.
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L evenberg-M arquar dt

Levenberg-Marquardt is a blend of Gauss-Newton and gradien
descent. Update equation:

(JTT+ M)A = —J'e.
Algorithm:

e Initially set\ = 1072,
e Try update equation.

e |f Improvement: divide\ by 10. 1.e., shift towards Gauss-Newton.
e Else: multiply A by 10. 1.e., shift towards gradient descent.
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AwstereaM - | ayvenberg-Marquardt is a blend of Gauss-Newton and gradien
descent. Update equation:

(JTT+ MDA = —J"e.
Algorithm:

e Initially set\ = 1077,
e Try update equation.
e If Improvement: divide\ by 10. 1.e., shift towards Gauss-Newton.
e Else: multiply A by 10. 1.e., shift towards gradient descent.
The idea s (?):

-take big gradient descent steps far away from minimum.

-take Gauss-Newton steps near (hopefully quadratic) numm
p.7/35



Sparse Levenberg-Marquardt 1/2

In many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even
from O(n?) to O(n)).
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Sparse Levenberg-Marquardt 1/2

In many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even

from O(n?) to O(n)).

In the example, the parameters are partitioned into twokistoc
P = (al,b!)?

The Jacobian then has the foom= | A|B], with

A=1[0X/da], B =I[0X/db].
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AMSTERBAM | | many estimation problems, the Jacobian is sparse.
One should this to lower the time complexity (sometimes even

from O(n?) to O(n)).

In the example, the parameters are partitioned into twokistoc
P = (al,b!)?

The Jacobian then has the foom= |A|B|, with

A=[0X/0a], B =[0X/db].

Using A and B, the normal equationg]' J)A = —J"e take on
the the form

ATA|ATB | [ 8.\ [ ATe
BTA | BB o, | \ BTe |
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Sparse Levenberg-Marquardt 2/2

If the normal equations are written as (what'’s with tR¢

U oW | [ 6.\ [ eq
WT V* 5b B €ERB ’

we can rewrite this to
U - 0 | 8.\ [ ea—Wles
WT V* 5b €ER

by multiplying on the left by

0 I

Now first solve the top half, then the lower half using
back-substitution.
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Robust cost functions 1/5

Cost function PDF Attenuation factor
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Robust cost functions 2/5

Squared-error is not usable unless outliers are filtered out
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Squared-error is not usable unless outliers are filtered out
Alternatives:

e Blake-Zisserman: outliers are given a constant cost.
Disadvantages: not a PDF, not convex.
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Robust cost functions 2/5

Squared-error is not usable unless outliers are filtered out
Alternatives:

e Blake-Zisserman: outliers are given a constant cost.
Disadvantages: not a PDF, not convex.

e Corrupted Gaussian: blend two Gaussians, one for inliedsoae for outliers.
Disadvantages: not convex.

e Cauchy: (?).
disadvantages: not convex.

e L1: absolute error (not squared).
Disadvantages: not differentiable at 0, minimum is not ahgle point when summed.

e Huber cost function: like L1, but 'rounded’.
Disadvantages: non-continuous derivative fri@f¢ order and up.

e Pseudo Huber: like Huber, but with continuous derivatives.
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Robust cost functions 3/5

Figure A.6.5
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Robust cost functions 4/5

Figure A.6.6
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Robust cost functions 5/5

Summary:
e Squared-error cost function is very susceptible to owlier
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Robust cost functions 5/5

Summary:
e Squared-error cost function is very susceptible to owlier

e The non-convex functions (like L1 and corrupted Gaussian
may be good, but they have local minima. So do not use
them unless already close to true minimum.
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Robust cost functions 5/5

Summary:
e Squared-error cost function is very susceptible to owlier

e The non-convex functions (like L1 and corrupted Gaussian
may be good, but they have local minima. So do not use
them unless already close to true minimum.

e Best: Huber and Pseudo-Huber.
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Fooling LM implementations

Most implementations of Levenberg-Marguardt use the sgliar
error cost function. What if you want a different cost funat(’
Instead?
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Fooling LM implementations

Most implementations of Levenberg-Marguardt use the sgliar
error cost function. What if you want a different cost funat(’

Instead?
Replace the each differenéewith a weighted version

such that
16:11 = w; [|6:]1* = C(]|64]))-
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Fooling LM implementations

Most implementations of Levenberg-Marguardt use the sgliar
error cost function. What if you want a different cost funat(’
Instead?

Replace the each differenéewith a weighted version

such that
16:11 = w; [|6:]1* = C(]|64]))-

Thus

VO
T

(confusion aboué being a vector? why not scalar?) p.15/35




Parameterization for Levenberg-Marquar dt

A good parameterization for use with LM is singularity fre (
least in area visited during optimization). This means:

e continuous,
e differentiable,
e One-to-one.
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Awstereav - A qgood parameterization for use with LM is singularity fres (
least in area visited during optimization). This means:

e continuous,
o differentiable,
e One-to-one.
So latitude-longitude is not suitable to parameterize sphe

And Euler angles are not suitable to parameterize rotations

Gauge freedom?

Variance?
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Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f
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Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f

Observationscthese are mostly just general observations about logi@ola

e |dentity rotation:t = 0.

p.17/35



Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f

Observationscthese are mostly just general observations about logi@ola
e |dentity rotation:t = 0.

e Inverse rotation—t.

p.17/35



Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f
ObservationsS(these are mostly just general observations about logiga}

e |dentity rotation:t = 0.

e |nverse rotation=—t.

e Small rotation: the rotation matrix B+ [t]..
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Parameterization of 3-D rotations

3-D rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f
ObservationsS(these are mostly just general observations about logiga}

e |dentity rotation:t = 0.

e Inverse rotation:—t.

e Small rotation: the rotation matrix B+ [t]..

e For small rotationsk(t;)R(ty) ~ R(t; + t2).
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Awstereav - 3_[) rotation matrix: 9 elements, only 3 degrees of freedom.
Angle-axis (3-vector) representation: 3 elements, 3 d.o.f
ObservationsS(these are mostly just general observations about logiga}

e |dentity rotation:t = O.

e Inverse rotation:—t.

e Small rotation: the rotation matrix 5+ [t].
e For small rotationsR(t;)R(ty) ~ R(t; + t2).

e All rotations can be represented byvith ||t|| < 7. When
|t|| = n2m, (n positive integer) you get identity rotation
again (singularity).
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AwsteroaM - 3_[) rotation matrix: 9 elements, only 3 degrees of freedom.

Angle-axis (3-vector) representation: 3 elements, 3 d.o.f

ObservationsS(these are mostly just general observations about logiga}
e |dentity rotation:t = O.
e Inverse rotation—t.
e Small rotation: the rotation matrix 5+ [t].
e For small rotationsR(t;)R(ty) ~ R(t; + t2).

e All rotations can be represented byvith ||t|| < 7. When
|t|| = n2m, (n positive integer) you get identity rotation
again (singularity).

e Normalization: stay away frorjt|| = 2. p.17/35



Parameterization of homogeneous vectors

Let v be an-D-vector (already stripped of ‘extra’ homogeneous
coordinate?).

Then parameterize it as+ 1 vector:
v = (sind[[v[|/2)v", cog||v][/2))".
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Parameterization of the n-sphere

How to parameterize unit vectog®

Compute Householder matrix (reflection) such that
Hy(x)X = (0,...,0, 1)T.
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Parameterization of the n-sphere

How to parameterize unit vectox?

Compute Householder matrix (reflection) such that
Hy(x)X = (0,...,0, 1>T.

() f(y) =3/lly| wherey = (y*, 1)", (?)
(i) f(y) = (sind]ly[[/2)y", cogly||/2))" (?).
both have a Jacobiadf /dy = [I]0]’.
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Parameterization of the n-sphere

How to parameterize unit vectox?

Compute Householder matrix (reflection) such that
Hy(x)X = (0,...,0, 1>T.

() f(y) =3/lly| wherey = (y*, 1)", (?)
(i) f(y) = (sind]ly[[/2)y", cogly||/2))" (?).
both have a Jacobiadf /dy = [I]0]’.

So ‘constrained’ Jacobian can be computed

j =08 _0Cox  0C, x[I]0]"
T 9y  oxdy ox "™ '
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Zhang Paper

Zhengyou Zhang
A Flexible New Technique for Camera Calibration
(1998)
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Zhang Paper

Zhengyou Zhang
A Flexible New Technique for Camera Calibration
(1998)

As implemented for:
Matlab The Camera Calibration Toolbox for Matlab
C++ Intel OpenCV
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| nternal Camera Calibration 1/4

Primary use of the Zhang algorithm is internal camera
calibration. It computes:

o focal center, andc,.
e focal lengthf, andf,.
e skews (optional).
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| nternal Camera Calibration 1/4

Primary use of the Zhang algorithm is internal camera
calibration. It computes:

o focal center, andc,.
e focal lengthf, andf,.
e skews (optional).

In short, the camera intrinsic matrix:

Je 8§ ¢
A=| 0 f, ¢
0 0 1
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| nternal Camera Calibration 2/4

The Zhang algorithm also computes radial lens distortion
parametersky, ko, ks, ky].

The original paper uses

2qg =2+ 2 (k1 (22 +9°) + k2 (22 + 9°)?),

ya =y +y (k1 (2% + %) + k2 (2 + y7)7),

wherex andy are normalized image coordinates andandy,
are the distorted coordinates.
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| nternal Camera Calibration 2/4

The Zhang algorithm also computes radial lens distortion
parametersky, ko, ks, ky].

The original paper uses

g =1+ (ki (2° + y?) + ko (22 + y?)?),

Ya =y +y (k1 (27 +y°) + ko (2 + y°)?),

wherex andy are normalized image coordinates andandy,
are the distorted coordinates.

But the implementations use a more complex model
vy =+ (ki(2? + y*) + ko (2° + y?)?) + 244,

ya =y +y (ki (2® + y°) + ko (2% + ¥*)*) + Yua,

where

Tig = 2ksxy + ky (3 2 + y2),

Vg = 2ks xy + ks (2° + 3y?).
0.22/35



| nternal Camera Calibration 3/4

Example of internal camera calibration parameters.

Camera: PixeLINK A741, 2/3 inch CMOS sensor, 1280x1024.
Lens: Cosmicar 8.5mm fixed focal length.

fr = 1272.872 pixels = 8.528mm
[y, = 1272.988 pixels = 8.529mm
c, = 632.740

c, = 507.648

k1 = —0.204

ko = 0.171

ks = —0.00074896

ks, = 0.00008878
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AusterbaM | Show |ens distortion in DASIS video viewer. . .
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External Camera Calibration

The Zhang algorithm may also be used for external camera
calibration.

Camera rotation and translation are computed as side-grroflu
Internal calibration.

If two cameras see the same calibration pattern at the samee {i
their relative position and orientation may be computed.

p.25/35



Over all approach

e Measure projected position of points in a plane (e.qg.,
checkerboard).

p.26/35



Overall approach

e Measure projected position of points in a plane (e.qg.,
checkerboard).

e Do so for at least two different camera orientations.

p.26/35



Overall approach

e Measure projected position of points in a plane (e.qg.,
checkerboard).

e Do so for at least two different camera orientations.
e Setup equations in order to estimate camera intrinsics.

p.26/35



Overall approach

e Measure projected position of points in a plane (e.qg.,
checkerboard).

e Do so for at least two different camera orientations.
e Setup equations in order to estimate camera intrinsics.
e Glven camera Intrinsics, estimate extrinsics.

p.26/35



Overall approach

e Measure projected position of points in a plane (e.qg.,
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Overall approach

e Measure projected position of points in a plane (e.qg.,
checkerboard).

e Do so for at least two different camera orientations.

e Setup equations in order to estimate camera intrinsics.
e Given camera intrinsics, estimate extrinsics.

e Estimate radial distortion.

e Use Levenberg-Marguardt to optimize initial estimates.

p.26/35



Basic Equations

Plane (‘checkerboard’) is & = 0.
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Basic Equations

Plane (‘checkerboard’) is & = 0.

Homogeneous 2-D image pointi.
Homogeneous 3-D world point = [X Y 0 1]7.
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Basic Equations

Plane (‘checkerboard’) is & = 0.

Homogeneous 2-D image pointi.
Homogeneous 3-D world point = [X Y 0 1]7.

Projection:
sm=A[R t|M=
a Y Ug _
0 ﬁ Vo [I‘l I's I's t] [X Y 0 ].]T —
O 0 1

Alr, o t][X YV 117
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Homogr aphy, constraints

An homographyH can be estimated between known points on
the calibration object and the measured world points.

H = [hl h2 hg] = )\A[I‘l I' t]
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We demand:
Cl: rir,=0 (r;, r» orthogonal),
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An homographyH can be estimated between known points on
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H = [hl h2 hg] = )\A[I‘l I' t]

We demand:
Cl: rir,=0 (r;, r» orthogonal),
C2: rir,=rlry (r{, r» have same length).

We know:
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Homogr aphy, constraints

An homographyH can be estimated between known points on
the calibration object and the measured world points.

H = [hl h2 hg] = )\A[I’l I' t]

We demand:
Cl: rir,=0 (r;, r» orthogonal),
C2: rir,=rlry (r{, r» have same length).

We know:
h1 = \A I — ry — )\_1A_1h1
hs =) r, — 1ry=)1A"1h,

So the constraints are:
Cl. h A~ T A 1h, =0,
C2. h A~ "A " h=hi AT A~ 1h,.
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Closed-form solution using constraints 1/4

Using the constraints, we can first fidd followed byR andt.
Let

By B2 bBis
B=A"A"=| By By By
] Bi3 Bss DBss |
— l _L 'U()’)/—’UJ()ﬁ .
a2 a2/8 Oé2/8
_ T v? 41 _ Y(voy—uwoB) _ wg
— o2 2 52 32 o232 ] 32
B B B 2
! v022§oﬁ _W(Utzxzﬁ’goﬁ) . gg (0012Zgﬂ) + % +1 |

This allows to solve fory, 3, etc.
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Closed-form solution using constraints 2/4

If we reshuffle the six unigue elementskBfinto a vector
b — [Blla B127 3227 B137 B237 B33]1

we can rewrite both constraints as

where
vij = |hithj1, hithje + hiohit, hizhje,

hishji + hiihjs, hishio + hiohjs, hz’Shji%]Ta
ultimately resulting in

T
Vi2

(V11 — V22)T

b = 0.
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Closed-form solution using constraints 3/4

Next, stack all the equations frommeasurements (estimated
homographies) of the plane (‘checkerboard’):

Vb =0,

whereV Is a2n x 6 matrix. Solve as usual using the SVD.
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Closed-form solution using constraints 4/4

OnceA is known, we can obtain;, r, andt:
ry — )\_1A_1h1,

ro = )\_1A_1h2,

t = )\_1A_1h3.
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ry — )\_1A_1h1,
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Now Zhang says

rs =11 XUro9,

and use SVD to make matrRR orthogonal, i.e.,
R =UVTL,
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Closed-form solution using constraints 4/4

OnceA is known, we can obtain;, r, andt:

ry — )\_1A_1h1,
Iy — )\_1A_1h2,
t = )\_1A_1h3.

Now Zhang says

rs =11 XUro9,

and use SVD to make matrRR orthogonal, i.e.,
R =UVTL,

| say:

Maker,, ry orthogonal in least-squares sense.
The computers = r; X rs.

Is simpler and boils down to the same thing.
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Radial distortion

Using the camera intrinsics and extrinsics undistorted
coordinates of points (corners on the checkerboard) can be
approximated. These is used to solve#orks:

(u—uo)(z? +y*)  (u—uo)(z? +y*)°
(v—ro)(z® +7?)  (v—wo)(z®+y?)*

p.33/35



X

X

X

UNIVERSITEIT
VAN
AMSTERDAM

Radial distortion

Using the camera intrinsics and extrinsics undistorted
coordinates of points (corners on the checkerboard) can be
approximated. These is used to solve#orks:

k1 B U — U
ke | | v—w
These equations are stackddlf; k,]" = d) and we solve least
squares [k; ky]! = (D'D)'D”d.

(u—uo)(z? +y*)  (u—uo)(z? +y*)°
(v—ro)(z® +7?)  (v—wo)(z®+y?)*

Then iterate both algorithm (internal+external, radiailu
convergence.
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Maximum likelihood estimation

Optimize: use Levenberg-Marqguardt to find minimum of
Z?zl Z;n:l ||m@J - fh(Aa ki, ke, Ri, t, M’i)H2

(n imagesyn points per image)

All done . . .
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Notable experimental results

e Using three different images, the results are pretty good.
Results keep getting better with more images.
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Awstereav o Jsing three different images, the results are pretty good.
Results keep getting better with more images.

e 45 degree angle between image plane and checkerboard
seems to give best result. Loss of precision in corner
detection was not taken into account (simulated data).

e Systematic non-planarity of checkerboard has more effect
than random noise (duh).

e Cylindrical non-planarity is worse than spherical
non-planarity (cylindrical more common in practice?).

e Even with systematic non-planarity, results still usable.

e Error in compute sensor center seems not to have too muc
effect in 3-D reconstruction.
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