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Abstract

Traffic accidents and stopped vehicles in tunnels can result in dangerous situations.
Fast responses to these kinds of events are essential to limit the danger and to restore
the traffic flow. In most tunnels, inductive traffic loops are used in combination
with a rule-based system to alert the traffic controller. The rule-based system that is
currently used gives many alerts to the traffic controller which do not require his or
her attention. Because of these false alarms, traffic controllers stop relying on the
existing system. Such false alarms occur mostly during rush hour traffic.

The goal of this thesis is to better inform the traffic controllers by using machine
learning to find different types of traffic behavior. By doing this the traffic controller
can determine what to do based on the type of traffic. A Multilayer Perceptron was
trained as a binary classifier to distinguish between normal and abnormal traffic.
The existing rule-based system was used as a baseline for the binary classifier. In
order for the MLP to outperform the rule-based system historical data was necessary
during classification. Using only the current data of the traffic loops was not enough
for the MLP to outperform the rule-based network.

The rule-based network scores an F1score of 0.6601. While the MLP using only the
current data scores an F1score of 0.5249. However, if historical timesteps are used it
scores an F1score of 0.7872. The data generated by the traffic loops is a sequence of
passing cars, so Recurrent Neural Networks and Hidden Markov Models were also
used because they are designed for sequence data. The Recurrent Neural Networks
were the best performing machine learning methods. Both a LSTM and a GRU were
used and the GRU performed the best with an F1score of 0.8236. While the Hidden
Markov Models were not able to outperform the rule-based system with an F1score
of 0.0059.
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1Introduction

The amount of traffic has grown over the past years as more people are driving. This
increase in traffic has resulted in an increase in the number of traffic jams and the
number of accidents. Accidents are one of the leading causes of traffic jams, with
the exception of rush hour traffic, because they block lanes and cannot be solved
until the right authorities arrive. The number of deaths and injuries caused by traffic
accidents are still a major concern. Fast responses to accidents can save lives and are
also able to reduce the amount of time spent in a traffic jam.

Traffic is monitored using different sources of information such as inductive traffic
loops and cameras. This information is used for different purposes such as indicating
the amount of traffic or to allow people to look at the video feed and determine
if an accident has happened. Many existing systems rely on traffic loop data and
a rule-based classifier to detect stopped vehicles. However, these systems produce
a vast amount of false alarms. Rush hour traffic jams, for example, cause a lot of
alarms, but these are not caused by accidents and do not require attention of the
traffic controller, so these alarms should not be triggered.

Because of this, traffic controller stopped trusting the existing systems and rely
mostly on what they see on the cameras. Humans need time to go through all the
camera footage and need some time to respond to the images they are seeing, while
a perfect system should be able to respond almost instantly. So by relying on humans
instead of an automatic system the total response time increases.

The current rule-based systems are designed to find cars which are having trouble,
by giving an alert for every car that is potentially having trouble. The scope of these
systems is limited to a per traffic loop basis, so if a car is consistently driving slow
then this car keeps creating alarms. Machine learning can be used as an alternative
for rule-based systems.

Computer vision can be used to detect abnormal events at intersections[13]. How-
ever, the computer vision field is mainly focused on tracking vehicles[3] not on
classifying traffic situations. Vast amounts of processing power are needed for
real-time processing of video. Processing the data generated by traffic loops using
other machine learning techniques requires less processing power. Computer vision
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requires using a deep convolution network for every camera of the tunnel with
the input with the size of the resolution of the camera. While the size of the data
generated by the traffic loops is smaller and convolutions are not required. The data
generated by the traffic loops is a sequence of time-series data. Using sequences to
detect specific events has shown to be effective using Hidden Markov Models[17]
and also using Recurrent Neural Networks[15].

During this thesis an attempt is made to create a machine learning solution to classify
multiple different classes of traffic patterns in real-time using traffic loop data. The
correct detection of traffic jams and accidents are the most important because
they have the most substantial impact on the congestion. A Multilayer Perceptron,
Hidden Markov Model and a Recurrent Neural Networks are used for classification.
Their results are compared with the performance of an existing rule-based traffic
monitoring system.

1.1 Research questions

The main question of this thesis is:

• Is machine learning able to outperform the existing rule-based system?

The sub-questions of this thesis are:

• 1. Which of the following machine learning methods performs the best:
Multilayer Perceptron, Recurrent Neural Network and Hidden Markov Model?

Multilayer Perceptrons are a common machine learning method, which could yield
good results. However, Multilayer Perceptrons are not specifically designed to handle
sequences of data. Hidden Markov Models are able to capture trends in sequence
data and should be able to perform accordingly. However, using Recurrent Neural
Networks to process sequence data is becoming more popular. This paper compares
the results of using each method.

• 2. Can machine learning be used to detect more different classes of traffic
patterns than the existing rule-based system?

The rule-based system only tries to find stopped vehicles, but this thesis tries to find
more specific classes. A stopped vehicle can mean a number of things: an accident,
car trouble, a traffic jam or human behavior. This paper tries to differentiate between
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the first three classes. By doing this the traffic controller gets more specific alerts
and he or she can make more informed decisions by just relying on the alerts.

• 3. Is a model which is specifically designed for the layout of the tunnel able to
outperform a more general model which is not specific for the layout of the
tunnel?

Creating a model specifically for one road results in overfitting on the layout and
data of that road. By doing this the learned knowledge is specific for the used
road and less transferable. The model will only work on other roads with the same
amount of traffic loops, lanes and exits. By creating a more general model which is
not specific for the layout of the used tunnel the performance could drop, but the
model should be transferable to other roads.

1.2 Contributions

The contributions of this paper are:

• A machine learning method which is able to differentiate between normal and
abnormal traffic behavior.

The machine learning models trained during this thesis were able to outperform the
existing rule-based system when they were used as a binary classifier. They are able
to differentiate between normal and abnormal traffic. However, the machine learning
models were not able to successfully differentiate between multiple classes.

• A performance comparison between Multilayer Perceptrons, Recurrent Neural
Networks and Hidden Markov Models.

The Multilayer Perceptrons were able to outperform the existing rule-based system
if a larger sequence of data was used. Which is shown by a F1score of 0.7872,
while the F1score of the rule-based system is 0.6601. Both the Long Short-Term
Memory and the Gated Rectified Unit outperformed the MLP with F1scores of 0.8181
and 0.8236 respectively. The Hidden Markov Models however, were not able to
outperform the rule-based system with a F1score of 0.0059.

• A performance comparison between a model which is specifically designed for
the layout of the tunnel and a more general model which is not specific to the
layout of the tunnel.
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The Full Road Network classified the traffic patterns at each traffic loop simulta-
neously for a whole direction of the tunnel. This is done by using all the features
of all the traffic loops in that direction together as input for the network. This
approach yielded bad results with a F1score of 0.0231. A more general network is
the Traffic Loop Network, which uses the features of the traffic loop that is currently
classified and its neighbors. By doing this the network is not depend on the number
of traffic loops in the tunnel and is not depend on the layout of the tunnel. The TLN
outperformed the FRN with a F1score of 0.8236.
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2Related work

There is research based on data from inductive traffic loops, most of it is focused
on classifying vehicles or estimating the speed of the vehicles. At the moment of
writing there is no paper that tries to classify specific traffic behaviors based on the
data from traffic loops. However, there are papers that do classification based on
time-series data. This section provides an overview of related work of research on
traffic loops and research in time-series data classification.

2.1 Inductive traffic loops

A traffic loop exists of multiple wire loops which are installed in the road. The wires
are connected to a box, on the side of the road, which powers the closed electrical
circuit in the wires. Traffic loops can be used to determine different information
about vehicles passing over it. A traffic loop works by powering its wire loops and
measuring the decrease in inductance in the wire loops when a vehicle comes in
contact with them. The decreases can be measured and based on this measurement
a curve can be made over time. Normally a traffic loop exists of two consecutive
wire loops with a small distance between them, for example sixty centimeters.

The speed of a vehicle can be determined by using the time a vehicle needs to get
from the first wire to the second wire in combination with the distance between
those wires. The length of a vehicle can be determined by using the time between
the front of the vehicle touches the first wire and the back of the vehicle touches the
first wire in combination with the calculated speed.

2.1.1 Speed approximation

Most traffic loops are used in pairs, but Sun et al. presented a method to compute
the speed of a vehicle using a single loop[23]. By using linear regression on the
waveforms of the single loop they were able to approximate the speed of vehicles in
real-time, so it can be used for traffic management. The accuracy of using a single
loop is lower than using double loops so for high accuracy double loops are still
needed. However, double loops could also be used to calculate the accelerations of
vehicles between the two loops. Oh et al. were able to not only detect speed using a
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single loop, but also to classify the type of vehicle using machine learning on the
data of a single loop[19].

2.1.2 Vehicle classification

Traffic loops are also used to determine the type of vehicle that is driving by. In
2001 Gajda et al. started by detecting two classes a bus and a car using very short
loops[6]. Short loops are closer together and because of that, they are able to
detect the number of axles and the distance between them. After that Oh et al.
were able to detect eight different classes with 82.6% accuracy[19]. Later Jeng et
al. used a heuristic decision tree in combination with k-means in order to classify
fifteen different classes of vehicles[12]. This method is able to do real-time vehicle
classification with a 96% performance rate using a single loop without using explicit
axle information.

2.1.3 Accident detection

Traffic loops are able to detect the speed, length and amount of vehicles, because
of that they could be able to give an indication whether an accident has happened.
Oh et al. published a paper which classified different kinds of vehicles, but more
importantly how to classify six different levels of read-end collision risk(from A
through F)[18]. The risk is classified using a fuzzy-clustering algorithm, but the
algorithm was not tested on data generated by real traffic loops.

Shariat-Mohaymany et al. used the data of traffic loops on a two-lane rural road
to identify the significant predictors for an accident[22]. The significant indicators
appeared to the Percentage Time Spent Following(PTSF), the percentage of heavy
vehicles, the mean speed, the directional distribution of traffic(DDT) direction, the
standard deviation of speed and if the section of the road is curved or not. The
PTSF is the percentage of time that is spent by vehicles following the same vehicle.
The DDT is the distribution of traffic in each direction. Changes in these variables
indicate the increased or decreased chance of an accident.

2.2 Sequence classification

There are three dominant categories of sequence classification methods, feature-
based classification, distance-based classification and model-based classification[27][1].

2.2 Sequence classification 6



2.2.1 Feature-based classification

Most machine learning methods are not able to process raw time-series data directly,
in order to use these methods the data has to be aggregated into features.

Throhidis et al. showed that binning data using a histogram could be an effective
way to generate discrete features from time-series data[24]. By aggregating the
data over a time-period features could be calculated such as the number of beats per
minute. Discrete features can be extracted from time series data using the Discrete
Fourier Transform(DFT).

Wavelet/Shapelet decomposition has proven to be an effective method to extract
features from a sequence[10]. Wavelet transforms express the sequence as the
coefficients of a function. The coefficients are calculated at different time resolutions
and different locations in time. Güler et al. confirm that calculating the wavelet
coefficients could be a good representation of time-series data. They also showed
that Lyapunov exponents are a good alternative[9].

After the features are extracted using one of the specified methods they can be
used for training and classification using traditional methods. Such as Multi-Layer
Perceptrons and Support Vector Machines which generally could not handle time-
series data correctly.

2.2.2 Distance-based classification

Distance-based methods define a distance function to measure the similarity between
sequences[27]. The performance of distance-based classification is mostly dependent
on the performance of the distance function. Euclidean distance is a widely used
option, but it requires two time-series to have the same length. Dynamic Time
Warping(DTW) aligns two time-series to overcome this problem by minimizing the
total distance between the two sequences. The Needleman-Wunsch algorithm can
also be used to determine the optimal alignment between two sequences by using
dynamic programming.

Once a distance function is defined a number of different methods can be used to
determine the class of the chosen sequence. The methods K Nearest Neighbor(KNN)
or Support Vector Machine(SVM) can be used when a supervised learning method is
possible. If unsupervised learning is needed k-means, Self-Organizing Map(SOM)
and Fuzzy C-means(FCM) have successfully been used in the past[1].
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2.2.3 Model-based classification

Wang et al. showed that a Recurrent Neural Network(RNN) in combination with and
Adaptive Differential Evolution(ADE) algorithm is able to outperform a DTW[26].
The RNN that was used as an echo state network, which has randomly connected
internal units in its hidden layer. The ADE is adapted until a specified criterion is
reached.

Lipton et al. used a Recurrent Neural Network to diagnose 128 different diagnoses
using thirteen sampled clinical measurements[15]. The network is only trained on
the raw time series and it outperforms a multilayer perceptron trained on hand-
engineered features. The best performing model was a LSTM(Long Short-Term
Memory) with dropout and target replication. Target replication is used in order to
provide a local error signal at each step.

Hidden Markov Models(HMMs) can be an effective way of multiclass classifica-
tion[17]. Because of the way HMMs handle temporal data they are also useful for
processing time-series data. Lui et al. showed that using multiple HMMs combined
could improve the classification performance[16]. It has also been shown that
combining a more discriminative model such as an SVM with the HMM improves
the performance because they are more potent in classification problems[2][25].

Convolutions can also be used to chain multiple time steps together in order to work
directly with sequences[14]. If the input is seen as the bottom layer then the network
keeps going from a very wide layer to smaller and smaller layers until the output
layer is reached. Overlapping windows of the last layers are used in the next layers
in order to find the temporal relationships, this can be seen in figure 2.1. Peddinti et
al. achieved a competitive score on different speech recognition datasets using the
Time Delay Neural Network(TDNN)[20] which is shown in figure 2.1.
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Fig. 2.1: The layout of the Time Delay Neural Network(TDNN) used by Peddinti et al[20].
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3Experimental setup

3.1 Dataset

Data was collected by a partner of Covalent in order to enable this thesis to use
machine learning on traffic behavior. Traffic loop data of the Ketheltunnel in the
Netherlands was used. The data consists of 53 days of data in which over one
hundred million car detections took place. The classifications of the existing rule-
based system are also available and will be used as a baseline to determine if the
machine learning based approach is able to outperform the existing system.

The rule-based system takes the speed, length and direction of the current car at the
current traffic loop into account. The rules can result in four different outcomes:
normal traffic, a potentially stopping vehicle, a stopped vehicle and a wrong way
driver. Wrong way drivers are always classified correctly based on the direction
of the car. So wrong way drivers are not taken into account in this thesis. Cars
which are driving slower than fifty kilometers an hour are considered potentially
stopping vehicles. Cars which are driving slower than fifteen kilometers an hour are
considered stopped vehicles. The outcomes of traffic loops are influenced by their
direct neighbors by trying to suppress indicating the same outcome again in the next
traffic loop. However, this suppression does not seem to work well in practice.

The system which generates the data is event-driven and an event is generated
every time a car passes a traffic loop. The traffic loop data exists of all the car
events for every traffic loop. Every car event consists of the speed of the car v, the
length of the car l, the direction of the car d, the identifier of the traffic loop the
car passed, the time of the car event t and if the information of the car event is
reliable. The right side of the tunnel has a total of 205 traffic loops over the whole
road and the left side of the tunnel has 183 traffic loops. The maximum allowed
speed and other information on the indicators above the road were also available
and could potentially be used during experiments to normalize the speed of each car.
If cars move a lot slower than the allowed speed then this could be an indication
of a specific traffic situation. A list of logged incidents was also available for the
time-period of the data. This list exists mostly of people with car trouble. Road traffic
controllers have to keep a log of the incidents that they and other authorities notice,
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these logs exist of a rough approximation of the time and the closest hectometer
sign of the location.

3.2 Visualization

In order to allow for the proper annotation of the data a visualization was made
of the Ketheltunnel on which the data was shown. An image of the layout of the
tunnel was used as background of the visualization, and this image was split into
two halves which are shown underneath each other in order to allow the use of one
screen. So the first and third lanes from the top down are both part of the same side
of the tunnel which in the case of this tunnel is called the left part of the tunnel and
the other two lanes are the right part of the tunnel. The side of the tunnel is also
indicated on the right side of figure 3.1. The same parts of the tunnel can also be
recognized by the direction of the cars, for the same part of the tunnel they move in
the same direction. The direction of the car can be recognized by the orientation of
the image of the car.

Fig. 3.1: The visualization of the data in the Ketheltunnel. The text on the right side of the
image indicates the side of the tunnel.

The traffic loops are drawn as white squares but can be drawn in different colors to
indicate different classifications, for example a stopped vehicle is indicated in blue
and a traffic jam in orange. Because the flow of traffic is important to understand
what happens the visualization is not a still image, but it is comparable to a movie
because the cars are moving. The rendering is done at sixty frames per second.
The time in the visualization is used to get the correct data and show it in the
visualization.

The exact location of a car is only known when it drives over a traffic loop which
generates an event in the data. When a car event takes place an image of a car
is drawn on the traffic loop associated with that event. The speed v of the car in
that event is used to approximate how fast the image of the car should move in the
direction of the next traffic loop. Until the next traffic loop is reached no information
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is available over the exact position of the car, so the location of the cars between
traffic loops is an interpolation.

The speed v is used to calculate after how much time the car should reach the
next traffic loop. If this time period has elapsed the image of the car which was
associated with that specific event is removed from the screen. Because the speed of
cars does not vary a lot between traffic loops a new car event should take place on
the next traffic loop shortly after the removal of the car image. This process keeps
on happening until a car leaves the tunnel and there are no traffic loops anymore to
trigger events.

In order to help the annotator estimate the speed of the cars, the average speed
of each lane is shown in kilometers per hour on the sides as yellow text. It is also
possible to manipulate the speed of the time in the visualization. The speed is
indicated in the right corner of the visualization. The visualization can be paused,
slowed down or sped up. Normally the speed of the time in the visualization is
real-time, so one second in the visualization takes the same amount of time as
one second in reality. However, this can be changed by using specific keys on the
keyboard. The final result of the visualization is shown in image 3.1.

3.3 Annotation

These visualizations of the traffic were used by one person to annotate the different
traffic situations for all the 53 days. The annotation of the data is done on traffic
loop level. The traffic loops are given classes which indicate the traffic behavior
between the current traffic loop and the next one. The annotation is done by clicking
on a specific traffic loop and selecting the right class according to the person that is
annotating. The state of the loops is saved in memory and only the state-changes are
saved to the annotations file. So if in an hour only one stopped vehicle is seen there
will be two state-changes. Adding the stopped vehicle indication to that specific loop
and removing the stopped vehicle indication from that loop. By keeping state, the
annotator does not have to readjust the states of each loop for every frame.

The following definitions were determined before the human classification to enforce
a consistent framework of reference:

• Traffic jam: A queue of cars which for a longer period of time have to drive
slower than an average of fifty kilometers an hour. So where v̄ < 50 and
tp > 5s.
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• Stopped vehicle: A vehicle that stops and stays in the same place for at least
a minute before it starts moving again.

• Car trouble: A stopped vehicle which was has been logged by the road traffic
controller.

• Normal traffic: Everything which is not defined by the other definitions.

Where v̄ is the average speed of all the vehicles between the current traffic loop and
the next traffic loop. And where tp is the amount of time specific behavior takes
place.

Traffic jams can be recognized by looking for a relatively high amount of cars between
two or more traffic loops which are driving slowly for a longer period of time. A
traffic jam also has to slow down the cars driving behind it, if the other traffic is not
affected by a small queue it is not a traffic jam. Looking at the change of speed of
the cars behind a queue gives a good indication if something is a traffic jam. The
rear-end of a traffic jam can be recognized by cars significantly slowing down in
order to comply with the speed of the cars between the next two traffic loops. For
example, if a car has to slow down from 70km/h to 30km/h to be part of a queue
then depending on the size and time-window of the queue it is a traffic jam.

Stopped vehicles can be found in the visualization by looking for a car which
disappears when driving from loop to loop but does not reappear. If a car reappears
within a minute and drives away again then the car is not counted as a stopped
vehicle.

The defined traffic behaviors have all been found in the dataset while no accidents
took place during the period of 53 days. This means there was no data available to
learn to detect accidents. Some road maintenance did take place during the 53 days,
the periods where this happened were removed from the dataset.

3.3.1 Data preprocessing

The data which is produced by the event-driven system has to be preprocessed
in order for Machine Learning methods to be able to process it. The data was
preprocessed by aggregation of the data over a specified timestep ts, in this thesis
10 seconds. The average speed v̄, average car length l̄ and the number of cars |c|
are the features which are calculated for each timestep and for each traffic loop.
These features can be calculated by keeping track of all the events for each specific
traffic loop in the last timestep. The three features are normalized by dividing them
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by the maximum value of that specific feature in the whole dataset. The human
classified data is also processed in order to determine the truth values for each
timestep of aggregated data. Aggregation results in one file which includes all the
features for each timestep and one file which includes all the truth values for the
same timesteps.

3.4 Evaluation

3.4.1 Metrics

The rule-based method from the existing system was designed to find stopped
cars and potentially stopped cars. Because of that the rule-based system has two
generalized classes: normal traffic and stopped cars. In practice the rule-based
system also appeared to detect traffic jams. In order to compare the rule-based
system with the new methods they are compared using two classes: normal and
abnormal traffic behavior. For the rule-based system the abnormal traffic behavior is
traffic classified as stopped vehicles. While for the new machine learning methods
the abnormal traffic behavior is traffic classified as any non-normal traffic behavior
class. The following metrics[8] will be used to evaluate the models on a binary level
for each time step for each traffic loop:

Precision: Precision is used to determine the probability that predicted abnormal
traffic behavior is actually abnormal traffic behavior.

Precision = TP
TP + FP

(3.1)

Recall: Recall is used to determine the probability of successfully predicting abnor-
mal traffic behavior when it takes place.

Recall = TP
TP + FN

(3.2)

F1 score: F1 score is used to determine the correctness of the predictions that are
made and should have been made and which would result in zero if the algorithm
would default to normal traffic behavior.

F1 = 2TP
2TP + FP + FN

(3.3)
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TP = True Positives.
TN = True Negatives.
FP = False Positives.
FN = False Negatives.

A true positive is a timestep with abnormal traffic on a specific loop which is correctly
classified as abnormal traffic on that specific loop. A false positive is a timestep with
normal traffic on a specific traffic loop which is incorrectly classified as abnormal
traffic. A false negative is a timestep with abnormal traffic on a specific traffic
loop which is incorrectly classified as normal traffic. A true negative is a timestep
with normal traffic on a specific traffic loop which is correctly classified as normal
traffic.

The machine learning based models should be able to capture different kinds of
traffic behavior and so they should be to able classify multiple classes. The important
parts of the precision and recall such as true positives are changes in the currently
tested class versus the other classes. So a false positive is a timestep classified as
class C which true class is a class other than C. In order to measure the performance
for multiple classes the following metrics will be used:

Macro F1 score:

MacroF1 = F11 + F12 + · · ·+ F1N
N

(3.4)

Micro F1 score:

MicroF1 = 2TP1 + 2TP2 + 2TPN
2TP1 + FP1 + FN1 + · · ·+ 2TPN + FPN + FNN

(3.5)

The micro and macro F1 scores work in the same manner as the regular F1 scores,
but they are adapted for multiple classes. The Macro F1 score is the average of all
the F1 scores of each class. If there is an imbalance in the classes this could still be a
relatively high score even if the biggest class performs relatively bad. The Micro F1

score calculates the score based on all the false positives, false negatives and true
positives and does not get influenced by class sizes. Which makes it more realistic
when imbalanced data is used.

3.4.2 Test set

For the experiments the dataset was split in training set existing of 46 days of data
and a designated test set of 7 days of data. The relatively large test set was necessary
in order to make sure a whole workweek was included in the designated test set. In
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all experiments the precision, recall and F1score are based on this designated test
set.

3.4.3 Cross-validation

In order to validate that the machine learning methods do not overfit on the data
of the designated test set cross-validation is on one machine learning method used.
In this case eight fold cross-validation is used, so every training set contains 87.5%
of the data and every test set contains 12.5% of the data. The data is split based
on time, so the first test set is the first 6.6 days and the second test set is the next
6.6 days and so on. Also a new validation set is created for each fold by randomly
removing data points from the current fold’s test set. By doing this a validation set
is created with the same size of approximately fifty batches of data. This is less
than 1% of the test set, which is removed in order to create the validation set. This
validation set is used to save the best model according to a combination of the recall
and the precision during training.
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4Method

The Multilayer Perceptron and Recurrent Neural Network methods were trained for
a maximum of two thousand epochs with a learning rate of 1e−4. In order to be able
to fit an epoch in memory an epoch exists of a hundred batches with the size of 1024.
Also a learning rate decay was used of 1e−6 in order to not divert away from the
current local minimum based one or more unrepresentative epochs. The RMSprop
optimizer resulted in the best results during the testing phase, so it was used during
the training phase. In the same manner as for the cross-validation a validation set
was created by randomly removing data points from the test set. These data points
were then used to create a validation set with the same size of approximately fifty
batches of data. The validation set has the same imbalanced data distribution as
the data of the training set, how this is accomplished is handled in section 4.1.1.
The validation set is used to save the best performing model during training. The
performance was measured by using a combination of the recall and the precision of
the model on the validation set.

4.1 Multilayer Perceptron

Two different kinds of Multilayer Perceptrons(MLPs) were used: one big network
which stretched over the whole road called Full Road Network and one network on
traffic loop level called Traffic Loop Network. The Full Road Network or FRN has as
input the three features of all the traffic loops on a particular road for that particular
timestep. So for the left side of the tunnel the input size is 3 ∗ 183 = 549 and for the
right side of the road the input size is 3 ∗ 205 = 615. In this case the Ketheltunnel
has two sides, one in each direction and both have there own FRN. The output of
the FRN is the probability of each possible class for every traffic loop on the road. So
the output size is the number of classes times the number of traffic loops for that
specific side. By doing this the network should predict the class of every traffic loop
in that side of the tunnel.

The Traffic Loop Network or TLN has as input all the features of the current traffic
loop and its neighbors in a specific width and length which results in a grid of
features. For example, if the neighbor width and length both are one, then the traffic
loops in three by three grid are selected with the traffic loop which is currently
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classified in the middle. An example of the grid is shown in figure 4.1 where the
traffic loop that is currently classified is shown in blue and its neighbors in green.
The input size of the network is the width of the grid times the height of the grid
times the number of features which is three. So for a three by three grid the input
size is 9 ∗ 3 = 27. The output of the TLN is the probability of each of the possible
classes for the traffic loop that is currently being classified.

The intuition behind using the neighbors of a traffic loop is that traffic moves in
a particular direction and the information of speed changes in that direction and
changes in the number of cars is needed to make an informed decision. If a vehicle
stops on the current traffic loop then cars will not be able to get passed it and the
traffic on the loop in front stops or the cars drive over the neighboring traffic loops.
If a traffic loop has no neighbors in a particular direction than the features for those
nonexistent loops are zeros.

Fig. 4.1: A visualization of the grid with the selected traffic loop in blue with its neighbors
in green.

The standard MLP TLN uses the current features of the traffic loops to classify
the traffic. However, the data of earlier timesteps is also available so experiments
were also done using extra historical timesteps. The MLP TLN which also uses
historical timesteps to classify the traffic is called the Historical Traffic Loop Network
or HTLN.

4.1.1 Imbalanced data

The dataset is inherently imbalanced because the amount of normal or no traffic
is significantly greater than the number of traffic jams and stopped vehicles. For
example, in the designated test set the amount of timesteps with normal traffic is
approximately twenty-three million timesteps while the amount of timesteps with a
traffic jam is approximately thirty thousand timesteps. The split between training
and test data was discussed in sections 3.3 and 3.4.3. In order to make sure the
networks do not overfit on normal traffic the right division of data has to be found
during experimentation.
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In order to find the right division, some work has to be done first. The data is divided
based on the correct class of the data, so for example the data could be divided into
normal and abnormal traffic behavior. By doing this the order of the data points is
not chronological anymore. Instead of using the chronological batches every batch
is constructed in such a way that the division of the batch is representative for the
whole dataset. The division which performed best during experimentation was used
during all the training of all the experiments.

MLPs only need the current features of the traffic loops, while Recurrent Neural
Networks need a sequence of data. So for RNNs the whole sequence with the size of
the chosen number of historical timesteps is saved in the new files. These sequences
exist of a sequence chronological timesteps, so in the file of abnormal traffic data
only the last timestep of each sequence has to be a timestep with the abnormal
traffic. The other historical timesteps of a sequence could be abnormal traffic, but
they could also be normal traffic leading up to the abnormal traffic. MLPs could
also use the extra data except not explicitly as a sequence. So in this research there
is also experimented with MLPs which use a flat version of the same sequence the
RNNs use.

The batches used during training have a size of 1024 samples. So if for example two
classes abnormal and normal are split 25/75 then 75% normal data would result in
768 samples of normal samples and 256 samples of abnormal data. The amount of
samples per class differs significantly. So sampling all samples from a smaller class is
realized earlier than sampling all the samples from a big class. When all the samples
of a specific class are sampled then the algorithm restarts the sampling of that class
from the beginning. By doing this the biggest classes are being undersampled while
the smaller classes are being oversampled.

4.1.2 Layouts

The sizes of the layers of both networks were determined during the experimentation
phase. The sizes which yielded the best results were used. Adding more than four
layers did not result in better results, so no extra layers were used. Increasing the
size of the second hidden layer in comparison to the first hidden layer did result in
better results.
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Full Road Network

The size of the input of the Full Road Network is the number of traffic loops times
the number of features which is three. The output is the class of each traffic loop.
The layers of the MLPs are fully connected to each other or what is called dense.

Layer Shape
Input (Batch Size, |Traffic Loops| * 3)
Dense-ReLu1 (Batch Size, 800)
Dense-ReLu2 (Batch Size, 1200)
Dense-ReLu3 (Batch Size, 800)
Dense-ReLu4 (Batch Size, |Traffic Loops|, 3)
Dense-Softmax output (Batch Size, |Traffic Loops|, |Classes|)

Tab. 4.1: The layout of the MLP of the best performing Full Road Network.

Traffic Loop Network

The size of the input of the Traffic Loop Network is the width times the height times
the number of features which is three times the number of historical timesteps. For
the original TLN the number of timesteps is one, while the number of timesteps for
the HTLN is six. The output is the predicted class for that specific traffic loop.

Layer Shape
Input (Batch Size, width * height * 3 * |timesteps|)
Dense-ReLu1 (Batch Size, 256)
Dense-ReLu2 (Batch Size, 512)
Dense-ReLu3 (Batch Size, 256)
Dense-Softmax output (Batch Size, |Classes|)

Tab. 4.2: The layout of the MLP of the best performing Traffic Loop Network.

4.2 Recurrent Neural Networks

During experimentation the results of the MLP Full Road Network were below
expectations. This is the reason the Full Road Network was not used in experiments
with the other machine learning methods.

Multilayer Perceptrons are not specifically designed to capture patterns in data over
time, which is important for determining a pattern in traffic. However, Recurrent
Neural Networks are designed to use the information from the last timesteps in the
sequence in order to predict the class of the current timestep. The input for the RNNs
is a sequence of the same data as the MLPs uses as input. In our case the input exists
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of six chronological data points of the MLP input. So instead of using one data point
of size grid width times grid height times number of features six datapoints are used.
These features are then fed to the network in order, the order is important because
the RNNs use the activations that happened earlier in later steps. Different types
of RNNs reuse earlier activations in different ways, but in all cases they are only
used in the hidden layers. In our case the final layer is a fully-connected softmax,
which outputs the probability for each possible class. Only the last prediction of the
sequence of predictions by the softmax is used, because the intermediate steps in the
RNNs do not have old activations yet and are only used to feed the chronological
timesteps to the network.

There are different kinds of RNNs and they have shown promising results as discussed
in related work. For this research three different types of RNNs were used: Long
Short-Term Memory(LSTM), Gated Recurrent Unit(GRU) and Convolution Long
Short-Term Memory(ConvLSTM).

Fig. 4.2: An illustration[4] of both an LSTM and a GRU. In the LSTM i is the input gate,
f the forget gate and o the output gate. c is the memory cell and c̃ is the new
memory cell. In the GRU r is the reset gate and z is the update gate, while h is the
activation function and h̃ is the candidate activation function.

An LSTM[11] is a form of a Recurrent Neural Network and one unit is illustrated in
figure 4.2. An LSTM maintains memory in memory cell c in order to be able to learn
long-term dependencies. The memory is updated by using the forget gate f to forget
part of the memory and by adding the new input from the input gate i. These gates
and cells enable the LSTM to decide which information can be forgotten and which
new information should be kept in memory. A layer can exist of multiple LSTM units,
which each have there own memory cells and gates. The output of these units can
then be used as the input of the next hidden layer.

A GRU[4] is also a form of a Recurrent Neural Network and one unit is also shown
in figure 4.2. The GRU does not have a specific memory cell, but it uses linear
interpolation between the previous activation and the candidate activation to use
information from previous timesteps. The update gate u is used to determine how
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much the activation has to be updated. A GRU is different from the LSTM in the
fact that it cannot control the amount the current state is taken into account when
updating the activation. The reset gate r is used to determine how much the GRU
should forget the previous state like the forget gate of the LSTM. Multiple GRU units
can be used in a hidden layer, just as the LSTM.

The LSTM is able to perform competitively on time series data according to related
work. The LSTM does this by learning patterns over short-term and long-term time
intervals. The GRU should be able to perform comparably to the LSTM. While also
being more efficient because a GRU uses fewer gates and thus fewer calculations
are needed. The Convolution LSTM is the logical next step because the data is
formatted like a grid and convolutional networks are designed to process grids of
data. Convolutional Networks are used for images processing, because they are
formatted as a grid of pixels with three dimensions for the color channels.

4.2.1 Comparison with Multilayer Perceptrons

The data of the Recurrent Neural Networks are preprocessed using the same method
as the Multilayer Perceptron. The only difference is the fact that multiple timesteps
are saved because RNNs use sequences as input. The normal TLN is only trained on
one timestep, but the performance of the TLN could also benefit from using extra
timesteps. This is why there is also experimented with a HTLN which processes a
flat version of the data of multiple timesteps.

4.2.2 Layouts

The layouts of the LSTM and the GRU networks are the same, but with their own
respective node. These layouts have been informed by the layouts of the MLPs,
but because of the smaller amount of features per timestep less hidden nodes were
needed.

Layer Shape
Input (Batch Size, |timesteps|, width * height * 3 )
LSTM-tanh1 (Batch Size, |timesteps|, 64)
LSTM-tanh2 (Batch Size, |timesteps|, 128)
LSTM-tanh3 (Batch Size, 64)
Dense-Softmax output (Batch Size, |Classes|)

Tab. 4.3: The layout of the LSTM of the best performing Traffic Loop Network.

The convolutional LSTM processes the same data as the GRU and LSTM, but it
is formatted in more different dimensions. The convolutional LSTM has an own

4.2 Recurrent Neural Networks 22



dimension for the width, height and the number of channels. For an image the
number of channels is the number of color channels and in our case the number of
channels is the number of features.

Layer Shape
Input (Batch Size, |timesteps|, width, height, 3)
ConvLSTM-tanh1 (Batch Size, |timesteps|, width, height, 64)
ConvLSTM-tanh2 (Batch Size, |timesteps|, width, height, 128)
ConvLSTM-tanh3 (Batch Size, width, height, 64)
Dense-Softmax output (Batch Size, |Classes|)

Tab. 4.4: The layout of the convolutional LSTM of the best performing Traffic Loop Network.

4.3 Hidden Markov Model

Hidden Markov Models[21] or HMMs are temporal models which use probability
distributions over sequences of observations. HMMs observe data in order to find
the current state St of the current process, in this research traffic in a tunnel. The
observations can be discrete or continuous as long as probability distribution can be
defined over them[7]. The assumption is made that the observations are made at
discrete equally-spaced time intervals, which are 10 seconds during this research.

Another assumption that is made is the Markov property, which states that given
the value of the last state St−1 the value of the current state St is only dependent
on the last state St−1. The intuition behind the Markov property is that the state
at each point in time captures all the historical information that is needed in order
to make a prediction. The hidden part of the name Hidden Markov Model comes
from the fact that the state path of the process which generates the observations is
hidden. This state path exists of the start probabilities of the specified amount of
states, the transition probabilities between these states, the covariance and means of
the observations in these states and in some cases the emissions probabilities in these
states. The score of a state path can be calculated by calculating the log probability
of the current observations. This is done by multiplying all the probabilities together
and taking the log of it.

A Gaussian Hidden Markov Model is trained by trying to fit the hidden state path
and its variables to a given set of observations. Doing this by simply enumerating
the possible paths and calculating their scores based on the given observations is
only possible for small sets of observations. The Viterbi algorithm[5] is used in order
to efficiently find the most probable path. The Viterbi is more efficient by continually
calculating the probability of the HMM being in each state after seeing the current
sub-sequence of observations. When moving forward through the sequences the
values of each historical state are updated recursively with the value of the maximum
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probability of all the possible paths to that state. Based on the path with the highest
probability the probabilities of the states are then set. The Viterbi algorithm is able
to find the most probable path of multiple sequences of observations simultaneously.
By doing this the Viterbi algorithm is able to use the same data as the RNNs and find
the best parameters for whole batches at a time.

The goal is to find in which state the current traffic loop is at the moment using
the same data as the Recurrent Neural Network. As stated in section 3.3 there are
four states which can be generalized to the following three states: normal traffic,
stopped vehicle and traffic jam. The start probabilities can be calculated by counting
the number of times a state happens relative to the total amount of time intervals.
The transition probabilities can be calculated by counting the number of transitions
between the different states. These values were calculated based on the defined
training set and resulted in the model shown in figure 4.3. This model was both used
as starting point for the training and as a baseline to compare the results with.

Start

Normal
traffic

Traffic jam Stopped
vehicle

0.02908%
99.9665%

0.00443%

0.0%

0.0%

0.00231%

0.000087%

1.944%

7.942%

98.056%92.058%

99.998%

Fig. 4.3: The baseline of the Hidden Markov Model based on the calculated probabilities.
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5Results

5.1 Baseline

5.1.1 A priori probability

In order to prove that the results beat chance the confusion matrix and the evaluation
scores are calculated based on the priors of normal and abnormal traffic calculated
in section 4.3. In this example one hundred million data points are used. Of a set of
one hundred million data points 99.9665% of the data would be normal traffic and
the rest would be abnormal traffic. So 100.000.000 ∗ 0.999665 = 99, 966, 500 data
points are normal traffic and the other 33, 500 data points are abnormal traffic.

If the algorithm classifies 99.9665% of the data randomly as normal traffic and the
rest as abnormal traffic then the result is the confusion matrix in table 5.3. The
relative amount of true positives is 0.000011% of all the data points. While the
relative amount of false negatives and false positives both are 0.033489% of all the
data points. These numbers result in very low scores as shown in table 5.4.

Normal traffic Abnormal traffic

Normal traffic 99,933,011 33,489

Abnormal traffic 33,489 111
Tab. 5.1: The confusion matrix based on the priors calculated when created the baseline

Hidden Markov Model.

Precision Recall F1 score

Total tunnel 0.00331 0.00331 0.00033
Tab. 5.2: The calculated evaluation metrics using the a priori probability.

If the algorithm classifies all traffic as normal traffic then the amount of true positives
would be zero. So this would result in a precision, recall and F1score of zero. If
the algorithm classifies all traffic as abnormal traffic then the recall would be 1.0
because all true positives would be classified correctly. However, the amount of false
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positives would be very large. In the example that was used this would result in the
following confusion matrix and scores:

Normal traffic Abnormal traffic

Normal traffic 0 0

Abnormal traffic 99,966,500 33,500
Tab. 5.3: The confusion matrix based on classifying everything as abnormal traffic.

Precision Recall F1 score

Total tunnel 0.00034 1.0 0.00067
Tab. 5.4: The calculated evaluation metrics of classifying everything as abnormal traffic.

5.1.2 Rule-based system

Formal specification requires the rule-based system to detect a stopped vehicle within
10 seconds of the event taking place. So the baseline was calculated with t = 10s.
As stated before the baseline is only able to differentiate between normal traffic
and abnormal traffic, so the true positives are correctly classified timesteps with
abnormal traffic. The baseline outperforms the a priori chance by a large margin as
shown by table 5.5. The rule-based system performs better on the left side of the
tunnel during evaluation of the test set, probably because traffic jams on that side of
the tunnel have a lower average speed. While the traffic jams on the right side of the
right side appear more sudden. The traffic jams on the right side are also finished
faster because of the closing of the tunnel which is discussed in section 6.2. Also,
the right side of the road is significantly more complicated because of its different
exits as can be seen in figure 3.1.

Precision Recall F1 score

Right side tunnel 0.4951 0.6440 0.5598

Left side tunnel 0.7981 0.6757 0.7318

Total tunnel 0.6561 0.6641 0.6601
Tab. 5.5: The calculated evaluation metrics of the rule-based system on the test set.

5.2 Multilayer Perceptrons

The Full Road Network is not able to capture the difference between normal and
abnormal traffic as is shown in table 5.6, but it does outperform the a priori chance.
The FRN has more trouble with the left side of the tunnel than with the right side
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which is the opposite of the baseline. Using the whole road as input did not result in
useful connections between separate parts of the tunnel, but instead resulted in not
finding useful connections at all. The network of the right side of the tunnel kept
ending in two global minima. In one global minimum the network always predicts
normal traffic and in the other global minimum the network predicts abnormal
traffic too often.

Precision Recall F1 score

Right side tunnel 0.0576 0.3255 0.0979

Left side tunnel 0.0124 0.0039 0.0058

Total tunnel 0.0692 0.0139 0.0231
Tab. 5.6: The calculated evaluation metrics of the Full Road Network on the test set.

The Traffic Loop Network is a lot better a capturing the difference between normal
and abnormal traffic than the Full Road Network as shown in table 5.7. This could be
explained by the fact that some traffic loops in the FRN never have abnormal traffic,
so these nodes are never able to predict abnormal traffic. While the TLN learns
classification in a generic way for all traffic loops even if they do not have abnormal
traffic themselves. The TLN is not able to outperform the rule-based system as shown
by the recall and F1score.

Precision Recall F1 score

Right side tunnel 0.5449 0.0478 0.0739

Left side tunnel 0.9658 0.5474 0.6987

Total tunnel 0.9315 0.3543 0.5249
Tab. 5.7: The calculated evaluation metrics of the Traffic Loop Network on the test set.

Recurrent Neural Networks and Hidden Markov Models use a sequence to classify
data, so effectively they are using more data than the MLP TLN. The MLP TLN was
given the same data and it resulted in a performance increase. The TLN is able to
find a connection between the historical data and the current data which results
in better predictions as shown in table 5.8. The TLN is able to outperform the
rule-based system when this extra data is used.

Precision Recall F1 score

Right side tunnel with extra timesteps 0.5539 0.4987 0.5249

Left side tunnel with extra timesteps 0.9265 0.9339 0.9301

Total tunnel with extra timesteps 0.7989 0.7758 0.7872
Tab. 5.8: The calculated evaluation metrics of the Historical Traffic Loop Network.
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Both the TLN and the HTLN network have a significantly better performance on
the left side of the road than on the right side, which can be explained by the same
reasons as stated in section 5.1. Also after visualization of the predictions, it became
clear that the HTLN struggles more with accurate predictions of the first and last
rows of traffic loops. This can be explained by the fact that the HTLN has less data
there because it cannot get information from the loops in front. Also the two traffic
loops with the most traffic jam timesteps on the right side of the road are the loops
in the last row, which the network does not handle well. Lastly, the right side of
the tunnel gets closed when it gets too crowded, which will be discussed further in
section 6.2.

Up until now the networks were only used for binary classification. However, in
order to determine if the networks are able to distinguish between multiple classes
experiments have been run with three classes: normal traffic, traffic jam and stopped
vehicle. Because of the similarity in behavior and the scarcity of the data the classes
stopped vehicle and car trouble have been merged into the class stopped vehicle.

Micro F1 Macro F1

Total tunnel with extra timesteps 0.1782 0.3559
Tab. 5.9: The calculated evaluation metrics of the Historical Traffic Loop Network when

using multiple classes.

The result of using three specific classes is shown in table 5.9. The extra class
decreased the total performance of the HTLN which shown by both the micro F1

score and the macro F1 score. The HTLN is not able to find stopped vehicles, which is
shown by zero true positives for that class. It also negatively influenced the F1score
which is shown by the macro F1score in comparison to the F1score in table 5.8.

5.3 Recurrent Neural Networks

Because of the bad results of the Full Road Network the rest of the results will only
focus on versions of the Traffic Loop Network.

The different kinds of Recurrent Neural Networks significantly outperform both the
baseline and the Multilayer Perceptron implementations as shown in table 5.10.
These results are calculated for the entire tunnel and are based on the classification
of either normal or abnormal traffic. The RNNs are able to capture the patterns
between the different sequences as the results show it can correctly classify most
predictions.

5.3 Recurrent Neural Networks 28



After experimentation the tanh activation function appeared to be the best per-
forming activation function and it was used for all three types of Recurrent Neural
Networks. The GRU and the LSTM performed similarly as expected, but the GRU
resulted in a better precision while the LSTM had a better Recall. Based on which
metric is more important a choice of network could be made, also the GRU is more
efficient than the LSTM so that could also be a factor in the choice. Disappointingly
the Convolutional LSTM did not result in better or even equal results to the original
LSTM. This could be caused by the fact that the grid is too small for the convolutional
network to find patterns.

Precision Recall F1 score

LSTM tanh 0.8334 0.8033 0.8181

LSTM ReLu 0.7135 0.8812 0.7885

GRU tanh 0.8667 0.7847 0.8236

ConvLSTM 0.7332 0.7629 0.7477
Tab. 5.10: The calculated evaluation metrics of the different kinds of Recurrent Traffic Loop

Networks on the test set.

As shown in table 5.11 both the LSTM and the GRU have the same problems as the
TLN and HTLN. The left side of the tunnel is more straightforward to classify than
the right side of the tunnel.

Precision Recall F1 score

LSTM left side tunnel 0.8966 0.9440 0.9197

LSTM right side tunnel 0.6849 0.5655 0.6195

GRU left side tunnel 0.9059 0.9209 0.9134

GRU right side tunnel 0.7845 0.5517 0.6478
Tab. 5.11: A comparison of the performance of the LSTM and the GRU on both sides of the

tunnel.

Using an LSTM to classify multiple classes did not result in finding stopped vehicles
successfully. Not a single stopped vehicle was found successfully, which was also
the case for the MLP HTLN. Both F1scores are better than using the MLP to classify
multiple classes. However, both the multi-class MLP and the multi-class LSTM were
not able to outperform the rule-based system.

Micro F1 Macro F1

Total tunnel with extra timesteps 0.2363 0.4664
Tab. 5.12: The calculated evaluation metrics of the Traffic Loop Network when using an

LSTM with multiple classes.
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5.3.1 Imbalanced data

As stated in the method the imbalance of the data has to be managed in order to
not overfit on a specific class. This is done by changing the relative amount a class
occurs in a batch during training. The batches in the designated test set are not
changed and are still chronological. After experimenting with different divisions
of normal traffic and abnormal traffic the best division for the LSTM Traffic Loop
Network appeared to be 99% normal traffic data and 1% abnormal traffic data as
shown in table 5.13. This means that for every batch 99% of the batch exists of
normal traffic data while the other 1% exists of abnormal training data. This division
is representative for the division of normal and abnormal data that exists in the
training set. Other distributions resulted in an overfit on the abnormal traffic class
as the table shows.

Percent normal traffic Precision Recall F1 score

50% 0.1747 0.9321 0.5534

78% 0.2942 0.9188 0.6065

84% 0.3048 0.8609 0.5829

90% 0.3717 0.8664 0.6191

95% 0.3361 0.9056 0.4903

98% 0.3923 0.9159 0.5493

99% 0.8334 0.8033 0.8251
Tab. 5.13: The calculated evaluation metrics of the LSTM Traffic Loop Network on the test

set with the different class balances.

The division of normal and abnormal data of the LSTM was also used as starting
point for the division of the TLN MLP. After experimentation a division of 98%
normal traffic and 2% abnormal traffic appeared to give the best results for the
MLP.

5.3.2 Cross-validation

Cross-validation was used in order to confirm that the results of the Recurrent Neural
Networks were not specific to the current data division between the training set
and the designated test set. The results of table 5.14 and the figures show that
there are varying differences between the different folds. As shown in figure 5.1 the
precision of fold one and three are outliers in comparison with the rest. The amount
of abnormal traffic during the test week of fold three was significantly smaller than
all the other weeks. The abnormal traffic that did happen in the test set took place
at the right side of the tunnel, where all the networks struggle. However, fold one
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did have enough abnormal traffic. Most of traffic in fold one took place on the right
side of the road, which caused the primary cause of the bad precision the closing of
the tunnel. The closing of the tunnel is explained further in section 6.2.

Figure 5.2 shows that fold two is an outlier based on its lower recall. The amount
of abnormal traffic in the test set was relatively small and a significant part of the
abnormal traffic existed of stopped vehicles. The network has hard time detecting
stopped vehicles. Figure 5.3 shows that all the networks have acceptable F1 scores
which are all around the average with no unexplained outliers. The designated test
set that was chosen for the experiments is a superset of the best performing fold.
This can be explained by the fact that it has a large amount of abnormal traffic,
which happens on both sides of the road. The amount of stopped vehicles is small
compared to the traffic jams and the right side of the road does not dominate the
performance because of the even division between the sides of the tunnel.

Fold Precision Recall F1 score

1 0.5500 0.7067 0.6186

2 0.8350 0.5517 0.6644

3 0.4814 0.8899 0.6248

4 0.7148 0.8652 0.7828

5 0.7858 0.6233 0.6952

6 0.8079 0.8124 0.8102

7 0.8247 0.7253 0.7718

8 0.8541 0.8345 0.8442

Average 0.7317 0.7511 0.7265

σ 0.1123 0.0994 0.0758
Tab. 5.14: The results of using a GRU to cross validate the data set.
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Fig. 5.1: A comparison of the precision of the different folds.

Fig. 5.2: A comparison of the recall of the different folds.

5.3 Recurrent Neural Networks 32



Fig. 5.3: A comparison of the F1 score of the different folds.

5.4 Hidden Markov Model

The Hidden Markov Model was tested with different types of precalculation. The
probabilities from the baseline could be used as precalculated parameters which are
not changed during the training. These precalculated parameters do influence the
probability during training and thus change learned probabilities during training.
A completely unsupervised Hidden Markov Model is not able to capture the three
classes or the difference between normal and abnormal traffic. This was expected
because it is difficult to find the classes without supervision especially due to the
imbalance. The probabilities shown in figure 4.3 are used in order to get the results
from table 5.16.

Using the start probabilities informed the Hidden Markov Model about the imbalance
in the data and allowed it to train the best Hidden Markov Model. This model beat
the a priori probability by a small margin, but it performed worse than the FRN
and thus it performed badly. The Hidden Markov Model was not able to find the
same imbalance by using precalculated transition probabilities and performed worse.
Fixing both the start and transition probabilities by precalculating them results in
using the baseline from figure 4.3. The only thing the Hidden Markov Model is able
to train at that point is the covariance and the means of the observations for specific
states. The results of using both the start and transition probabilities are the worst
of all three HMMs. The performance of the Hidden Markov Models was worse than
the performance of the Full Road Network. Using two states instead of three did not
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result in better a better performance and the Hidden Markov Model was also not
able to successfully find a stopped vehicle.

Precalculated Precision Recall F1 score

Start probabilities 0.9004 0.0059 0.0059

Transition probabilities 0.9860 0.0024 0.0048

Both start and transition 0.9404 0.0021 0.0043
Tab. 5.15: The calculated evaluation metrics of the different kinds of Hidden Markov Models

with two states on the test set.

Precalculated Micro F1 Macro F1

Start probabilities 0.0016 0.0025

Transition probabilities 0.0028 0.0048

Both start and transition 0.0026 0.0017
Tab. 5.16: The calculated evaluation metrics of the different kinds of Hidden Markov Models

with three states on the test set.

5.5 Summary

Type Precision Recall F1 score

A priori chance 0.00331 0.00331 0.00033

Rule-based 0.6561 0.6641 0.6601

FRN MLP 0.0692 0.0139 0.0231

TLN MLP 0.9315 0.3543 0.5249

HTLN MLP 0.7989 0.7758 0.7872

TLN LSTM 0.8334 0.8033 0.8181

TLN GRU 0.8667 0.7847 0.8236

TLN ConvLSTM 0.7332 0.7629 0.7477

TLN HMM 0.9004 0.0059 0.0059
Tab. 5.17: A summary of the calculated evaluation metrics of the different kinds of machine

learning methods and the old system.
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6Conclusion

6.1 Conclusion

This thesis proposed a number of different machine learning methods for the classi-
fication of traffic patterns. These machine learning methods were used to classify
normal and abnormal traffic based on data from traffic loops in a tunnel. The old
rule-based system was used as baseline in order to check if the new machine learning
based methods are performing better.

The common Multilayer Perceptron or MLP was used to determine if machine
learning methods could outperform the old rule-based system. Two different types
of MLPs networks were used to classify the current traffic pattern. The Full Road
Network or FRN uses the features of all the traffic loops of the whole road in order
to instantly predict the traffic patterns of all the hundreds of traffic loops. Another
network called the Traffic Loop Network or TLN uses the information of the current
loops and its surrounding loops to classify one traffic loop.

The performance of the Full Road Network was significantly below the expectations
and was not used in other experiments again. The MLP TLN outpeformed the
FRN, but was not able to outperform the existing rule-based network. By using
more historical timesteps the Historical Traffic Loop Network outperformed the
rule-based system as a binary classifier by almost 20% based on the F1 score. Which
answers sub-question 3 of the research questions in section 1.1 because the HTLN
is a more general model while the FRN is specific for the layout of the road. The
HTLN only predicts normal and abnormal traffic, which in most cases is a traffic jam.
Predicting the following more specific classes was also tested: normal traffic, traffic
jam and stopped vehicle. Predicting these three classes did not yield good results
and actually worsened the network’s capability of finding abnormal traffic. This
could be explained by the scarcity of data of classes other than normal traffic and
traffic jam. Which answers sub-question 2 of the research questions in section 1.1.

The data generated by the traffic loops can be seen as time-series data. This is why
the Recurrent Neural Networks and Hidden Markov Models were used, they are
designed to handle temporal data. The results of the Hidden Markov Models were
bad and they did not beat the performance of the MLP. Both the Long Short-Term

35



Memory (LSTM) and the Gated Recurrent Unit (GRU) were able to outperform the
MLP as expected. The recall of the LSTM was better, while the precision and the F1

score of the GRU were better which makes it the best performing network. Which
answers sub-question 1 of the research questions in section 1.1.

The imbalance between the different classes in the data started as a problem. If the
right division was not used the machine learning methods started overfitting on one
of the classes. However, this problem was solved by changing the division of class
data in the batches in a representative manner. The size of the normal traffic data is
more than a hundred times as big as the size of the abnormal traffic data. This has to
be represented during learning otherwise the network starts learning an unrealistic
class distribution. For the Multilayer Perceptron the best performing division was
98% normal traffic and 2% abnormal traffic in each training batch. While the best
performing division for the Recurrent Neural Networks was 99% normal traffic and
1% abnormal traffic per batch.

6.2 Discussion and future work

The tunnel that was used for this thesis was the Ketheltunnel in the Netherlands. This
tunnel was chosen because of a combination of data availability and the complexity
of the tunnel. The data of this tunnel was readily available and it has multiple lanes,
while the other tunnel of which the data was available only had one lane in each
direction. The downside of this tunnel is the complexity for the network because
of the exits which can be seen on figure 3.1. Another downside is the fact that the
tunnel will be closed if a traffic jam on the right side of the tunnel grows too far into
the inside of the tunnel. This is done in order to keep the people safe in case of a fire.
This disrupts the natural flow of the traffic and thus influences the data. Especially
the Full Road Network is influenced because it tries to learn on the whole situation
while the traffic flow keeps getting disrupted.

The currently best performing network should be tested in another tunnel in the
future. This could prove that the network is invariant of the tunnel, but this could
also prove that a more diverse dataset might be beneficial. More data is also needed
in order to determine if the networks could learn the difference between the different
classes. The amount of data for the stopped vehicles was too scarce, while using
more data could also indicate the fact that the current networks are not able to find
stopped vehicles.

The network is currently based on data aggregated over a sequence of car events,
which is calculated based on the raw data from the traffic loops. The raw data
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generated by the traffic loops was not available during this research, but the car
events were. In the future the raw data could be used to train the network directly
or different features could be calculated using the raw traffic loop data.

Annotating the traffic situations of the tunnel is a very time consuming and precise
task. In this thesis it was done by one person. People make mistakes and timing
could be off by the reaction time of the annotator. This is why the data needs to be
annotated by more people. A combination of the data of different people could be
a much more reliable data set. Mistakes can be found by comparing the data and
traffic behavior missed by one person could be found by another. Another possibility
is finding a better method to annotate the data.

In this paper a Gaussian Hidden Markov Model was used while some papers use a
multinomial Hidden Markov Model. A multinomial Hidden Markov Model could also
be researched in the future. But in order to do this the features have to discretized
to classes of observations instead of using the currently continuous features. This
could be done by counting the number of cars within specific speed ranges.
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