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Preface to the Second Edition

This second edition follows quickly on the first edition and is an indication of
how fast the subject is changing and developing. In the past two years there have
been significant advances and these are reflected in this new edition.

Essentially, this is an update that places more emphasis on modelling by
describing a greater range of approaches to system modelling. It introduces the
UML2, which is the recent standard approved by the OMG. There is also an
enhanced discussion on the relationship between requirements management
and modelling, which relates well to the concept of rich traceability.

The chapter on the requirements management tool DOORS has been revised
to use Version 7 of the tool and this is complemented with examples taken from
the DOORS/Analyst tool which demonstrates how the concepts of modelling
can be captured and created within DOORS.

The text is still aimed at students and practitioners of systems engineering
who are keen to gain knowledge of using requirements engineering for system
development.

As before, a web site supporting additional material is available at:
http://www.requirementsengineering.info

Elizabeth Hull
Ken Jackson
Jeremy Dick

June 2004
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Preface to the First Edition

Requirements Engineering is common sense, but it is perceived to be difficult
and is not well understood. For these reasons it is generally not very well done.
The ever-increasing pressures on an organization are often given as the main
reasons for not introducing a more disciplined approach to requirements engi-
neering, but its aim will be to do the job properly, so the task of the requirements
engineer is to work out how best to help the organization achieve its goal.

Systems engineering is critical in today’s industry and requirements engineering
is an important stage of that overall process. A good process is key to requirements
engineering – it determines how efficiently and rapidly products can be generated.
This is particularly important in a global competitive market where the “time to
market” and meeting stakeholder requirements are the key success factors.

Requirements engineering is also about management and hence issues in
relation to requirements and management blend to show how requirements can
be used to manage systems development.

The book is concerned with engineering requirements and how systems engi-
neers may be helped to create better requirements. A generic process is presented
which assists the reader in gaining a good understanding of the essence of
requirements engineering. The process is then instantiated for the problem and
solution domains of development. The book also addresses the concept of sys-
tem modelling and presents various techniques and methods which are widely
used. An important feature of the book is the presentation of approaches to
traceability and the way in which it is captured and discusses metrics which can
be derived from traceability. Finally, the book presents an overview of DOORS,
which is a tool for requirements management. A case study is used to illustrate
the process presented in the book and the features of the tool.

This book should be read by those systems engineers (requirements engi-
neers) in industry who, being practitioners, are keen to gain knowledge of using
requirements engineering for system development. The book will also be of
interest to final-year undergraduate students in Computer Science, Software
Engineering and Systems Engineering studying a course in Requirements
Engineering and also to postgraduate research students in Computer Science or
more generally in Engineering.

The approach taken in the book is based on current research in Requirements
Engineering; however, it has not only taken the academic view but has also built
substantially on current experience of working in industry to enable system
engineers to manage requirements (and projects) more successfully. It provides
a snapshot, in this rapidly evolving subject, of what we see as best practice in
Requirements Engineering today.



x Preface to the First Edition

A web site supporting additional material for the book can be found at
http://www.requirementsengineering.info/

Elizabeth Hull
Ken Jackson
Jeremy Dick

May 2002
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There is no fair wind for one who knows not whither he is bound.
Lucius Annaeus Seneca, philosopher, 3–65 AD

1.1 Introduction to Requirements

If ever systems development projects needed a “fair wind”, they certainly do so
today. Fast-changing technology and increased competition are placing ever-
increasing pressure on the development process. Effective requirements engin-
eering lies at the heart of an organization’s ability to guide the ship and to keep
pace with the rising tide of complexity.

Software is currently the dominant force of change of new products. The
trend is driven by three key factors:

1. Arbitrary complexity. The most complex systems tend to be those with soft-
ware, often integrated deep inside the system’s components. The complexity of
such products is limited only by the imagination of those who conceive them.

2. Instant distribution. Today a company can think of a new product, implement
it in software, and rapidly distribute it around the world. For example, a car
manufacturer can improve the software in its diagnostic system and then
transmit it electronically around the world to tens of thousands of car show-
rooms in a day.

3. “Off-the-shelf” components. Systems are now constructed from bought-in
technology and ready-made components with a corresponding reduction in
the product development cycle.

The net impact of these trends is a sudden intensity of competition and the abil-
ity to monopolize the rewards from the new technology without needing large
factories. The result is pressure to reduce the development cycle and the time to
deploy technology. However, “time to market” is not sufficient. The real goal is
“time to market with the right product”. Establishing the requirements enables
us to agree on and visualize the “right product”. A vital part of the systems engin-
eering process, requirements engineering first defines the problem scope and
then links all subsequent development information to it. Only in this way can we
expect to control and direct project activity; managing the development of a
solution that is both appropriate and cost-effective.

Introduction 1
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2 Requirements Engineering

Requirements are the basis for every project, defining what the stakeholders –
users, customers, suppliers, developers, businesses – in a potential new system
need from it and also what the system must do in order to satisfy that need. To be
well understood by everybody they are generally expressed in natural language and
herein lies the challenge: to capture the need or problem completely and unam-
biguously without resorting to specialist jargon or conventions. Once communi-
cated and agreed, requirements drive the project activity. However, the needs of the
stakeholders may be many and varied, and may indeed conflict. These needs may
not be clearly defined at the start, may be constrained by factors outside their con-
trol or may be influenced by other goals which themselves change in the course of
time. Without a relatively stable requirements base, a development project can
only flounder. It is like setting off on a sea journey without any idea of the destin-
ation and with no navigation chart. Requirements provide both the “navigation
chart” and the means of steering towards the selected destination.

Agreed requirements provide the basis for planning the development of a
system and accepting it on completion. They are essential when sensible and
informed tradeoffs have to be made and they are also vital when, as inevitably
happens, changes are called for during the development process. How can the
impact of a change be assessed without an adequately detailed model of the prior
system? Otherwise, what is there to revert to if the change needs to be unwound?

Even as the problem to be solved and potential solutions are defined we must
assess the risks of failing to provide a satisfactory solution. Few sponsors or
stakeholders will support product or systems development without a convincing
risk management strategy. Requirements enable the management of risks from
the earliest possible point in development. Risks raised against requirements can
be tracked, their impact assessed and the effects of mitigation and fallback plans
understood long before substantial development costs have been incurred.

Requirements therefore form the basis for:

• project planning;

• risk management;

• acceptance testing;

• tradeoff;

• change control.

The most common reasons for project failures are not technical and Table 1.1
identifies the main reasons why projects fail. The data is drawn from surveys
conducted by the Standish Group in 1995 and 1996, and shows the percentage of
projects that stated various reasons for project failure. Those marked with an
bullet are directly related to requirements.

The problems fall into three main categories:

• Requirements – either poorly organized, poorly expressed, weakly related to
stakeholders, changing too rapidly or unnecessary; unrealistic expectations.

• Management problems of resources – failure to have enough money, and lack
of support or failure to impose proper discipline and planning; many of these
arise from poor requirements control.

• Politics – which contributes to the first two problems.

All these factors can be addressed at fairly low cost.



Project success factors are not quite the inverse of the failure factors, but as
can be seen in Table 1.2. Management support and proper planning are clearly
seen as important here – the larger the project and the longer its schedule, the
greater is the chance of failure (Scientific American, September 1994).

This book considers an engineering approach to requirements in general and
requirements management in particular. It explains the differences between stake-
holder requirements and system requirements and indicates how requirements
can be used to manage system development. It also shows how traceability from
stakeholder requirements through system requirements to design can be used to
measure progress, manage change and assess risks. Throughout, the reader will be
exposed to the testability aspects of requirements and the components designed to
satisfy them, and how to formulate validatability or verifiability requests. It stresses
the need to produce designs that can be integrated and tested easily.

Requirements management has important interfaces to project manage-
ment, which is recognized in the book through the presence of Chapter 8,
“Management Aspects of Requirements Engineering”.

1.2 Introduction to Systems Engineering

This book is not just about requirements for software. The principles and prac-
tice of requirements engineering apply to complete systems in which software
may play only a small part.

Chapter 1 • Introduction 3

Table 1.1 Reasons for project failure

• Incomplete requirements 13.1%
• Lack of user involvement 12.4%

Lack of resources 10.6%
• Unrealistic expectations 9.9%

Lack of executive support 9.3%
• Changing requirements/specification 8.7%

Lack of planning 8.1%
• Didn’t need it any longer 7.5%

Sources: Standish Group, 1995 and 1996; Scientific American,
September 1994.

Table 1.2 Project success factors

• User involvement 15.9%
Management support 13.9%

• Clear statement of requirements 13.0%
Proper planning 9.6%

• Realistic expectations 8.2%
Smaller milestones 7.7%
Competent staff 7.2%

• Ownership 5.3%

Sources: Standish Group, 1995 and 1996; Scientific American,
September 1994.



4 Requirements Engineering

For example, consider a railway system such as the West Coast Mainline from
London to Glasgow. A high-level requirement on the system may be to achieve a
journey time from Euston Station in London to Glasgow in Scotland in less than
250 minutes. Satisfaction of this single requirement arises from the coordinated
interaction of every major component of the system:

• the trains, and their speed;

• the tracks, and their ability to support high-speed trains;

• the stations and station staff, and the waiting time they impose on the trains;

• the drivers, and their ability to control the trains;

• the signalling subsystems;

• the train control and detection subsystems;

• the power delivery subsystems.

Although the software in the signalling and control subsystems plays a vital part
in achieving this requirement, it cannot deliver alone. The complete solution
involves the whole system. In fact, most requirements are satisfied by the prop-
erties that emerge from the way the system as a whole behaves.

What then do we mean by a “system”?
A system is a:

• collection of components – machine, software and human –

• which cooperate in an organized way –

• to achieve some desired result – the requirements.

Thus systems include people. In the West Coast Mainline, the drivers and station
staff – the training they receive and the procedures they use – are just as import-
ant as the software and machine components.

Since components must cooperate, interfaces between components are a vital
consideration in system (and requirements) engineering – interfaces between
people and machine components, between machine components and between
software components. An example of a machine-to-machine interface in a rail-
way system is the way in which train wheels interface with the track. Apart from
the physical arrangements (which are designed to allow the train to be guided
along the track without sliding off), electrical currents across the rails may be
used to detect the presence of the train as part of the train control subsystem.

At the heart of the concept of a “system” lies the idea of “emergent properties”.
This refers to the fact that the usefulness of a system does not depend on any par-
ticular part of the system, but emerges from the way in which its components
interact. Emergent properties may be desirable, in that they have been antici-
pated and designed into the system so as to make the system useful; or they may
be undesirable, in other words unanticipated side effects, such as harm to the
environment. The trick in systems engineering is to be able to harness desirable
emergent properties and avoid the undesirable ones.

Another important concept is that of “systems of systems”. Every system can
be construed as being part of a larger, enclosing system. For example, the West
Coast Mainline is part of a wider railway system and intersects with other major
and minor routes. The entire railway system is part of the wider transport system



and interacts in all kinds of ways with the road and air transport networks. The
transport system itself provides essential infrastructure for the transport of
goods and people as part of the economy of the country. And the country is part
of the wider world, and so forth.

To understand the requirements of a system properly is to understand its
enclosing system. Often the correct functioning of a system depends on provi-
sions of the enclosing system. For example, the ability of a helicopter to fly
depends on the environment provided by the Earth, its gravitation field and its
atmosphere.

Take another, very simple, example: a cup (Figure 1.1). It is evident that it has
components: a handle and a bowl-shaped container. What purpose do these
components serve? The bowl is for containing liquid and the handle is to allow
the bowl to be held by someone without getting burnt. We may deduce that the
purpose of – or requirement for – the cup is to allow a human being to transfer
hot liquid into the mouth without spilling it or getting burnt.

The cup is rich in interfaces. It can be placed on a flat surface for stability; it
can be held in a human hand; it can be filled with fluid and emptied; it must
interface with the fluid for sustained containment; and it must deliver fluid to
the human mouth.

However, there are other observations to be made:

• The cup is no good on its own. It depends on the motor movement of the
human arm to achieve its purpose.

• The bowl part of the cup depends crucially on the presence of gravity for its
correct functioning. It also has to be used correctly: holding the cup upside
down would cause spilling, and may cause scalding.

At the end of the day, the ability of this simple cup to fulfil its purpose depends on:

• the properties that emerge from the interaction of its components;

• appropriate interfaces to external components;

• its correct embedding in the enclosing system – being held in the human
hand and lifted by the arm;

Chapter 1 • Introduction 5
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Figure 1.1 A cup as a very simple system.



6 Requirements Engineering

• the presence of the proper environment – another solution would be neces-
sary in weightless conditions.

In summary, the engineering of requirements must take the nature of systems
into account. Essential considerations are emergent properties, the constraints
and provisions of the external environment and the interfaces with surrounding
systems.

1.3 Requirements and Quality

The consequences of having no requirements are many and varied. There is
ample evidence around us of systems that failed because requirements were not
properly organized. However well the system may appear to work at first, if it is
not the system that users want or need then it will be useless.

It is interesting to consider the relationship between requirements and quality.
The term “quality” may be understood in a variety of ways. When asked about
quality cars, one might mention Rolls Royce, Mercedes or Jaguar. This inherent
confusion between “quality” and “luxury” is exposed if consideration is given to
choosing the best car for the annual RAC rally. Neither Rolls Royce, Mercedes nor
Jaguar are chosen, since they do not exhibit the right weight/power ratio, ground
clearance and robustness properties. Recent history shows that the best quality
car in its class is a Skoda – not a luxury car, but the right quality of car for the job.

Quality, then, is “fitness for purpose” or conformance to requirements – it is
providing something that satisfies the customer and in doing so ensures that the
needs of all the stakeholders are taken into account.

As will be seen in Chapter 8, requirements engineering acts as a complement
to other management considerations, such as cost and schedule, by providing a
vital focus on the delivery of quality. Every management decision is a comprom-
ise between cost, schedule and quality, three inter-related axes.

Since requirements engineering is a discipline that applies from the start of
the development lifecycle, the leverage on quality that can be exercised by proper
requirements management is proportionately greater. Relatively little effort
expended in early stages of development can reap dividends in the later stages.
The adage “Quality is Free” (the title of a book by Phil Crosby) holds true, in that
getting it right at the outset can save huge amounts of effort that would have
been necessary to put things right later. Improving requirements means improv-
ing the quality of the product.

1.4 Requirements and the Lifecycle

There is a common misconception that requirements engineering is just a single
phase that is carried out and completed at the outset of product development.
The purpose of this section is to demonstrate that requirements engineering has
a vital role to play at every stage of development.

As an initial approach, consider one of the very last activities in the development
process: acceptance testing. What is a system accepted against? – the stakeholder



requirements. So it can be seen straight away that requirements developed at the
outset are still in use in the final stages of development.

The classic V-model, which is used to portray the various stages of develop-
ment, has its basis in this relationship between testing and requirements. Figure 1.2
shows this relationship at every stage of development.

The V-model also views development in terms of layers, each layer addressing
the concerns proper to the corresponding stage of development. Although
slightly different processes may be used at each level, the basic pattern of require-
ments use is the same – a point reinforced through the introduction of a generic
process in Chapter 2. Figure 1.3 shows the main concern of requirements engin-
eering at each layer.
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Figure 1.2 Requirements in the V-model.
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Another role that requirements can play in an organization is to act as a
means of communicating between projects. This is a good idea, because many
organizations wish to:

• maximise reuse of artefacts across projects;

• manage families of similar products;

• use programme management to coordinate activities;

• optimize process by learning from the experiences of other projects.

A good set of stakeholder requirements can provide a concise, non-technical
description of what is being developed at a level that is accessible to senior man-
agement. Similarly, the system requirements can form an excellent technical
summary of a development project. These descriptions can serve as a basis for
comparison with other activities. This is illustrated in Figure 1.4.

If requirements are to play such a central role in systems development, they
need to be maintained. To change the design of a product without having also
updated the requirements to reflect that change is to store up huge problems for
later stages of development. Hence requirements engineering connects strongly
with change management.

Whether change originates from within a project – for example, technical
issues arising from details of the design – or from without – such as evolving
stakeholder needs – the impact of that change on quality, cost and schedule
needs to be assessed. This assessment forms the basis on which to:

• accept or reject the change (where that is a choice);

• negotiate the cost of the change with the customer/suppliers;

• organize the redevelopment work.
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Component
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informing the
enterprise

learning from
the enterprise

Figure 1.4 Enterprise requirements engineering.



The key concept that enables this kind of impact analysis is requirements trace-
ability, a topic treated in greater detail in Section 1.5 and in Chapters 2 and 7.
Suffice to say that change management is an integral part of the requirements
engineering process. This role is illustrated in Figure 1.5.

Quite apart from change management, a manager’s ability to control a 
project is considerably enhanced by good requirements engineering. Without
requirements, project managers have no means of gauging how well the project
is going, or even if it is going in the right direction. When it comes to changes
there is nothing against which change can be judged. What is more, when they
do come to intervene, their only approach is at a technical level, which is inap-
propriate to their role, and which interferes with the technical role properly
played by the engineers. Requirements well expressed at the appropriate level
give managers just the right view of the project to be able to perform their role.

In summary, requirements are essential to the health of every system devel-
opment. They influence the whole development from beginning to end and
from top to bottom. Without effective requirements engineering, development
projects are like ships drifting rudderless in a storm! Above all else, with good
requirements management, hearing the voice of the users and customers ceases
to be a game of Chinese whispers, and becomes a matter of clear lines of com-
munication throughout the development process.

1.5 Requirements Traceability

In the requirements engineering context, traceability is about understanding
how high-level requirements – objectives, goals, aims, aspirations, expectations,
needs – are transformed into low-level requirements. It is therefore primarily
concerned with the relationships between layers of information.
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In a business context, one may be interested in how

• business vision
is interpreted as

• business objectives
are implemented as

• business organization and processes.

In an engineering context, the interest may focus on how

• stakeholder requirements
are met by

• system requirements
are partitioned into

• subsystems
are implemented as

• components.

Using traceability can contribute to the following benefits:

• Greater confidence in meeting objectives. Establishing and formalizing trace-
ability engenders greater reflection on how objectives are satisfied.

• Ability to assess the impact of change. Various forms of impact analysis become
possible in the presence of traceability information.

• Improved accountability of subordinate organizations. Greater clarity of how
suppliers contribute to the whole.

• Ability to track progress. It is notoriously difficult to measure progress when
all that you are doing is creating and revising documents. Processes sur-
rounding traceability allow precise measures of progress in the early stages.

• Ability to balance cost against benefit. Relating product components to the
requirements allows benefit to be assessed against cost.

Traceability relationships are usually many-to-many – that is, one lower level
requirement may be linked to several higher level requirements and vice versa.
The simplest way to implement a form of traceability is to link requirements
statements in one layer with statements in another. Requirements management
tools typically allow such linking by drag-and-drop between paragraphs of
documents. The links are rather like hyperlinks in web pages, but should ideally
be traversable in either direction. Figure 1.6 shows traceability downwards
through the layers of requirements and across to the test information. The
direction of the arrows follows a particular convention: information traces 
back to the information it responds to. There are a number of reasons for this
convention:

• It usually corresponds to the chronological order in which information is
created: always link back to the older information.

• It usually corresponds to access rights due to ownership: one owns the out-
going links from a document, someone else owns the incoming links.



Various forms of traceability analysis can be used to support requirements engi-
neering processes, presented in Table 1.3.

Impact analysis is used to determine what other artefacts in the development
might be affected if a selected artefact changes. This is illustrated in Figure 1.7.
The impact is potential; creative analysis has to be carried out by an engineer to
determine the exact nature of the impact, if any.

Derivation analysis works in the opposite direction to impact analysis. A low-
level artefact – such as a requirement, design element or test – is selected and the
traceability links are used to determine what higher level requirements have
given rise to it. Elements in the design that do not so trace back are potentially
adding cost without benefit.
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Figure 1.6 Requirements traceability.

Table 1.3 Types of traceability analysis

Type of analysis Description Processes supported

Impact analysis Following incoming links, in answer to Change management
the question: “What if this was to change?”

Derivation analysis Following outgoing links, in answer to the Cost–benefit analysis
question: “Why is this here?”

Coverage analysis Counting statements that have links, in General engineering
answer to the question: “Have I covered Management reporting
everything?”
Most often used as a measure of progress
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Finally, coverage analysis can be used to determine that all requirements do
trace downwards to lower layers and across to tests. The absence of such a trace
is a fairly certain indication that the requirement will not be met or tested. The
presence of a link does not, of course, ensure that the requirement will be met –
that again requires creative engineering judgement.
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Figure 1.7 Impact and derivation analysis.
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Figure 1.8 Coverage analysis.



Coverage can also be used as a measure of progress: how far have the systems
engineers got in responding to the stakeholder requirements? Suppose the task
of writing systems requirements in response to stakeholder requirements is
given to engineers. As they write system requirements, they link them back to the
stakeholder requirements to which they are responding. (By doing it as they go
along, the creation of traceability is very little extra overhead – it is much more
difficult to establish traceability after both documents have been written!)

At any stage of the task, the engineers’ progress can be measured in terms of
the percentage of stakeholder requirements that have been covered so far. This is
a very useful management tool during the early stages of development.

The same principle can be used to measure progress in planning tests. What
percentage of the requirements have tests defined so far? These two dimensions
of coverage are summarized in Figure 1.8.

Because of the kinds of analysis that can be carried out, traceability is a sim-
ple concept that lies at the heart of the requirements engineering process. More
advanced forms of traceability are discussed in detail in Chapter 7.

1.6 Requirements and Modelling

It is important to understand the relationship between requirements manage-
ment and system modelling. They are mutually supportive activities that should
not be equated. Figure 1.9 compares the relationship to a sandwich. In this analogy,
requirements management is the “bread and butter” of the development cycle.
The “filling” provided by system modelling explains and exposes the analysis and
design that has led to subsequent layers of requirements.

Some people talk about requirements modelling. This is a misnomer. You
model the system design, not the requirements. Modelling supports the design
activity and is where most of the creative work takes place. It assists the engineer
in understanding enough of the system to decompose the requirements at a
particular level into the next level down. The requirements themselves are a
complete snapshot of what is required at each level in increasing levels of detail.

A particular model never says everything about a system – if it did, it would
not be a model. For this reason, several different, possibly inter-related, models
of systems are often used to cover a variety of different aspects. It is left to the
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expression of requirements – usually in textual form – to cover those aspects not
modelled.

A model is an abstraction of a system that deliberately focuses on some
aspects of a system to the exclusion of others. Abstraction is, in this sense, avoid-
ance of distraction – ignoring those details that, although important, are not rele-
vant to a particular model. The advantage of this is that smaller amounts of
related information can be collected, processed, organized and analyzed, apply-
ing various specific techniques pertinent to the aspects under study.

Where a large amount of complex information has to be managed, modelling
provides a means of zooming in, collecting together subsets of the data for a par-
ticular purpose and zooming out once more to appreciate the whole. It aids in
maintaining a system-wide grasp through focussing on small amounts of infor-
mation at a time.

Figure 1.10 portrays the inter-related roles that requirements and system
modelling play. Models assist the requirements engineer in analysing the
requirements at a particular level so as to:

• communicate with the customer and improve mutual understanding of the
system to be developed;

• analyze the system to ascertain the presence of desired emergent properties
(and the absence of undesirable ones);

• determine how to satisfy the requirements by deriving new requirements at
the layer below.

The nature of the models used will vary from layer to layer. At the top layer,
usage models such as “stakeholder scenarios” are used to derive the first state-
ment of stakeholder requirements. Following this, various kinds of functional
model may be used to derive system requirements from the stakeholder require-
ments. For software, such models could include UML class diagrams, message
sequence charts and state charts. (See Chapter 3 for more details on these
modelling techniques.)

Figure 1.10 Requirements and modelling.



Moving from system requirements to architecture, the concerns become
focused on various aspects of performance. Multiple models may be used to give
confidence that the selected architecture can deliver against both non-functional
and functional requirements. Here, models may include queuing theory used to
assess performance, wind tunnels for assessing aerodynamics and timetable
modelling to assess viability of journey times.

As is evident from these examples, the nature of the models also varies from
application to application. The modelling of timetables may be appropriate for
the design of railway systems, but not for aircraft design, where the modelling of
aerodynamics is rather more appropriate. (Aerodynamics may also be important
to high-speed trains, of course.) Message sequence charts may be used in com-
munications systems, but data-rich applications will find data-focused model-
ling such as entity–relationship diagramming more appropriate.

Whereas the models may vary, the principles of requirements management
remain generic across applications. Since this book is about requirements engin-
eering, it also covers the closely associated subject of modelling and methods.

1.7 Requirements and Testing

As has been discussed above, testing is closely related to requirements at every
level. In its broadest sense, testing is any activity that allows defects in the system to
be detected or prevented, where a defect is a departure from requirements. So test-
ing activities include reviews, inspections, analysis through modelling in addition
to the classical tests of components, subsystem and systems that are carried out.

Because of the diversity of testing activities, the term qualification is used in
this book to refer to all such activities.

Qualification should begin as early as possible, since waiting until the system
is almost complete before carrying out any kind of testing can lead to very
expensive design changes and rebuilds. The earliest kinds of qualification action
take place during the design of the system, and include requirements reviews,
design inspections and various forms of analysis carried out on system models.

Figure 1.11 portrays the qualification strategy along a time-line below the 
V-model. Early qualification actions relate to the left-hand side of the V-model
and later ones to the test stages on the right-hand side.

A single stakeholder requirement will typically give rise to a multitude of
qualification activities at various stages of development. Where a requirement is
satisfied through useful emergent properties, qualification of components alone
is insufficient; tests have to be carried out at the level where emergent properties
are manifest.

1.8 Requirements in the Problem and Solution Domains

Systems engineering is concerned with developing and managing effective solu-
tions to problems. As has been discussed, it is a staged process vital for businesses
in enabling them to produce the right product within acceptable time-scales 
and costs.
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Early in the process, the definition of the requirements for the product to be
built is of prime importance. From a management and engineering point of
view, a clear distinction should be made between the “problem domain” and the
“solution domain”. Those stages of development associated with the highest levels
of system description – statement of need, usage modelling and stakeholder
requirements – should be firmly rooted in the problem domain, whereas subse-
quent layers, starting with system requirements, operate in the solution domain.

Table 1.4 portrays the ideal boundary between the problem and solution
domains and the roles that the top requirements layers play.

Stakeholder
Requirements

Subsystem
Requirements

Component
Requirements

System 
test

Integration 
test

Component 
test

Acceptance
test

Reviews / Design inspections / Analysis / Prototypes / Component tests / Rig tests / System tests / Trials

Qualification Strategy / Programme
time

System
Requirements

Figure 1.11 Qualification strategy and the V-model.

Table 1.4 Problem and solution spaces

Requirements layer Domain View Role

Stakeholder requirements Problem domain Stakeholder’s view State what the stakeholders want to 
achieve through use of the system.
Avoid reference to any particular 
solution

System requirements Solution domain Analyst’s view State abstractly how the system will 
meet the stakeholder requirements.
Avoid reference to any particular 
design

Architectural design Solution domain Designer’s view State how the specific design will 
meet the system requirements



There is an important principle of abstraction at play here. The initial state-
ment of capability should state no more than is necessary to define the problem
and avoid any reference to particular solutions. This allows freedom to the sys-
tems engineers to carry out their role, which is to devise the best solution with-
out preconceived ideas.

Modelling assists in the derivation of the next layer of requirements and tends
to consider possible solutions, even at a high level. To avoid inappropriate solu-
tion bias, rather than focus on the system in question, early modelling should
focus on the immediately enclosing system. For instance, if a radio system is
being developed for a sailing boat, then early modelling should focus on the ves-
sel and not so much on the radio. This leads to a statement of the problem to be
solved in the context of the enclosing solution.

The same principle applies to the systems engineers: they should allow the
designers the freedom to perform their role, that of designing against an abstract
solution. The elements of solution introduced through functional modelling
remain at a high level, leaving the detail to be defined in subsequent stages.

For example, in a traffic control system:

• The stakeholders may express the problem in terms of maximizing traffic
flow while minimizing the risk of accidents at a traffic junction and min-
imizing cost of maintenance.

• The systems engineers may consider a variety of solutions, such as traffic-
lights or roundabouts and a bridge as the approach that best solves the prob-
lem within constraints of development and maintenance costs.

• The designers then set to work designing the bridge within the physical con-
straints presented by the physical environment.

It is frequently the case that the stakeholders will express the problem in terms
of a preconceived solution. It then becomes the requirements engineers’ job to
determine whether there is a good reason for mandating a particular solution or
whether it is an unnecessary constraint. For example, the customer starts by try-
ing to procure traffic lights; the supplier asks questions that lead to an under-
standing of the underlying objectives – maximize traffic flow and minimize risk
for drivers and pedestrians – leading to a solution-independent expression of the
problem; the reasons for the choice of solution are now better understood and
perhaps confirmed through appropriate modelling, leading to a precise and
well-informed specification of the abstract solution.

When it comes to procuring systems, a judgement needs to be made as to
whether to procure against the problem domain (stakeholder requirements) or
against the abstract solution domain (system requirements). Often the nature of
the solution is known in advance and it makes sense to procure against system
requirements framed in terms of that solution. However, even if procuring
against a particular solution, the discipline of capturing a statement of the pure
problem prior to a solution still offers important advantages.

Without a clear distinction between problem and solution, the following 
may result:

• lack of understanding of the real problem;

• inability to scope the system and understand which functions to include;
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• domination of debate about the system by the developers and suppliers,
because the only descriptions of the system are expressed in terms of
solutions;

• inability to find optimal solutions due to lack of design freedom.

For these reasons, the book makes the distinction between stakeholder and
system requirements, in terms of how requirements are captured, modelled 
and expressed.

1.9 How to Read This Book

This book is concerned with engineering requirements and how this process
may help those systems engineers and software engineers to create better
requirements. Chapter 1 has discussed the importance of requirements and has
investigated the role of requirements engineering in all parts of the development
lifecycle.

Because of multiple dependencies between chapters, the ordering of material
has been carefully chosen to reduce the number of forward references. Although
it is best to read the chapters in the sequence presented, some guidelines are
given here to assist readers with particular objectives to make efficient use of
the book.

Chapter 2, “A Generic Requirements Engineering Process”, presents require-
ments engineering in a generic form that is applicable to all layers of develop-
ment. Although this approach assists the reader in gaining a good understanding
of the essence of requirements engineering, it remains, of necessity, fairly abstract.
The generic process is made more concrete, however, in Chapters 5 and 6, where
it is adapted to the stakeholder and system layers of development using numerous
examples.

Chapter 3, “System Modelling for Requirements Engineering”, talks about
system modelling, covering various techniques and methods in wide use. This is
again in preparation for Chapters 5 and 6, where particular modelling tech-
niques are placed in the context of stakeholder and system requirements.

Chapter 4, “Writing and Reviewing Requirements”, addresses the structuring
of requirements documents and the expression of requirements statements.
Here the language of different kinds of requirement is discussed.

Chapter 5, “Requirements Engineering in the Problem Domain”, instantiates
the generic process to address the problem domain, in which stakeholder
requirements are the primary focus.

Chapter 6, “Requirements Engineering in the Solution Domain”, then does
the same for requirements in the solution domain, from system requirements
downwards through subsystems and components.

Chapter 7, “Advanced Traceability”, presents further approaches to traceabil-
ity, aimed at improving the way in which rationale for traceability is captured,
and discusses metrics that can be derived from traceability.

Chapter 8, “Management Aspects of Requirements Engineering”, addresses
project management in a requirements management context, covering a variety
of organization types.



Finally, Chapter 9, “DOORS: A Tool for Requirements Management”, pro-
vides an overview of DOORS as an example of a software tool which serves 
as an enabler of a requirements management process. A case study is used to illus-
trate the processes presented in the book and features of the tool.

Figure 1.12 depicts the chapter dependencies.
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If you can’t describe what you are doing as a process, you don’t know what
you’re doing.

William Edwards Deming, management consultant, 1900–93

2.1 Introduction

This chapter introduces the concept of a process for the development of systems.
It starts by examining the way in which systems are developed. This leads to the
identification of a development pattern that can be used in many different con-
texts. This development pattern is expressed as a generic process and is explained
in some detail. Subsequent chapters indicate how the generic process can be
instantiated for specific purposes. The relationship between process models and
information models is also explored and an information model for the generic
process is developed.

2.2 Developing Systems

Before any system can be developed it is essential to establish the need for the
system. If the purpose of a system is not known, it is unclear what sort of system
will be developed, and it is impossible to determine whether the system, when
developed, will satisfy the needs of its users. Forest Gump summed it up nicely
when he said:

If you don’t know where you are going, you are unlikely to end up there.

The rigour with which the need is expressed will depend on the nature of the
individual responsible for stating the need and their role within the organization
in which they work. The need may be expressed in fairly vague terms initially, for
example, “I would like a system that improves the efficiency of my department”.
Clearly, such a “specification” is not appropriate to be used as the basis for going
out to buy a system. However, it could be the basis for a study to determine
exactly what the person really wants. Such a study would have to determine where
the department is currently inefficient and to postulate how the capabilities to be
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provided by the proposed system would be used to improve the efficiency. These
activities, which transform a vague statement of need into a set of requirements
that can be used as the basis for purchasing a system, constitute the process of
developing the stakeholder requirements. Stakeholders include people who will
directly interact with the system, but also other people and organizations that
have other interests in its existence. The topic of creating stakeholder requirements
is dealt with in detail in Chapter 5.

Figure 2.1 illustrates the development process. In the diagrammatic conven-
tions used for process models, circles (or ovals) represent processes and rectan-
gles represent data or information that is read or produced. The arrows indicate
whether data is read or written. Thus, Figure 2.1 states that the develop stake-
holder requirements process takes the statement of needs and produces the stake-
holder requirements. It also creates and reads a use model.

Once a sound set of stakeholder requirements exist that define what the stake-
holders want to be able to do with the proposed system, it is possible to begin to
think about potential solutions. Rather than jumping straight to a design, it is
good practice first to determine what characteristics the system must have irre-
spective of the final detailed design. This process is known as establishing the sys-
tem requirements. It is recommended that an abstract model of the proposed
system be produced. This model provides a basis for discussion within the develop-
ment team and hence provides a means of establishing a common understanding
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Figure 2.1 System development process.



of the proposed solution, albeit at an abstract level. The model can also be used to
explain the solution concepts to those stakeholders who wish to be assured that
the developers are moving along the right lines. Finally, the model provides a
structure for presenting the system requirements in a document form. Each 
element in the model can form a section in the document. This places each
requirement in a relevant context and is an indispensable aid to reviewing the
complete requirements set from a consistency and completeness point of view.

From the system requirements it is possible to consider alternative design
architectures. A design architecture is expressed as a set of interacting compo-
nents that collectively exhibit the desired properties. These properties are known
as the emergent properties of the system and should exactly match the desired
characteristics of the system as expressed in the system requirements. The design
architecture defines what each system component must do and how the system
components interact with each other to produce the overall effects specified in
the system requirements. In other words, the design architecture defines the
requirements for each system component (see Figure 2.1) in terms of their func-
tionality and interaction obligations. The design architecture and hence the sys-
tem component requirements must also stipulate any other required properties
such as physical size, performance, reliability and maintainability.

For all but the smallest of systems, the components in the design architecture
will be too complex to be implemented directly. Components at this level are fre-
quently known as “subsystems” because they are complex enough to be consid-
ered as systems in their own right, but yet they are still only part of the higher
level system for which they are designed.

The process of establishing the design architecture for each subsystem and then
using this to derive component requirements is similar to that described for the
overall system. Eventually a subsystem design architecture and subsystem compo-
nent requirements will be produced for each subsystem as indicated in Figure 2.1.

This description of the development process has indicated that development
of systems takes place at several levels and that different activities take place at
each level. Figure 2.1 also indicates that each activity is supported by a model
(e.g. use model, abstract model, design architecture), although the nature of the
models differs significantly. This is an example of a common aspect: each level of
development uses a model. In the following sections of this chapter, these simi-
larities are further explored in order to define the properties of a generic process.

It is essential to realize that there are requirements at each of the levels:

• needs statement;

• stakeholder requirements;

• system requirements;

• system component requirements;

• subsystem component requirements.

Consequently, requirements engineering is not something that is done once and
then forgotten. It happens at each level, and often work at different levels is
undertaken concurrently. At all levels from the system components downward,
there is multiple concurrent work on requirements at each level. (The grey back-
ground of the relevant symbols in Figure 2.1 indicates this.)
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Figure 2.2 Different levels of requirements engineering.

2.3 Generic Process Context

An alternative way of considering the development process is shown in Figure 2.2.
This diagram suggests that the same development process, engineer requirements,
is used at each level, although the explanation given above indicates that the
work involved is different at each level. This apparently strange way of describ-
ing the process is used to introduce the fact that there is, in fact, a significant
degree of commonality in the work done at each level. The purpose of this chap-
ter is to explore these common aspects and to present a generic process that not
only addresses the common aspects but also enables the different aspects to be
accommodated.

It is important to stress that in a multi-level development, each level of devel-
opment demands relevant expertise. At the higher levels, domain knowledge in
the problem domain is vital. At the system level, it is important that a system-
wide view is taken to avoid too narrow an interpretation of the stakeholder



requirements. At this level there will inevitably be a solution bias introduced.
People or organizations with a proven track record in the development of simi-
lar systems are necessary. Similarly, the subsystem developers will bring their
own domain experience for the particular specialist area of their subsystem.

Hence it is unlikely that the same people will undertake development at every
level. Even when the same organization is working on several levels, it is likely that
different people will be involved, often from different departments. Therefore, it
is useful to introduce the idea that each level of development is done in response
to a “customer” at the level above, and will involve “suppliers” at the level below.

2.3.1 Input Requirements and Derived Requirements

Figure 2.3 shows an alternative view of Figure 2.2 in which the individual
processes have been separated. This emphasizes that the requirements derived by
one process become the input requirements of another process and leads naturally
to the idea that the generic engineer requirements process takes in input require-
ments and generates derived requirements (also as shown in Figure 2.3).

2.3.2 Acceptance Criteria and Qualification Strategy

Before moving on to explain the internal details of the engineer requirements
process, it is necessary to consider another class of information that is both an
input to the process and derived by the process. This is information concerning
the qualification strategy for the requirements.
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To understand fully the significance of requirements and come to a satisfactory
agreement that the requirements form a good basis for development, it is neces-
sary to consider how the requirements will be demonstrated when the system (or
component) has been implemented. This is partly achieved by determining, for
each requirement, the criteria that will be used to establish whether or not the 
system that claims to implement the requirement is acceptable to the customer.

It is also necessary to determine the circumstances under which the criteria
will be examined. In Chapter 1 the notion of test plans at each level was intro-
duced. Testing is just one type of qualification strategy. Others include trials, cer-
tification and inspections. The type of qualification strategy to be used will
depend on the nature of the system; for example, systems that have safety criti-
cal aspects will have to be checked much more carefully than, say, a management
information system.

The full context of the engineer requirements generic process is therefore as
shown in Figure 2.4.

The qualification strategy often introduces new requirements for test equip-
ment, the use of existing facilities (e.g. wind tunnels, anechoic chambers) and
special diagnostic functions or monitor points. In some circumstances a whole
new project may evolve to develop the test equipment and other facilities
required. For example, in avionics development it is necessary (for cost and
safety reasons) to perform as much testing as possible before the equipment is
installed in an aircraft. Even when it is installed, it will also be necessary to run
with simulations prior to flight trials. Clearly, the test pilot must be assured that
the avionics will perform to a known standard prior to first flight.

At lower levels in the hierarchy where items are to be manufactured, the qual-
ification strategy may consider issues such as whether the supplier or the cus-
tomer is responsible for the testing of each item supplied. Possible strategies
include full testing of every item prior to delivery, batch testing by the supplier
and possible random checks by the customer.
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Figure 2.4 Qualification strategy is essential.



2.4 Generic Process Introduction

Having established the context for the generic process, it is now possible to look
inside the engineer requirements process. The process is introduced first in an
ideal world in which nothing ever changes and then with modifications to
accommodate changes.

2.4.1 Ideal Development

The engineer requirements process for the ideal world is shown in Figure 2.5. The
process commences with the need to agree the input information for the project
with the customer at the level above. The second activity in the process is to ana-
lyze the input information and consider how to develop the outputs required.
This activity, which often goes on in parallel with agreeing the requirements,
almost always involves the creation of one or more models and leads to analysis
reports that together provide a basis for the derivation of requirements and qual-
ification strategy for the lower level supplier(s). These requirements must, when
they are sufficiently mature, be agreed with the suppliers to form the basis for a
contract for the lower level development.
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Figure 2.5 also indicates that several sets of derived requirements may be gen-
erated. Each set must be agreed with the relevant supplier and some suppliers
may be responsible for more than one component.

2.4.2 Development in the Context of Change

Unfortunately, the world hardly ever stands still. This is especially true in the
arena of system development. It seems that everybody is constantly changing his
or her mind or finding that what was previously agreed is no longer possible.
Therefore, the generic process has to be modified, as indicated in Figure 2.6, to
reflect this necessary evil.

The formality with which change is managed will depend on the nature 
and state of the project. During the early stages, changes can and must be made
with ease so that progress can be made. However, there comes a time at which a
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commitment must be made and formal agreement struck. From this time, it is
usual to have a more formal arrangement in which changes are not just inserted
at the whim of anyone on the project. Instead, a process is used in which changes
are first requested or proposed and then they are decided upon in the context of
their impact on the project. The decision process will usually involve a person such
as the project manager, who has the authority to make the decision supported as
necessary by a group of people who constitute a change control board. Again, the
degree of formality with which these people operate will depend on the nature
of the project. The topic of change management is addressed in more depth in
Chapter 8 in the context of project management.

In Figure 2.6, it can be seen that almost any activity can lead to the creation of
a change and that these changes usually flow upwards. This does not mean that
customers never change their minds or that the only problems discovered are
lower level detail problems that flow from a top-down strategy. The situation is
that the downward path is already accounted for in the normal flows, but the
return path has to be explicitly catered for. One typical situation in which a
change request might arise is, for example, that a limitation in a model or an
anomaly in analysis results may well be discovered whilst attempting to generate a
derived requirement or the qualification strategy for a derived requirement. A
change request will recommend a modification to the model(s) and/or additional
analysis work to investigate the problem. Similarly, a problem with in input
requirement may be identified during the analyze and model process leading to
the creation of a change request for the agree requirements process.

2.5 Generic Process Information Model

Before considering the subprocesses within the generic engineer requirements
process, it is useful to introduce a generic information model that supports the
process.

The diagrams used to represent the generic process contain both process sym-
bols and data or information symbols. The diagrams indicate, via the arrows,
which information is being generated and used by each process.

The purpose of an information model is to indicate what types of informa-
tion exist and whether relationships can or should exist between the items of
information. It is also useful to introduce state transition diagrams to indicate
how the state of each type of information can be changed as time proceeds.
Consequently, these state transition diagrams can give a visual indication of
when and how processes interact with each other via the information.

2.5.1 Information Classes

Information types already encountered in the generic process context include:

• input requirement;

• derived requirement;
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• qualification strategy for input requirements;

• qualification strategy for derived requirements;

• change request.

Figure 2.7 shows these five types of information expressed as a Unified Modelling
Language (UML) class diagram. The name of the class is always shown in the
uppermost section (or only section) of the class symbol. The middle section 
(if present) indicates the names of attributes that the class can have. The bottom
section (if present) contains any operations (often called “methods”) that can
operate on the class.

The lines connecting the class symbols show relationships between classes,
and these are called “Associations” in the UML. Thus an input requirement can be
related to a derived requirement by a “satisfied by” relationship. Similarly, the
derived requirement can be related to an input requirement by the inverse “satis-
fies” relationship. (These labels are known as “roles” in the UML.) The asterisk
indicates that zero or more instances of the class can be involved in the associa-
tion. Asterisks at both ends indicate that the association can be many to many.
Thus, in the model in Figure 2.7 zero or more input requirements can be satisfied
by a derived requirement and an input requirement can be satisfied by zero or
more derived requirements. Some readers may question the zero lower limit,
because it suggests that it is not necessary to have any association. However, if the
lower limit were set to one, this would mean that an input requirement could not
exist unless it was associated with at least one derived requirement. Clearly this is
an impossible situation. It is essential that input requirements can exist prior to
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derived requirements being generated. Consequently, this is a reasonable model,
because there may be times during a project when there will be no links between
input requirements and derived requirements – for example, early in the develop-
ment before the links have been established. However, a project manager would
expect that there were links established as soon as possible. This would then indi-
cate that progress had been made and that all derived requirements were justified
by being there to satisfy an input requirement and, conversely, that all input
requirements had been satisfied.

The qualification strategy classes can each qualify the appropriate type of
requirement and the qualification strategy for the derived requirements can
provide more details of an input requirement qualification. This can occur, for
example, in safety critical systems where it may be necessary to perform lower
level detailed inspections that contribute to the satisfaction of the higher level
qualification criteria.

As mentioned earlier, it is possible that a qualification strategy may lead to the
creation of special test rigs. This would be an example of the imposed on rela-
tionship between the qualification strategy for an input requirement and one or
more derived requirements. Further examples of this relationship occur when, in
order to be able to check a component, it is necessary to provide a monitor point.
Such monitor points are often essential to be able to check the performance
(speed, response, throughput, etc.) of a system under operational conditions.

A change request can apply to any of the other four classes. Enclosing the four
classes inside an outer rectangle and making the relationship line touch this
outer rectangle indicates this.

The middle section of the class symbols is used to define attributes that the
class will have. The requirement classes each have the three attributes:

• agreement state;

• qualification state;

• satisfaction state.

These are defined in the following sections by means of statechart diagrams. The
agreement state of the qualification classes is assumed to have the values agreed
or not agreed.

2.5.2 Agreement State

The state chart for the agreement state is shown in Figure 2.8. In this type of
diagram each (rounded) rectangle represents the state of a single requirement 
at some point in its history. The rectangle labelled Being assessed is known as a
“super-state” because it contains other states within it. The lines connecting one
state to another indicate transitions that cause the state to change.

The requirement state starts off in the Proposed state. When the customer is
content that the requirement is sufficiently well formulated to be sent to the sup-
plier, it is sent. The agreement state then enters the Being assessed super-state.
During this state, the customer and supplier negotiate until an agreed require-
ment emerges.
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Once in the Agreed state, the requirement will stay there until either the cus-
tomer or the supplier creates a change request. When this happens, the require-
ment’s state re-enters the Being assessed state until a new agreed requirement
emerges.

Within the Being assessed state, the customer and supplier take turns to sug-
gest alternative forms of the requirement until an agreement is reached. The
agreement state will therefore be in one of the two states shown depending on
which party is currently making the assessment.

2.5.3 Qualification State

The qualification state of a requirement is shown in the statechart in Figure 2.9.
The initial state is that there is No qualification strategy decided. When the quali-
fication strategy has been agreed, the state can proceed to the state Qualification
strategy decided. This state can then remain until a change request is received.
The change may be directed either at the requirement itself or at the qualification
strategy associated with it. When a change is requested, the state becomes
Qualification strategy suspect until the impact of the change has been assessed.
This assessment determines whether the existing qualification strategy can
stand, and the state can return to Qualification strategy decided, or whether an
alternative strategy must be decided, in which case the state becomes No qualifi-
cation strategy decided.
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Figure 2.8 Statechart for agreement state.



2.5.4 Satisfaction State

The statechart for the satisfaction state is shown in Figure 2.10. The logic of this
state is very similar to the qualification states. The starting point is the Not satis-
fied state indicating that no derived requirements have been related to this
requirement. When the input requirement has been satisfied by one or more
derived requirements, the lower level supplier agrees the requirement and the
higher level (customer) agrees that the derived requirements will, indeed, satisfy
the input requirement, the state can be moved to the Satisfied state. It should be
noted that there might be many derived requirements that have to be agreed
before each single input requirement can achieve the Satisfied state.
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When a change is proposed, the satisfaction state immediately becomes
“Satisfaction suspect” irrespective of whether the proposed change is directed at
the higher or lower level requirements. This suspect state is retained until the
impact of the proposed change has been assessed and the satisfaction state can
then become Not satisfied or Satisfied.

2.5.5 Information Model Constraints

Change requests bind together the agreement, qualification and satisfaction
states. Registering a change request immediately changes all three states and
requires additional work, first to determine whether there is any impact and sec-
ond to address the consequences, if any, of the impact. Note that the satisfaction
state can ripple up and down the requirements that are the subject of the satis-
faction relationship. This ripple effect establishes the potential extent of any 
consequential change, that is, the “impact” of the change.

The agreement state of derived requirements must be consistent with the sat-
isfaction state of input requirements, since an input requirement cannot achieve
its satisfied state until the lower level supplier has agreed all of the derived
requirements that satisfy it.

2.6 Generic Process Details

2.6.1 Agreement Process

The agreement process is always a concurrent activity between a supplier at one
level and the customer at the level above as indicated in Figure 2.11.

Before any derivation work can commence, it is necessary to assess the input
requirements to ascertain whether they form an adequate basis for the develop-
ment to proceed.

The assessment must answer the questions:

• Is the requirement complete?

• Is the requirement clear?

• Is the requirement implementable?

• Is the qualification plan clear and acceptable?

Potential answers to these questions lead naturally to the following reasons why
a requirement may be rejected:

• Missing information – e.g. placeholders such as “TBA” (to be agreed), “TBC”
(to be completed) or “TBD” (to be decided) may be used.

• Lack of clarity – ambiguity, contradiction, confusion, etc.

• Impossible to implement – no known solution.

• Unacceptable qualification plan.

Following the review, if a requirement and its qualification plan are acceptable,
the status can be set to “Agreed”.



If the requirement is not acceptable, then an alternative form is sent to the
customer and the onus passes to the customer, and the agreement state (see
Figure 2.8) becomes “Customer assessing requirement from supplier”. If the 
customer is content with the alternative wording, then he can set the state to
“Agreed”. If not, then he or she proposes a further alternative and sends it to the
supplier. The agreement state becomes “Supplier assessing requirement from
supplier”, and the onus returns to the supplier.

This process of proposal and counter proposal continues until an agreement
is reached. Of course, it is possible that agreement may never be reached and a
dispute emerges.

When either party proposes a change the “Being assessed” super-state is entered
with the onus on the party receiving the change. Negotiation follows as
described earlier until a new agreed form can be reached.

During the agreement process, change requests may be generated by the cus-
tomer side to request that the derived requirement is modified. These will pass to
the derive requirements and qualification strategy process so that the effect of the
change can be assessed and, where necessary, adjustments made to one or more
of the derived requirements. Of course, it can happen that the change cannot be
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handled completely at this level and the change may have to be escalated to the
analyze and model process. This need to escalate the decision process up through
the levels makes it imperative that people are working at each level. In other
words, it is necessary to work concurrently on several levels simultaneously. This
need completely destroys the notion of the “waterfall” lifecycle in which a
sequence of activities takes place in a strict top-down order. Instead of a sequence
of activities, development takes place as a concurrent set of negotiations and 
decision taking.

In many projects, the acceptance criteria and qualification plans are only
decided fairly late. This can be well after the requirements themselves have been
agreed and, in some cases, agreement is only reached just prior to the com-
mencement of testing. This is very bad practice and usually leads to delays
caused by late changes in requirements to make them testable!

2.6.2 Analyze and Model

This analysis part of this process is primarily concerned with understanding the
nature and scope of the input requirements to assess the likely risks involved 
in satisfying them. Analysis work can range from feasibility studies to explore
potential implementation options to the building of prototypes of some vital 
or high-risk components. It is often necessary to build performance models to
investigate potential throughput and response figures.

The other uses of models in this process are to understand the nature of and
provide a structure for the derived requirements. The most common models for
understanding and structuring stakeholder requirements are use cases or user
scenarios. These help to understand how people will use the intended system.

The most common models for structuring solutions in the solution domain
are design architectures. These identify elements of the solution and indicate
how they interact.

In many cases, the model is used to establish the design architecture of the
proposed solution. These models are frequently obvious for well-established
development domains (e.g. automobiles, telecommunications, aircraft) where a
de facto architecture exists. However, for innovative developments where there is
no established architecture, the model may be more abstract to allow for poten-
tial alternatives.

In general, the models used will depend entirely on the nature of the develop-
ment that is being undertaken. As indicated earlier, the types of models used are
very much domain specific. In software systems it is increasingly the case that
object models are used. Table 2.1 indicates different sorts of models used in three
industrial domains.

The point of developing the models is to understand the input requirements
together with the proposed qualification strategy and experiment with alterna-
tive solution options prior to deciding how to proceed with the creation of
derived requirements. This work will also consider possible qualification strate-
gies for the derived requirements and this, in turn, may lead to the creation of
requirements for test equipment and/or software. It can also lead to the identifi-
cation of qualification requirements for the derived requirements.



The analyze and model process (Figure 2.12) can be undertaken in parallel
with the agree process since it is likely to generate deeper insight into the nature
of the requirements.

In Chapter 3, some widely used modelling techniques are reviewed, especially
considering those used in the software industry. Chapter 5 explains how to use
user scenario models to aid the understanding of stakeholder requirements and
Chapter 6 considers function-oriented models that help to provide a framework
for system requirements.

During the analyze and model process, it is likely that further questions will
arise concerning the meaning and formulation of input requirements. This gives
rise to change requests, which cause the agree requirements process to be 
re-entered.
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Table 2.1 Examples of modelling techniques

Aircraft Industry
Aerodynamic model
Three-dimensional spatial model
Weight distribution model
Flight simulator

Rail industry
Timetable simulation
Safety, reliability and maintainability models

Car industry
Styling model
Dashboard model
Aerodynamic model

Model

Agree
IR & IQSInput

Requirements

Change
Request

Change
Request

Analysis
Results

Analyze
&

Model

Derive
Requirements

&
Qualification

Strategy

Qualification Strategy
for Input

Requirements

Model

Figure 2.12 Analyze and model process.



38 Requirements Engineering

2.6.3 Derive Requirements and Qualification Strategy

This process is illustrated in Figure 2.13.

Deriving Requirements

The way in which the models are used for this purpose varies, but the simplest
one to consider initially is the derivation of component requirements based on a
design architecture. Here it is possible to determine the specific requirements
that must be satisfied by each component. Some of these requirements may be
identical with one or more input requirements; others may have been derived
from input requirements in order to partition them amongst the components.
A further set of requirements consists of constraints imposed either by the com-
ponent architecture or input requirements. These constraints include interface
constraints and possible physical constraints such as mass, volume, power usage
and heat dissipation.

In practice, some work on the allocation or derivation of requirements for
components may proceed in advance of final agreements on the input require-
ments and their qualification strategy. However, it is not possible to complete this
activity prior to final agreement.

In addition to establishing the component requirements, it is also necessary to
establish the satisfaction relationship between the input requirements and the
derived requirements. This relationship indicates which input requirements are
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satisfied by which derived requirements and can be used to establish that:

• all input requirements are satisfied;

• all derived requirements are necessary (i.e. they directly or indirectly satisfy
one or more input requirements).

It is not sufficient just to assert that a satisfaction link exists, as for example in a
cross-reference matrix. The justification for each link should also be stated.
These justification statements constitute a satisfaction argument.

During the process of generating requirements from the models, it may
become clear that there is a defect or an omission in one or more of the models.
This causes a change request to be issued back to the modelling team, who will
then either modify the model directly or ask for further clarification or change to
input requirements. Thus the change escalation process continues.

Deriving the Qualification Strategy

As discussed above, the satisfaction relationship is about generating derived
requirements from input requirements – how the system is designed. In contrast,
the qualification strategy plans how each requirement will be tested at each level.

The qualification strategy consists of a set of qualification actions, each one a
particular kind of trial, test or inspection. There may be several qualification
actions defined against each requirement.

Each qualification action should take into account the following aspects:

• the kind of action that would be appropriate for the requirement;

• the stage at which each action could take place – the earlier the better;

• any special equipment that would be needed for the action;

• what would constitute a successful outcome.

The qualification plan may be structured according to either the stage or the type
of action.

The qualification actions defined should be appropriate to the level of
requirements. In other words, stakeholder requirements give rise to acceptance
trials, whereas system requirements give rise to system tests, that is, prior to
delivery to the customer. It is not necessary to define system tests against stake-
holder requirements, since those system requirements derived from the stake-
holder requirement will have their own system tests.

Take, for instance, the example shown in Figure 2.14, in which a system require-
ment for a ship is decomposed into two requirements on different subsystems, the
hull and the propulsion system. Two qualification tests are planned against the 
system-level requirement and two more against the subsystem requirements.

Therefore, for a full understanding of how a requirement will be tested,
both the satisfaction relationship and the qualification strategy are necessary. To
understand the qualification status of a high-level requirement, the results of
qualification actions against requirements that flow down from it at all levels
have to be taken into account, by making use of both the satisfaction and the
qualification relationship.
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2.7 Summary

A generic process that can be simultaneously applied at each level in a system
development has been presented. The benefit of this generic process is that it
identifies common actions that are relevant at every level:

• agreeing input requirements with the customer;

• analysis of input requirements to determine the risks and potential pitfalls in
satisfying the requirements;

• creating one or more models to investigate possible strategies for deriving
requirements;

• generating requirements derived from the input requirements via the analyze
and model information;

• agreeing the derived requirements with the team(s) that will be responsible for
implementing them;

• establishing the satisfaction relationship between input requirements and
derived requirements;

• establishing the qualification relationship between derived requirements and
the relevant qualification strategy.

These actions lead to the establishment of information according to the infor-
mation model presented. The current state of the information can be used 
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to measure progress, to assess the impact of proposed changes and to define
metrics on how a project is performing. For example, the state of a requirement
can be captured by its three attributes:

• agreement;

• satisfaction;

• qualification.

The ideal state for any requirement in any system development is that it should be:

• agreed between customer and supplier;

• have a qualification strategy agreed for it;

• be satisfied by lower level requirements (or design).

The extent to which a project’s requirements deviate from this ideal state repre-
sents the degree of risk to which the project is exposed from the requirements
management point of view and also indicates the extent of the work necessary to
get the requirements into the ideal state.

Chapter 2 • A Generic Process for Requirements Engineering 41



Art and science have their meeting point in method.
Edward Bulwer-Lytton, poet, 1803–73

3.1 Introduction

System modelling supports the analysis and design process by introducing a
degree of formality into the way systems are defined. During system develop-
ment it is often the case that pictures are used to help visualize some aspects of
the development. Modelling provides a way of formalizing these representa-
tions, through diagrams, by not only defining a standard syntax, but also pro-
viding a medium for understanding and communicating the ideas associated
with system development.

The art of modelling is arguably the most creative aspect of the work of the
systems engineer. There is no “right” solution and models will evolve through
various stages of system development. Models are most often represented visu-
ally and the information is therefore represented through connected diagrams.
New methods such as object orientation have advanced the concept of model-
ling; however, most approaches are also based on the principles used and tested
over time.

A good model is one which is easily communicated. They need to be used for
communication within a development team, and also to an organization as a
whole, including the stakeholders. The uses of a model can be diverse and cover
a wide spectrum. It might be to model the activities of an entire organization or
to model a specific functional requirement of a system.

Modelling has the following benefits:

• Encourages the use of a precisely defined vocabulary consistent across the system.

• Allows system specification and design to be visualized in diagrams.

• Allows consideration of multiple interacting aspects and views of a system.

• Supports the analysis of systems through a defined discipline.

• Allows validation of some aspects of the system design through animation.

• Allows progressive refinement towards detailed design, permitting test case
generation and code generation.

• Encourages communication between different organizations by using common
standard notations.
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Much of the creativity and art of the systems engineer is expressed in the use of
modelling techniques. This chapter considers a number of these representations
and also some methods for requirements engineering which use them.

3.2 Representations for Requirements Engineering

3.2.1 Data Flow Diagrams

Data flow diagrams (DFDs) are the basis of most traditional modelling methods.
They are the minimalist graphical representation of the system structure and inter-
faces and although initially produced for use in data representation and flow, the
diagrams can in fact be used to show any type of flow, whether a computer-based
system or not. The one output which DFDs do not show is that of control flow.

The elements in a data flow diagram are

• data flows (labelled arrows);

• data transformations (circles or “bubbles”);

• data stores (horizontal parallel lines);

• external entities (rectangles).

The simple example in Figure 3.1 shows the use of a data flow diagram in its tra-
ditional, information systems context.

Flows represent the information or material exchanged between two transforma-
tions. In real-world systems, this may be continuous, on demand, asynchronous, etc.

Credit card holder

Accounts system

Transactions

Check details

Process
transaction

Printer

Print receipt

Figure 3.1 Data flow diagram.



When using the notation, diagrams must be supported by textual descriptions of
each process, data store and flow.

A data dictionary is used to define all the flows and data stores. Each leaf node
bubble defines the basic functionality provided by the system components.
These are described in terms of a P-spec or mini-spec. This is a textual descrip-
tion often written in a pseudo-code form.

The context diagram is the top-level diagram of a DFD and shows the exter-
nal systems interacting with the proposed system, as in Figure 3.2.

Bubbles can be decomposed another layer down. Each bubble is exploded
into a diagram which itself may contain bubbles and data stores. This is repre-
sented in Figure 3.3.
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To illustrate the use of a DFD, consider an example of a context diagram for
an Ambulance Command and Control (C&C) system (Figure 3.4). This is the
starting point for a data-flow analysis of the system.

The primary external entities are the callers, who make the emergency calls,
and the ambulances, which will be controlled by the system. Note that records are
an important output of the system (in fact a legal requirement) and a very
important means of measuring “performance”.

Other potential external entities that would be required for a real system are
shown in the diagram, but for simplicity we shall ignore them.

The next step is to identify the internal functionality of the system, usually
starting by drawing a function for each external entity as the minimal decompo-
sition and then drawing the basic data that must flow between these top-level
functions – see Figure 3.5.

Caller

RecordsAmbulance

Context diagram

Fire brigade

Police

Other
ambulance

C&C
systems

Civil defence

Other potential
external
entities

Figure 3.4 Context diagram for Ambulance C&C system.

Caller

Records
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Current incidents

Ambulance states

Handle callers

Handle ambulances

Keep records

Figure 3.5 Model for Ambulance C&C system.



Following this, decomposition of the top-level functions takes place, thus
including more detail, as shown in Figure 3.6.

The functional hierarchy in a set of data flow diagrams can be used as a frame-
work for deriving and structuring system requirements. Figure 3.7 shows the
functional structure for the Ambulance C&C example derived from Figure 3.6.
Figure 3.7 also indicates some examples of requirements derived from this structure.
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Figure 3.6 Detailed model for Ambulance C&C system.
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The hierarchical breakdown and interfaces give a good view of the compo-
nent model, but they give a poor view of the “transactions” across the system,
that is, from input to output (or to complete some system action), as can be seen
in Figure 3.8.

It is therefore necessary to observe these transactions across the system in
terms of the path(s) they follow, the time they take and the resources they
absorb. Animating the stakeholder requirements and being able to see which
functions are operating, will illustrate major transactions, but an alternative way
of showing the system transactions is to mark them on to a data flow diagram as
shown in Figure 3.9, using the thick arrows.

DFDs are good at presenting structures but they are not very precise. DFDs
are less precise than text for developing a complete definition of a system –
interface lines can mean anything, and single words can summarize anything.
They cannot handle constraints properly.

A DFD clearly shows functions and interfaces. It can be used to identify end-
to-end transactions, but does not directly show them. Ideally, we would like to
view the diagrams with an “expand in place” approach so that it is possible to
view the context in which each level of decomposition is intended to work. Few
CASE tools provide this level of facility.

Figure 3.6 actually breaks the conventions for drawing DFDs, because it shows
a decomposition of the overall system into several processes and also shows exter-
nal agencies with which the system must interact. We advocate a pragmatic use of
DFDs, rather than strict adherence to a conceptually pure ideal. To follow precisely

An input
here….

Performance:
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Communicate with ambulances

Allocate ambulance

Provide on-line advice

Analyze incident

Figure 3.8 System transactions.



the rules for drawing DFDs, the external agencies should appear only in the con-
text diagram, and hence should not be visible at this level. However, the diagram
would be far less meaningful if the external agencies were not shown and the flows
to them left dangling (which is the defined convention for them).

In summary, DFDs:

• show overall functional structure and flows;

• identify functions, flows and data stores;

• identify interfaces between functions;

• provide a framework for deriving system requirements;

• have tools are available;

• are widely used in software development;

• are applicable to systems in general.

3.2.2 Entity–Relationship Diagrams

Modelling the retained information in a system, for example flight plans, system
knowledge and database records, is often important. Entity–relationship dia-
grams (ERDs) provide a means of modelling the entities of interest and the rela-
tionships that exist between them. Chen (1976) initially developed ERDs. There
is now a very wide set of alternative ERD notations.
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An entity is an object that can be distinctly identified, such as customer, sup-
plier, part, or product. A property (or attribute) is information that describes the
entity. A relationship has cardinality, which expresses the nature of the associ-
ation (one-to-one, one-to-many, many-to-many) between entities. A subtype is a
subset of another entity, i.e. a type X is a subtype of Y if every member of X
belongs to Y.

ERDs define a partial model of the system by identifying the entities within
the system and the relationships between them. It is a model that is independent
of the processing which is required to generate or use the information. It is there-
fore an ideal tool to use for the abstract modelling work required within the
system requirements phase. Consider the example Ambulance C&C system in
Figure 3.10.

3.2.3 Statecharts

Functionality and data flows are not enough for requirements definition. It is
also necessary to be able to represent the behaviour of the system and in some
circumstances consider the system as having a finite number of possible “states”,
with external events acting as triggers that lead to transitions between the states.
To represent these aspects, it is necessary to examine what states the system can
be in and how it responds to events in these states. One of the most common
ways of doing this is to use Harel’s statecharts (Harel, 1987).

Statecharts are concerned with providing a behavioural description of a system.
They capture hierarchy within a single diagram form and also enable concurrency
to be depicted and therefore they can be effective in practical situations where 
parallelism is prevalent. A labelled box with rounded corners denotes a state.
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Figure 3.10 ERD for Ambulance C&C system.



Hierarchy is represented by encapsulation and directed arcs, labelled with a
description of the event, are used to denote a transition between states.

The descriptions of state, event and transition make statecharts suitable for
modelling complete systems.

Figure 3.11 presents a statechart for an aircraft flight. The two top-level states
are “airborne” and “on ground”, with defined transitions between them. Inside
the “airborne” state, there are three independent sets of states, and within the “on
ground” state there are states for “able to taxi” and “on runway”. Inside the “on
ground” state, there are further states for “taxiing” and “on stand”.

The “airborne” state is entered when the aircraft wheels leave the ground and
the “on ground” state is entered when the wheels touch down. Each of these
states can now be further refined in a hierarchical way.

Statecharts introduce one further useful notion, that of history. When a 
state with the (H) annotation is re-entered, then the substate that was exited is
also re-entered.

3.2.4 Object-oriented Approaches

Object orientation provides a different approach from that of the structured
analysis approach. Objects describe stable (and hopefully) re-usable components.
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Object orientation tries to maximize this re-usability by asking the systems
engineer to pick persistent objects, i.e. those that can be used in system require-
ments and design.

Hence the goals of object orientation are to:

• encapsulate behaviour (states and events), information (data) and actions
within the same objects;

• try to define persistent objects, which can be used within both requirements
and design phases;

• add information by defining the objects in more detail;

• create new objects by specialization of existing objects, not creation of new
objects.

Object orientation focuses on the behaviour of objects and their inter-
relationships. A flat organization of objects is sometimes assumed, but this is not
necessary, or even desirable. The analyst looks for entities that are long-lived and
models the behaviour of the system around them. This approach gives a coher-
ent behavioural definition of the system. System elements should be re-usable
because the elements (if not their behaviour) can be incrementally enhanced.

Some methodologists insist that design (and even implementation) is refine-
ment of the analysis models. This can be a tall order for non-trivial systems.
However, the progression from analysis, through design to implementation is
often far clearer in object orientation than in other approaches. More analysis
elements end up being represented in the implementation than is common in
structured analysis and design. This is a tremendous aid to traceability and
maintainability.

Class Diagrams

The class diagram is the basic diagramming notation from object-oriented
analysis and design. Object orientation arose out of computer-based simulation.
The basic principle is that the contents of a software system should model the
real world. The natural way to handle this is to have objects in the software that
represent entities in the real world, in terms of both information and actions.

For example, in a banking system, instead of having an accounts file and sep-
arate accounts programs, there are accounts objects that have information such as
balance and overdraft limit and relationships to other objects such as account
owner. These objects have operations (also called methods) to handle the actions
that are performed on accounts, such as check balance, deposit, withdraw.

The original reasoning behind this approach was that it made software devel-
opment far more akin to modelling, and therefore more natural. As with many
good ideas, practicalities intervene, and few object-oriented software systems
can be seen as pure representations of the real world. Nevertheless, there is still
considerable merit in the method.

A class (or object) diagram is shown in Figure 3.12.
Class diagrams express information about classes of objects and their rela-

tionships. In many ways, they are similar to entity–relationship diagrams. Like



them, they show how objects of a certain class relate to other objects of the same
or different classes.

The principal additional pieces of information are:

• operations (methods);

• the concept of generalization;

• attributes within the objects.

Use Cases

Use cases define the interaction that takes place between a user of a system (an
actor) and the system itself. They are represented as process bubbles in a DFD
type of context diagram. The use case diagram contains the actors and the use
cases and shows the relationship between them. Each use case defines functional
requirements for the system. Actors do not need to be human, even though they
are represented as stick figures, but in fact represent roles. Each of the actors will
have an association with at least one use case.

The system boundary is also defined on the use case diagram by a rectangle,
with the name of the system being given within the box. Normally significant,
and useful, textual information is associated with each use case diagram.

Figure 3.13 presents a use case diagram for a banking system.

3.3 Methods

A method is a degree more prescriptive than a modelling approach – it tells us what
to do to and in what order to do it. Methods use various representations ranging
from natural language, through diagrammatic forms to formal mathematics.
Methods indicate when and where to use such representations. Those methods
that use diagrammatic representations are usually referred to as “structural meth-
ods”; those that use object orientation are referred to as “object-oriented methods”
and those that use mathematics are referred to as “formal methods”.

The purpose of the representations used in a method is to capture informa-
tion. The information capture is aided by defining the set of concepts that a dia-
gram represents, and the syntactic rules that govern the drawing of diagrams.
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As we have seen in the earlier sections of this chapter, there are a variety of dif-
ferent representations used for system modelling. Most methods – those of
DeMarco (1978), Yourdon (1990), Rumbaugh et al. (1991a), Shlaer and Mellor
(1998), to name but a few – are a reorganization of these concepts, varying the
choice and the order in which they are done, often with minor enhancements.
Interestingly, similarities between these methods are far more striking than their
differences.

3.3.1 Viewpoint Methods

A viewpoint-based approach to requirements engineering recognizes that
requirements should not be considered from a single perspective. It is built on
the premise that requirements should be collected and indeed organized from a
number of different viewpoints. Basically two different kinds of viewpoint have
been proposed:

• viewpoints associated with stakeholders;

• viewpoints associated with organizational and domain knowledge.

The role of the stakeholder is well understood in requirements engineering;
however viewpoints associated with organization and domain knowledge may
be those associated with some aspect of security, marketing, database system,
regulation, standards, etc. Such viewpoints are not associated with a particular
stakeholder, but will include information from a range of sources.

The following sections consider three different methods based on viewpoints.
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Figure 3.13 Use case diagram for a banking system.



Controlled Requirements Expression (CORE)

CORE was originally developed following work on requirements analysis carried
out for the UK Ministry of Defence. A key finding of this work was that methods
often started by defining the context of a solution to a problem, rather than
attempting to define the problem itself, before beginning to assess possible solu-
tions. CORE was specifically designed to address the latter approach. Figure 3.14
indicates the concepts and representations used in CORE.

The central concept of CORE is the viewpoint and the associated representa-
tion known as the viewpoint hierarchy. A viewpoint can be a person, role or
organization that has a view about an intended system. [This concept has been
used as the basis of user viewpoint analysis by Darke and Shanks (1997).] When
used for system requirements, the viewpoints can also represent the intended
system, its subsystems and systems that exist within the environment of the sys-
tem that may influence what the system must do. The viewpoints are organized
in a hierarchy to provide a scope and also to guide the analysis process.
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If we consider as an example, an aircraft brake and control system (ABCS),
then Figure 3.15 shows a possible list of initial viewpoints arrived at by means of
brainstorming.

Having produced a list of potential viewpoints, they are organized into a hier-
archy by grouping related candidates. Boundaries are drawn around related sets
and this is repeated until all candidates have been enclosed and a hierarchy is
produced.

Figure 3.16 shows a partial hierarchy for the aircraft braking control system.
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Figure 3.15 Initial viewpoints for ABCS.
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In CORE, the actions that each viewpoint must perform are determined. Each
action may use or produce information or other items (e.g. commodities) rele-
vant to the system in question. The information generated by the analysis is
recorded in a tabular collection form (TCF) as indicated in Table 3.1.

Lines are drawn between adjacent columns to indicate the flows that take place.
Once each viewpoint has been analyzed in this way, the TCFs at each level in the
viewpoint hierarchy are checked as a group to ensure that the inputs which each
viewpoint expects are generated by the source viewpoint and that the outputs
which each action generates are expected by the viewpoint(s) indicated as the
destination(s) for them.

Returning to the example aircraft braking control system, part of the TCF for
the system is shown in Table 3.2.
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Table 3.1 Tabular collection form.

Source Input Action Output Destination

The viewpoint from The name of the The action performed on The name(s) of any The viewpoint to 
which the input input item one or more inputs to outputs generated by which the output
comes generate required outputs the action is sent

Channel 1,2 Power On of
Channel 1,2

Self Test OK  Channel 1,2 

Self Test Fail 

Cockpit Power Up Power Up
Self Test

Channel Fault 

NWS Isolator
Valve Fault 

Autobrake
Fault

System
recording

Shutoff Valve
Fault

Towing State

Other Sensors/
Actuators

Towing
Controlled

Monitor
Towing

Towing
Control On 

Aircraft

Towing
Control Off Channel 1,2 Operational

of Channel 1,2 

Wheel Speed Wheel
Speeds

Monitor
Wheel Speeds 

Speed �70
knots

Cockpit

Source Input Action Output Destination

Table 3.2 TCF example.
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Further analysis consists of developing a more detailed data flow model for
each viewpoint in turn. The starting point for these single viewpoint models
(SVMs) is the information recorded in the TCFs. SVMs add flows that are
entirely within a viewpoint and data stores. The SVMs also define how actions
are controlled and triggered by flows from other actions.

Thus the analysis is driven top-down by analyzing each stratum in the view-
point hierarchy. With top-down analysis, it can be difficult to know when to stop
and to predict where the analysis will lead. The approach of first identifying the
viewpoints and then using them to control the subsequent analysis provides a
controlled way of doing analysis in a top-down manner. This overcomes a major
problem associated with data flow-based analysis. This element of control is
alluded to in “Controlled Requirements Expression”, the full name of CORE.

The other main concept of CORE is the system transaction. This is a path
through the system from one or more inputs, data flows or events to one or more
specific output flows or events. The system transactions address how a system is
intended to operate. They provide a view orthogonal to the top-down analysis.
System transactions provide a sound basis for discussing the non-functional
requirements.

Structured Analysis and Design Technique (SADT)

SADT is a method of structured analysis, based on the work undertaken by Ross
on structured analysis (SA) in the 1970s (Ross, 1977). It is graphically oriented
and adopts a purely hierarchical approach to the problem with a succession of
blueprints both modularizing and refining it until a solution is achieved. The
basic element of SADT is the box, which represents an activity (in activity dia-
grams) or data (in data diagrams). The boxes are joined by arrows representing
either the data needed or provided by the activity represented by the box (in
activity diagrams), or the process providing or using the data (in data diagrams).

There are four basic arrows associated with a box, as shown in Figure 3.17. The
type of arrow is implied by its point of connection to the box:

• Input arrows enter the box from the left side, and represent data that is avail-
able to the activity represented by the box.

• Output arrows exit the box from the right side, and represent data that is pro-
duced by the activity represented by the box, i.e. the input data has been
transformed by the activity represented by the box to produce this output.

• Control arrows enter the box from the top and govern the way in which the
transformation takes place.

• Mechanism arrows enter the box from below and control the way in which the
activity may use outside mechanisms, e.g. a specific algorithm or resources.

An SADT diagram is made up of a number of boxes with the associated set of
arrows. A problem is refined by decomposing each box and generating a hier-
archical diagram, as shown in Figure 3.18.

Figure 3.19 shows an example activity diagram for an ABCS. This decompos-
ition proceeds until there is sufficient detail for the design to proceed.



Viewpoint-oriented Requirements Definition (VORD)

VORD (Kotonya and Sommerville, 1996) is a method based on viewpoints. The
model used is a service-oriented one, where the viewpoints are considered to be
clients, if one was to think of it as a client–server system.

A viewpoint in VORD receives services from the system and in turn passes
control information to the system. The service-oriented approach makes VORD
suited for specifying interactive systems.
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There are two types of viewpoint in VORD – direct and indirect:

• Direct viewpoints receive services from the system and send control infor-
mation and data to the system.

• Indirect viewpoints do not interact directly with the system but rather have
an “interest” in some or all of the services delivered by the system.

There can be a large variation of indirect viewpoints. Examples include engin-
eering viewpoints concerned with aspects to be undertaken by the systems engi-
neer, external viewpoints which may be concerned with aspects of the system’s
environment and organization viewpoints which may be concerned with aspects
of safety.

There are three main iterative steps in VORD:

• viewpoint identification and structuring;

• viewpoint documentation;

• viewpoint requirements analysis and specification.

The graphical notation for a viewpoint is shown in Figure 3.20. A viewpoint is
represented by a rectangle, which contains an identifier, label and type. View-
point attributes are represented by labels attached to a vertical line dropping
down from the left-hand side of the rectangle.

The VORD method guides the systems engineer in identifying viewpoints. It
provides a number of abstract viewpoints which act as a starting point for iden-
tification (see Figure 3.21) (following the convention for VORD diagrams, direct
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viewpoints are unfilled rectangles and indirect viewpoints are in greyscale). This
class hierarchy is then pruned to eliminate viewpoint classes which are not rele-
vant to a particular problem. The system stakeholders, the viewpoints represent-
ing other systems and the system operators are then identified. Finally, for each
indirect viewpoint that has been identified, consideration is given to who might
be associated with it.

Based on this approach, Figure 3.22 gives the viewpoints for a “pay and dis-
play” car park system.

“Cash User” and “Credit Card User” viewpoints are specializations of the 
“Car Park Customer” viewpoint. “Cash Collector” and “Car Park Manager” are 
specializations of “Car Park Staff”. The “Ticket Issuing” viewpoint represents the
database of the organization responsible for issuing the pay and display tickets.
The “Credit Card Database” is external and holds details of the customer’s credit
card details.
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The next step in VORD is to document each of the viewpoint requirements.
An example of how this is achieved is given in Table 3.3, which shows the initial
viewpoint requirements for the “Car Park Customer” viewpoint. The require-
ment type refers to a service (sv) or to a non-functional (nf) requirement.

VORD also allows for attributes of viewpoints to be provided which charac-
terize the viewpoint in the problem domain. These are important as they provide
the data on which the system operates. As stated previously, these are represented
on the viewpoint diagram by labels attached to a vertical line dropping down
from the left-hand side of the rectangle as shown in Figure 3.23.
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Figure 3.22 “Pay and display” machine viewpoints.

Table 3.3 Requirements from the car park customer viewpoint.

Viewpoint requirement

Identifier Label Description Type

1 Customer 1.1 Provide facility for ticket based on sv
suitable payment and length of stay

1.1 Credit Card User 1.1.1 Provide facility based on valid credit card sv
1.1.2 Provide ticket issuing service for customer sv
1.1.3 Ticket issuing service should be available nf

99/100 requests
1.1.4 Ticket issuing service should have a response nf

time of no more than 30 seconds
1.2 Cash User



System behaviour is modelled using event scenarios. These describe how the
system interacts with the environment and provide a way of describing the com-
plex interactions between the various viewpoints and the system.

The final stage of VORD is to translate the results of the requirements analy-
sis process into a requirements document, based on an industry standard.

3.3.2 Object-oriented Methods

During the late 1980s and early 1990s, numerous object-oriented (O-O) methods
emerged proposing different approaches to O-O analysis and design. The earli-
est uses of O-O methods were in those companies where time to market and
resistance to change were paramount. They included telecommunications,
financial organizations and later aerospace, healthcare, banking, insurance,
transportation, etc. The main players were object-oriented analysis (OOA),
object modelling technique (OMT), Booch and Objectory. Shlaer and Mellor’s
method (Shlaer and Mellor, 1998) was also there, but would not have been
regarded as a truly O-O method. However, it did play an important role in assist-
ing in the identification of objects.

OOA

OOA was developed by Coad and Yourdon (1991a). OOA is spread across three
layers, as they are called. The first layer is the subject layer, which is concerned
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with object identification. Here the users are able simply to represent their
understanding of the problem domain by identifying relevant problem domain
objects. The second layer, called the attributes layer, is concerned with identify-
ing attributes (data elements) associated with problem domain objects. The
third and final layer is the services layer. This specifies the services (or oper-
ations) performed by each object.

In effect, OOA helps the systems engineer in identifying the requirements of
a system, rather than how the software should be structured or implemented. It
therefore describes the existing system, its operation and how the software sys-
tem should interact with it.

OMT

The OMT method was developed by Rumbaugh (Rumbaugh et al., 1991a, b). It
aims to construct a series of object models that refine the system design until the
final model is suitable for implementation. The approach is achieved in three
phases. The analysis phase produces models of the problem domain. Three types
of model are produced – the object model, the dynamic model and the func-
tional model. The object model is the first one to be built. It uses notation simi-
lar to that used in OOA, which is based on the concept of ER modelling which
describes the objects, their classes and the relationships between the objects. The
dynamic model represents the behaviour of the system and uses an extension of
Harel’s statecharts. The functional model describes how the system functions are
performed through the use of DFDs.

These models are arrived at by using an iterative approach. The design phase
then structures the model and the implementation phase takes into account the
appropriate target language constructs. In this way, OMT covers not only the
requirements capturing phase but also helps to inform the architectural design
process.

Booch

The Booch method (Booch, 1994) is one of the earliest O-O methods proposed.
Although the method does consider analysis, its strength lies in the contribution
it makes to the design of an object-oriented system. The approach is both incre-
mental and iterative and the designer is encouraged to develop the system by
looking at both logical and physical views of the system.

The method involves analyzing the problem domain to identify the set of
classes and objects and their relationships in the system. These are represented
using a diagrammatic notation. The notation is extended further when con-
sidering the implementation of classes and objects and the services they provide.
The use of state transition diagrams and timing diagrams is also an important
part of this method.

Objectory

Jacobsen proposed the Objectory method (Jacobsen et al., 1993). Many of its
ideas are similar to those in other O-O methods, but the fundamental aspect of



this method is the scenario or use case, as described earlier in this chapter. The
system’s functionality should therefore be able to be described based on the set
of use cases for a system – the use case model.

This model is then used to generate a domain object model, which can
become an analysis model by classifying the domain objects into three types:
interface objects, entity objects and control objects. This analysis model is then
converted to a design model, which is expressed in terms of blocks, from which
the system is implemented.

The UML

The Unified Modelling Language (UML) (OMG, 2003) was an attempt to bring
together three of the O-O approaches which had gained greatest acceptance –
Booch, OMT and Objectory. In the mid-1990s, Booch, Rumbaugh and Jacobsen
joined Rational to produce a single, common and widely usable modelling lan-
guage. The emphasis was very much on the production of a notation rather than
a method or process.

Since its inception, the UML has undergone extensive development and
changes with various versions being launched. UML 1.0 became a standard in
1997 following acceptance by the Object Management Group (OMG). Version 1.3
was released in 1999 and in 2003 the UML 2.0 was released, which is the version
used in this book. A discussion of the UML is provided in the following section.

3.3.3 The UML Notation

The UML is made up of a number of models, which together describe the system
under development. Each model represents distinct phases of development and
each will have a separate purpose. Each model is comprised of one or more of
the following diagrams, which are classified as follows:

• structure diagrams;

• behaviour diagrams;

• interaction diagrams.

The 13 diagrams of UML2 are shown in Figure 3.24 and represent all the dia-
grams which are available to the systems engineer. In reality many will not be used
and often only a small subset of the diagrams will be necessary to model a system.
Class diagrams, use case diagrams and sequence diagrams are probably the most
frequently used. If dynamic modelling is required, then activity diagrams and state
machine diagrams should be used.

It is how the UML diagrams contribute to modelling which is of interest to us.
The purpose of this section is not so much to provide an overview of UML2,
but rather to show how models can be used in various aspects of requirements
engineering.

Consider the banking example used earlier in this chapter. The class is the
basic modelling diagram of the UML. Figure 3.25 presents a UML class diagram
extending the set of classes to include “Account”, “Owner”, “Current Account”
and “Issued Cheque” – used to model the system. As shown, each class has an
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Figure 3.24 UML diagrams.
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Figure 3.25 Extended UML class diagram.



associated set of attributes and operations, i.e. the relationships (in this case,
generalization and association) which exist between one or more classes.

Figure 3.26 gives a different example, that of a Baggage Handling System.
This considers the stakeholder requirements which are firmly within the pro-
blem domain. When modelling, it is often the case that there are external sys-
tems, or perhaps, devices which the system will use. These can be represented by
classes. For the Baggage Handling System, classes are identified such as “Pass-
enger”, “Clerk” and “Conveyor”, and also two embedded systems, “Baggage
CheckInSystem” and “WeightSystem”. The associations between the systems
and other classes serve to define aspects of the system context.

If we turn to the solution domain, then it becomes necessary to reason about
function and behaviour. The class diagram therefore needs to be elaborated in
order to show these attributes which will be necessary for modelling the system
requirements. This is shown in Figure 3.27.

Use case modelling is used to describe the functional requirements of sys-
tems. For our example we will consider two use case diagrams – one for the
Baggage Handling System and one for the Baggage Check-in System. Figure 3.28
shows the first of these portrayed as the top-level system. Figure 3.29 is the use
case diagram for the Baggage Check-in System. Both diagrams identify their
respective system boundaries (marked by a rectangle) and identify the various
stakeholders or actors which lie outside the system boundary. It should be noted
that the highest level goals of the stakeholders are represented by the use cases.
The «include» relationship shows that a use case is included in another use case,
indicating the start of hierarchical decomposition.

The UML also provides diagrams to allow the systems engineer to model
functionality and behaviour. A sequence diagram shows the interaction and 
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Figure 3.27 Elaborated class diagram.
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collaboration which exists between objects and thus can model complex behav-
iour. It is depicted by messages which flow between objects over time. Figure 3.30
shows a sample sequence diagram. The objects are represented by rectangles at
the top of the diagram and each is attached to a vertical timeline. Messages are
ordered by their sequence and are represented by arrows between the timelines.
Also included is the feature of an “interaction frame” and the operation “ref”
has been used to indicate “reference” i.e. refers to an interaction defined in
another diagram, in this case “WeighBaggage” and “LabelBaggage”. These
frames have been included to cover the lifelines involved in the interaction.

3.3.4 Formal Methods

Formal methods provide a more rigorous representation based on mathematics,
and can be used to conduct mathematical proofs of consistency of specification
and correctness of implementation. Rigorous checking is possible, which can
eliminate some kinds of errors. This may be necessary in certain types of sys-
tems, for example, nuclear power stations, weapons and aircraft control systems.

Z (Spivey, 1989), VDM (Jones, 1986), LOTOS (Bjorner, 1987) and B (Abrial,
1996) are the most common formal methods for formal definition of function-
ality. LOTOS (Language of Temporal Ordering Specification), VDM (the Vienna
Definition Language) and Z are formal methods standardized by ISO. B and
LOTOS models are executable, and B models can be refined into code.

Formal methods are particularly suitable for critical systems, i.e. those in
which potential financial or human loss would be catastrophic, and the cost of
applying mathematically rigorous methods can be justified.
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Formal methods are slowly becoming more important. If their scope can be
broadened to address wider system issues, they will become more useful.

Z – A Model-based Formal Method

Z is a formal specification notation based on first-order predicate logic and set
theory. The notation allows data to be represented as sets, mappings, tuples, rela-
tions, sequences and Cartesian products. There are also functions and operation
symbols for manipulating data of these types.

Z specifications are presented in a small, easy to read boxed notation called a
“schema”. Schemas take the form of a signature part and a predicate part. The
signature part is a list of variable declarations and the predicate part consists of
a single predicate. Naming a schema introduces a syntactic equivalence between
the name and the schema. The Z schema is illustrated in Figure 3.31.

Specifications in Z are presented as a collection of schemas where a schema
introduces some specification entities and sets out the relationships between
them. They provide a framework within which a specification can be developed
and presented incrementally.

Figure 3.32 shows a Z specification for the “issue” operation for a library,
where the general behaviour of the overall library system would be specified in a
schema named “library”. The notation �Library is called a delta schema and
indicates that the “issue” operation causes a state change to occur in the library.

Passenger CheckInClerk BaggageCheckInSystem

WeighBaggage

LabelBaggage

YourTicketsPlease()

HereYouAre()

BaggagePlease()

PutBaggage()

TransportBaggage()
YourBoardingCard()

ref

ref

Figure 3.30 Example sequence diagram.



The schema in Figure 3.32 distinguishes between inputs and outputs, and
before states and after states. These operations are denoted as follows:

• “?” denotes the variable as an input to the operation;

• “!” denotes the variable as an output of the operation.

A state after the operation is decorated with a prime, e.g. stock�, to distinguish it
from the state before the operation.

3.4 Summary

This chapter has addressed the issues of system modelling, particularly with
respect to the solution domain. A variety of techniques and methods have been
presented ranging from those which have stood the test of time to those which
have been developed more recently. All have been widely used in industry. The
contents of this chapter provide a basis for the discussion on modelling stake-
holder and system requirements in subsequent chapters.
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Library = = [shelved: P Book: readers: P Reader:
                  stock: P Book: issued: P Book]

Figure 3.32 Example schema.



To write simply is as difficult as to be good.
William Somerset Maugham, author, 1874–1965

4.1 Introduction

Requirements engineering is a technical process. The writing of requirements is
therefore not like other kinds of writing. It is certainly not like writing a novel, or
a book like this; it is not even like the kind of “technical writing” seen in instruction
manuals and user guides.

The purpose of this chapter is to present those aspects of writing requirements
that are common to every development layer. Wherever the generic process is
instantiated, certain principles and techniques are constant in their application
to the expression and structuring of requirements.

In writing a requirements document, two aspects have to be carefully balanced:

• the need to make the requirements document readable;

• the need to make the set of requirements processable.

The first of these concerns the structure of the document, how it is organized
and how the flow of it helps the reviewer to place individual requirement state-
ments into context. The second focuses on the qualities of individual statements
of requirement, the language used to promote clarity and preciseness and how
they are divided into single traceable items.

The experienced requirements engineer comes to realize that a word processor
alone is not sufficient to manage a set of requirements, for the individual statements
need to be identified, classified and traced. A classic problem, for instance, is the
use of paragraph numbers to identify requirements: insert a new one in the middle,
and suddenly all the subsequent requirement identifiers have changed.

Equally, those who have tried simply to manage their requirements in a database
quickly realize that tables full of individual statements are unmanageable. Despite
having the ability to identify, classify and sort requirements, vital contextual
information provided by the document has been lost; single statements lose
meaning when separated from their place in the whole.

So both aspects – document and individuality – need to be maintained.
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The writing and the reviewing of requirements (or any other kind of document,
for that matter) should go hand-in-hand, in that the criteria for writing a good
requirement are exactly those criteria against which the requirement should be
reviewed. Hence the subjects are treated together in this chapter.

4.2 Requirements for Requirements

Before discussing how requirements documents and statements should be written,
it is best to review some of the objectives and purpose for the writing of require-
ments in the first place. This will help in understanding why certain principles
are suggested.

The starting place is the identification of stakeholders, which is shown in
Table 4.1.

Table 4.2 lists capabilities required by the various stakeholders that relate to
how requirements documents and statements are written. These are the basic
things that one needs to be able to do to – and with – requirements, including

Table 4.1 Stakeholders for requirements

Stakeholder Role

Author Creates the requirements and incorporates changes
Publisher Issues and archives the requirements document
Reviewer Reviews the requirements and suggests changes
Implementer Analyses the requirements and negotiates changes

Table 4.2 Abilities required for requirements

Ability

• Ability uniquely to identify every statement of requirement

• Ability to classify every statement of requirement in multiple ways, such as:
By importance
By type (e.g. functional, performance, constraint, safety)
By urgency (when it has to be provided)

• Ability to track the status of every statement of requirement, in support of multiple processes, such as:
Review status
Satisfaction status
Qualification status

• Ability to elaborate a requirement in multiple ways, such as by providing:
Performance information
Quantification
Test criteria
Rationale
Comments

• Ability to view a statement of requirement in the document context, i.e. alongside its surrounding
statements

• Ability to navigate through a requirements document to find requirements according to a particular
classification or context

• Ability to trace to any individual statement of requirement



identification, classification, elaboration, tracking status, tracing, placing in context
and retrieving. How requirements are expressed and organized has a great influence
on how “useable” the sets of requirements becomes.

4.3 Structuring Requirements Documents

Requirements documentation can be very large. On paper, the complete subsystem
requirements for an aircraft carrier, for instance, may fill many filing cabinets. It
is not unknown for supplier responses to large systems to be delivered in lorries.
In such situations, having a well-understood, clearly documented structure for
the whole requirements set is essential to the effective management of complexity.

Organizing requirements into the right structure can help:

• minimize the number of requirements;

• understand large amounts of information;

• find sets of requirements relating to particular topics;

• detect omissions and duplications;

• eliminate conflicts between requirements;

• manage iteration (e.g. delayed requirements);

• reject poor requirements;

• evaluate requirements;

• reuse requirements across projects.

Documents are typically hierarchical, with sections and subsections to multiple
levels. Hierarchies are useful structures for classification, and one way of structur-
ing a requirements document is to use the section heading structure to categorize
the requirements statements. In such a regime, the position that a requirement
statement has in the document represents its primary classification. (Secondary
classifications can be given through links to other sections, or by using attributes.)

Chapter 3 describes how system models frequently use hierarchies in the
analysis of a system. Examples are:

• goal or capability decomposition as in stakeholder scenarios;

• functional decomposition as in data flow diagrams;

• state decomposition as in statecharts.

Where requirements are derived from such models, one of the resulting hierarchies
can be used as part of the heading structure for the requirements document.

In addition to requirements statements themselves, requirements documents
may contain a variety of technical and non-technical text, which support the
understanding of the requirements. These may be such things as:

• background information that places the requirements in context;

• external context describing the enclosing system, often called “domain
knowledge”;

• definition of the scope of the requirements (what is in and what is out);

• definitions of terms used in the requirement statements;

• descriptive text which bridges different sections of the document;
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• stakeholder descriptions;

• summary of models used in deriving the requirements;

• references to other documents.

4.4 Key Requirements

Many organizations use the concept of “key requirements”, particularly at the
stakeholder level. Often referred to as KURs (key user requirements) or KPIs
(key performance indicators), these requirements are a small subset abstracted
from the whole that capture the essence of the system.

The guiding philosophy when selecting key requirements is similar to that
used by Jerome K. Jerome’s Three Men in a Boat, who, when planning for the trip,
realized that

the upper reaches of the Thames would not allow the navigation of a boat 
sufficiently large to take the things [they] had set down as indispensable. …

George said, “We must not think of the things we could do with, but only the
things that we cannot do without.”

Every key requirement should solicit a negative response to the question:

If the solution didn’t provide me with this capability, would I still buy it?

or, if at the system level,

If the system didn’t do this, would I still want it?

In this way, the key requirements become those that are absolutely mandatory.
(Of course, everything is negotiable, but trading key requirements would always
engender very careful consideration.)

Where appropriate, each key requirement should be quantified with perform-
ance attributes. Doing this allows them to be used as KPIs, used to assess alternative
proposals against the requirements, or used as a summary of vital statistics on
project progress.

4.5 Using Attributes

It is clear from the discussions of process in previous chapters, and from the list
of abilities in Table 4.2, that a simple textual statement is not sufficient fully to
define a requirement; there is other classification and status information that
each requirement carries.

Rather than clutter the text of a requirement, additional information should
be placed in “attributes” attached to the requirement. Attributes allow the informa-
tion associated with a single requirement to be structured for ease of processing,
filtering, sorting, etc. Attributes can be used to support many of the abilities in



Table 4.2, enabling the requirements to be sorted or selected for further action,
and enabling the requirements development process itself to be controlled.
Figure 4.1 shows an example of a requirement with a number of attributes.

The particular attributes used will depend on the exact processes that need to
be supported. Some attributes are entirely automatic, e.g. dates and numbers,
some come from users, e.g. priority, and other attributes are flags, which are set
after analysis work, e.g. checkability.

The suggestions for attribute categories in Table 4.3 are drawn in part from some
work carried out by a requirements working group in the UK chapter of INCOSE.

4.6 Ensuring Consistency Across Requirements

A frequent concern in managing large sets of requirements is being able to identify
conflicting requirements. The difficulty is in spotting that two statements many
pages apart are in conflict. What techniques can be applied to assist in identifying
these potential inconsistencies?

One answer lies in classifying requirements in several ways and using filtering
and sorting techniques to draw together small numbers of statements that address
the same topic. Many requirements will touch on several aspects of a system. For
instance, a requirement primarily about engine performance may also contain 
a safety element. Such a statement should therefore be viewed in both an engine
performance context and a safety context.

To facilitate this, requirements can be given primary and secondary classifica-
tions, as discussed in Section 1.3. Typically, each has a single primary classification
(perhaps by virtue of its position in the document), and multiple secondary classi-
fications, perhaps using links or attributes.

A thorough review process can now include the systematic filtering of state-
ments by keywords used in primary and secondary classifications. For example,
filtering on all requirements to do with safety will draw together statements
whose primary classifications may be diverse. These can then be reviewed in
proximity for potential conflicts.

4.7 Value of a Requirement

Some requirements are non-negotiable. If they are not met, the product is of
no use.
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[SH234] The ambulance control system shall be able to handle 
up to 100 simultaneous emergency calls.

Source : R. Thomas
Priority : Mandatory
Release : 1
Review status : Accepted
Verifiable : Yes
Verification : By simulation, then by system test

Figure 4.1 Requirements attributes.
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Table 4.3 Categories of attributes

Category Example values

Identification

• Identifier Unique reference

• Name Unique name summarizing the subject of the requirement

Intrinsic characteristics

• Basic type Functional, performance, quality factor, environment, interface, constraint,
non-requirement

• Quality factor subtype Availability, flexibility, integrity, maintainability, portability, reliability, safety,
security, supportability, sustainability, usability, workmanship

• Product/process type Product, process, data, service

• Quantitative/qualitative type Quantitative, qualitative

• Life-cycle phase Pre-concept, concept, development, manufacturing, integration/test,
deployment/delivery/installation, operation, support, disposal

Priority and Importance

• Priority (compliance level) Key, mandatory, optional, desirable
or
Must, Should, Could,Wish (MoSCoW)

• Importance 1 to 10

Source and ownership

• Derivation type Allocation, decomposition

• Source (origin) Name of document or stakeholder

• Owner Name of stakeholder

• Approval authority Name or person

Context

• Requirements set/document (Best handled through positioning the requirement in a structured document)

• Subject

• Scope

Verification and validation

• V&V method Analysis, inspection, system test, component test

• V&V stage (See life-cycle phase)

• V&V status Pending, pass, failed, inconclusive

• Satisfaction argument Rationale for choice of decomposition

• Validation argument Rationale for choice of V&V methods

Process support

• Agreement status Proposed, being assessed, agreed

• Qualification status Not qualified, qualified, suspect

• Satisfaction status Not satisfied, satisfied, suspect

• Review status To be reviewed, accepted, rejected

Elaboration

• Rationale Textual statement about why the requirement is present

• Comments Textual comments of clarification

• Questions Questions to be posed for clarification

• Responses Responses received for clarification

Miscellaneous

• Maturity (stability) Number of changes/time

• Risk level High, medium, low

• Estimated cost

• Actual cost

• Product release Version(s) of product meeting the requirement



Other requirements are negotiable. For instance, if a system is required to sup-
port at least 100 simultaneous users, but the delivered solution only supports 99,
then it is most likely still of some value to the customer.

Capturing the value of a requirement can be a challenge. A way needs to be
found of expressing the idea that, while the target may be 100 simultaneous
users, 75 would be acceptable, but anything less than 50 is not acceptable, and
maybe 200 would be even better.

One approach to this is to provide several performance values. Here is an
example of a three-valued approach:

• M: the mandatory lower (or upper) limit;

• D: the desired value;

• B: and the best value.

These three values can be held in separate attributes, or represented within the
text in a labelled form, such as “The system shall support [M: 50, D: 100, B: 200]
simultaneous users.”

Another approach is to represent the value of a requirement by supplying a
function that maps performance to some representation of value, usually a figure
between 1 and 100. Figure 4.2 shows four examples of different shapes of value
function. Function (a) shows the example above, where the number of simultan-
eous users should be maximized, but more than a minimum number is mandatory.
Function (b) is the binary case: either the performance of 100 is exceeded or not.
A performance of 200 does not add extra value. Function (c) shows a performance
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that is to be minimized (weight, for instance), whereas (d) shows one that is to
be optimized (engine revs, for example).

This is a very visual way of presenting value. One glance at the shape of the
value curve indicates the nature of the requirement: minimize, maximize, optimize,
etc. It also allows the engineers to understand the degrees of freedom they have
in designing solutions that deliver the best overall value, by trading off performance
between requirements. This is why this approach is frequently used as part of the
tender assessment process, to judge between the relative values of alternative
proposals.

An attribute can be used to represent a value function as a set of perform-
ance/value pairs.

4.8 The Language of Requirements

The use of consistent language makes it easier to identify different kinds of
requirements. A simple example of this is the use of “shall” as a key word to indicate
the presence of a requirement in the text. Some approaches go so far as to use
“shall”, “should” and “may” to indicate different priorities of requirement.

The language used will vary depending on the level of requirement being
expressed. The principle difference is between stakeholder requirements that lie
in the problem domain and system requirements that lie in the solution domain
(see Section 1.7).

As is emphasized in Chapter 5, stakeholder requirements are primarily con-
cerned with capability and constraints on capability. A capability statement should
express a (single) capability required by one or more identified stakeholder types
(or user groups). The types of stakeholder should be stated in the requirement text.

A typical capability requirement takes the following form:

The <stakeholder type> shall be able to <capability>.

Where there are some aspects of performance or constraint associated solely with
the requirement, they may also be stated in the text, for instance giving the form:

The <stakeholder type> shall be able to <capability>
within <performance> of <event>
while <operational condition>.

For example, the following capability requirement has a performance and
constraint attached:

The weapons operator shall be able to fire a missile
within 3 seconds of radar sighting
while in severe sea conditions.

Less commonly, a single performance attribute is associated with several capabil-
ities. For example, several capabilities may need to be provided with a set time.
In practice, these capabilities are usually subdivisions of a high-level capability,
to which the performance attribute should be attached.

It frequently occurs, however, that constraints have to be expressed separately
from the capabilities, either because they apply to the whole system, or because



they apply to diverse capabilities. Generally, constraints in stakeholder require-
ments are based either on minimum acceptable performance or are derived from
the need to interact with external systems (including legal and social systems).

A typical constraint requirement takes the following form:

The <stakeholder> shall not be placed
in breach of <applicable law>.

E.g. The ambulance driver shall not be placed
in breach of national road regulations.

Since they lie in the solution domain, the language of systems requirements is
slightly different. Here the focus is on function and constraints on the system.
The language depends on the kinds of constraint or performance associated with
the requirement. Here is an example of a function with a capacity performance:

The <system> shall <function>
not less than <quantity> <object>
while <operational condition>.

E.g. The communications system shall sustain telephone contact
with not less than 10 callers
while in the absence of external power.

Here is another that expresses a periodicity constraint:

The <system> shall <function> <object>
every <performance> <units>.

E.g. The coffee machine shall produce a hot drink
every 10 seconds.

Further discussion of this topic can be found in the following section.

4.9 Requirement Boilerplates

The language of requirements in Section 4.8 was expressed in terms of boiler-
plates. This section extends this concept, and applies it to the collection and
expression of constraint requirements.

Using boilerplates such as the examples in Section 4.8 is a good way of standard-
ising the language used for requirements. A palette of boilerplates can be collected
and classified as different ways of expressing certain kinds of requirement. As an
organization gains experience, the palette can be expanded and reused from
project to project.

Expressing a requirement through a boilerplate now becomes a process of:

• selecting the most appropriate boilerplate from the palette;

• providing data to complete the placeholders.

The requirement can refer to a single document-wide instance of the boilerplate,
and placeholders can actually be collected separately as attributes of the require-
ment. This is illustrated in Figure 4.3.
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From this information, the textual form of the requirement can be generated
when needed. Separating the template has the following advantages:

• Global changes in style can be effected: to change the ways certain requirements
are expressed, only the centrally held boilerplate needs to be edited.

• System information can be processed more easily: collecting, for instance, all
the “<operational condition>” placeholders into a separate attribute allows
for easy sorting and filtering on operational conditions.

• Confidential information can be protected: in contexts where requirements
contain classified or secret information, boilerplates can be used to separate
out just those parts of each statement that need to be protected.

The last point merits some elaboration. In military or commercially sensitive
projects, there is a need to restrict the availability of some information, but not
all. Fairly often, a single statement of requirement will contain a mixture of
information classified at various levels. For instance, it is obvious that the ship is
going to fire missiles; what is classified is the performance associated with that
capability: the state of readiness, the frequency, the range, etc. Rather than having
to hide the whole statement because some of the elements are confidential, boiler-
plates permit the statement to be visible without some of its more sensitive
attributes. Indeed, different readers may be able to see different sets of attributes.

Since there are such a wide variety of constraints, these tend to be the most
difficult to express, and this is where boilerplates can help the most. Here is an
approach to capturing constraint requirements:

1. Collect all capability requirements first.
2. Construct a list of all the different kinds of constraint that may need to be

expressed. If this list is based on past experience of the same kind of system,

The <system> shall <function> <object>
every <performance> <units>

Template 34

Requirement 347 � Template 34 �

<system> � coffee machine
<function> � produce

<object> � a hot drink
<performance> �10

<units> � seconds

Requirement 348 � Template 34 �

<system> � coffee machine
<function> � produce

<object> � a cold drink
<performance> � 5

<units> � seconds

Figure 4.3 Global templates.



then boilerplates should exist for each kind. Otherwise, suitable boiler-plates
may have to be defined.

3. For each capability, consider each kind of constraint, and determine whether
a constraint needs to be captured. A large table could be used for this; in each
cell, indicate where constraints exist by entering the appropriate subordinate
clauses to the requirement; where no constraint is necessary, enter “N/A” in
the appropriate cell.

4. Select the boilerplate that best matches the constraint to be expressed, and
instantiate it.

5. The process is finished when every “cell” has been considered.

This process answers two frequently asked questions:

• How do I express constraint requirements? (use boilerplates).

• How do I know when all constraints have been collected? (use this systematic
coverage approach).

Table 4.4 shows some examples of boilerplates classified by type of constraint.
Note that there may be several ways of expressing similarly classified constraints,
and that constraints may have a compound classification. Only those parts of the
boilerplate that are in bold font are actually relevant to the constraint.

4.10 Granularity of Requirements

The use of requirements boilerplates encourages the practice of placing some
constraints and performance statements as subclauses of capability or functional
requirements. In some cases, it may be desirable to create traceability to and from
just those subclauses.

Chapter 4 • Writing and Reviewing Requirements 83

Table 4.4 Example boilerplates for constraint requirements

Type of constraint Boilerplate

Performance/capability The <system> shall be able to <function> <object> not less than <performance>
times per <units>

Performance/capability The <system> shall be able to <function> <object> of type <qualification>
within <performance> <units>

Performance/capacity The <system> shall be able to <function> not less than <quantity> <object>
Performance/timeliness The <system> shall be able to <function> <object> within <performance>

<units> from <event>
Performance/periodicity The <system> shall be able to <function> not less than <quantity> <object>

within <performance> <units>
Interoperability/capacity The <system> shall be able to <function> <object> composed of not less than

<performance> <units> with <external entity>
Sustainability/periodicity The <system> shall be able to <function> <object> for <performance> <units>

every <performance> <units>
Environmental/operability The <system> shall be able to <function> <object> while

<operational condition>
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This raises the question of granularity of information. How far do we “split
the atom” in requirements management?

Statements of requirements can be decomposed into subclauses as long as
tool support ensures that clauses are always visible in context. One scheme is to
extend the requirements hierarchy to make the subclauses children of the main
requirement, as shown in Figure 4.4. Whereas the main requirement is readable
(and traceable) on its own, the subclauses, albeit separately referenceable for
tracing purposes, make sense only in the context of their “parent” statement.

Traceability can now reference a specific subclause, but the clause should only
ever be cited with the context of its ancestor statements. For instance, the traceable
statements that can be cited from Figure 4.4, with context in italics, are:

• The communications system shall sustain telephone contact.

• The communications system shall sustain telephone contact with not less than
10 callers.

• The communications system shall sustain telephone contact while in the absence
of external power.

There may be several ways of organizing the hierarchy of clauses. Suppose, for
instance, that there are multiple capabilities required “in the absence of external
power”. Then the arrangement may be as in Figure 4.5.

Now the traceable statements that can be cited are:

• While in the absence of external power, the communications system shall sustain
telephone contact.

• While in the absence of external power, the communications system shall sustain
telephone contact with not less than 10 callers.

• While in the absence of external power, the communications system shall sustain
radio contact with not less than 15 ambulance drivers.

The communications system shall sustain telephone contact

with not less than 10 callers

while in the absence of external power

Figure 4.4 Performance and constraints as subclauses.

While in the absence of external power,

the communications system shall sustain telephone contact

with not less than 10 callers

the communications system shall sustain radio contact

with not less than 15 ambulance drivers

Figure 4.5 Alternative arrangement of subclauses.



Indeed, as a general principle, requirements could be organised in such a way
that the set of ancestor objects provide the complete context for each statement,
including section and sub-section headings.

4.11 Criteria for Writing Requirements Statements

Apart from the language aspects, there are certain criteria that every statement of
requirement should meet. These are summarized as follows:

• atomic: each statement carries a single traceable element;

• unique: each statement can be uniquely identified;

• feasible: technically possible within cost and schedule;

• legal: legally possible;

• clear: each statement is clearly understandable;

• precise: each statement is precise and concise;

• verifiable: each statement is verifiable, and it is known how;

• abstract: does not impose a solution of design specific to the layer below.

In addition, there are other criteria that apply to the set of requirements as a
whole:

• complete: all requirements are present;

• consistent: no two requirements are in conflict;

• non-redundant: each requirement is expressed once;

• modular: requirements statements that belong together are close to one another;

• structured: there is a clear structure to the requirements document;

• satisfied: the appropriate degree of traceability coverage has been achieved;

• qualified: the appropriate degree of traceability coverage has been achieved.

Two “nightmare” examples of actual requirements are given below.

1. The system shall perform at the maximum rating at all times except that in
emergencies it shall be capable of providing up to 125% rating unless the
emergency condition continues for more than 15 minutes in which case the
rating shall be reduced to 105% but in the event that only 95% can be achieved
then the system shall activate a reduced rating exception and shall maintain
the rating within 10% of the stated values for a minimum of 30 minutes.

2. The system shall provide general word processing facilities which shall be
easy to use by untrained staff and shall run on a thin Ethernet Local Area
Network wired into the overhead ducting with integrated interface cards
housed in each system together with additional memory if that should be
necessary.

Some classic problems are present in these examples. The following pitfalls
should be avoided:

• avoid rambling: conciseness is a virtue; it does not have to read like a
novel;
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• avoid let-out clauses: such as “if that should be necessary”, as they render the
requirements useless;

• avoid putting more than more requirement in a paragraph: often indicated by
the presence of the word “and”;

• avoid speculation;

• avoid vague words: usually, generally, often, normally, typically;

• avoid vague terms: user friendly, versatile, flexible;

• avoid wishful thinking: 100% reliable, please all users, safe, run on all platforms,
never fail, handle all unexpected failures, upgradeable to all future situations.

An analysis of the first example above admits that there could be 12 requirements
present. A better approach would be to identify clearly the four different oper-
ational modes of the aircraft: normal, emergency, emergency more than 15 minutes
and reduced rating exception, and express a separate requirement for each.

Note the let-out clause in the second example. It is not clear what the scope of
the clause is. One interpretation is “The system shall provide general word process-
ing facilities … if that should be necessary.” Well is it required, or not?

4.12 Summary

One of the hardest things to do in requirements is to get started. It is important
to have an approach, but above all it is important to start writing down the
requirements from day one and show them to others for comment. The following
list is intended as a safe way to proceed:

• Define an outline structure at the outset, preferably hierarchical, and improve
it as you go.

• Write down requirements as soon as possible, even if they are imperfect.

• Determine in advance what attributes will be used to classify and elaborate
the textual statement.

• Produce an initial version rapidly to stimulate immediate feedback.

• Perfect the requirements as you go, removing repetition, unwarranted design,
inconsistency.

• Brainstorm and hold informal reviews continually, with rapid turnaround of
versions.

• Exposure to users is much better than analysis by “experts”.

The rules to follow when writing requirements are as follows:

• Use simple direct language.

• Write testable requirements.

• Use defined and agreed terminology.

• Write one requirement at a time.



It isn’t that they can’t see the solution.
It is that they can’t see the problem.

Gilbert Keith Chesterton, author, 1874–1936

5.1 What is the Problem Domain?

The problem domain is the domain in which a system is going to be used.
Therefore, it is important to look at requirements from an operational point of
view. A system or any other product enables somebody or some equipment to do
something. It is this enabling aspect that is at the heart of requirements engin-
eering in the problem domain. Faced with the challenge of eliciting requirements
from potential users one might therefore be tempted to ask a user the question:

What do you want the system to do?

Some users will have little or no idea of what they want the system to do. Those
who have an existing system will usually have ideas about how to improve the
system, but when there is no existing system this source of inspiration is not
available. Answers may be forthcoming from those with insight into what is pos-
sible, but they are most likely to come up with a solution because the question is
focusing on the functionality to be provided by the intended system.

To avoid this premature jump into the solution domain, it is necessary to ask
the question:

What is the purpose of the system you want?

When considering the purpose of a system, people immediately think about
what they want to be able to do with the system, rather than how they will do 
it. What people want to achieve can be stated without any implementation or
solution bias and this leaves the solution space open to the systems engineers and
architects.

It can be argued that even mentioning “the system” in the question could be
misleading and the question reduces to:

What do you want to be able to do?

87

Requirements Engineering
in the Problem Domain 5



88 Requirements Engineering

The answers to this question should be of the form:

I want to be able to …

This is known as a capability requirement and is one of the key forms of require-
ment in the problem domain.

Having established that requirements engineering in the problem domain is
primarily about eliciting capabilities, the next question is:

Who should be asked?

This leads to the identification of a group of people that we will refer to as “stake-
holders”. These are people or organizations that have some direct or indirect
interest (or stake) in the intended system.

Finally, we must examine what sorts of models are relevant to the problem
domain. Clearly, any models that are used must be understandable to the stake-
holders, because they are going to be responsible for validating them. Since the
stakeholders have been chosen for their specialist knowledge in the problem,
they are generally unwilling or unable to comprehend any model that is the
slightest bit technical. For example, if you were to go into a car showroom and
examine the cars on display, you would be very unlikely to be interested in a state
transition diagram of the engine management system. You are more likely to be
concerned about the performance of the car in terms of its acceleration and fuel
efficiency, its comfort level and the in-car entertainment facilities. In other
words, you are considering what the car might be like to drive on a long journey.
In your mind’s eye you are thinking about an imaginary journey in the car and
considering all the aspects of the car that would be useful or beneficial during
that journey. This is an example of a use scenario.

It has been found that use scenarios are a very good way of modelling what
people do or want to be able to do. They are directly related to the way they think
about their job or their problems. The scenario can be constructed with the
stakeholders and then used as a basis for discussing the capabilities that are
required.

The final aspect of requirements engineering in the problem domain is that
there may be some overriding constraints. In the example of buying a car, you
may have a limited budget or you may require the car to be delivered within a
given period of time. You may want the running costs to be below a given level.

It is now possible to consider how to instantiate the generic process for the
creation of stakeholder requirements.

5.2 Instantiating the Generic Process

Figure 5.1 contains an instantiation of the generic process for the elicitation of
stakeholder requirements. The starting point is the statement of needs. This may
be a small item, e.g. it could be an e-mail from the Chief Executive Officer (CEO)
to the Chief Technical Officer (CTO) stating that a new product is required to get



one step ahead of the competition. Alternatively, there may already have been a
study performed to look at possible options and a concept of operations document
produced that identifies some use scenarios.

Figure 5.1 indicates that the analyze and model process creates a set of use scen-
arios plus a list of the stakeholders. The derived requirements will be stakeholder
requirements.

The details of the analyze and model and derive stakeholder requirements and
qualification strategy processes are introduced in the following sections.

5.3 Agree Requirements with Customer

The agreement process at the start of the stakeholder requirements process is
usually very informal. It is likely that the statement of needs is a simple document
that has not been engineered from a requirements point of view. In other words,
it is likely to contain woolly expressions of need mixed with descriptive infor-
mation. It will not contain atomic requirements that can be the target of satisfaction
relationships. In this respect, the stakeholder requirements process is different to
other requirements processes because it starts from this rather vague position.
One of the key elements in eliciting stakeholder requirements is to establish the
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scope of the intended system. This is usually done once a set of use scenarios has
been established.

5.4 Analyze and Model

The analyze and model process is instantiated for the problem domain as shown
in Figure 5.2. The first activity is to identify stakeholders and then the use scenarios
can be created in consultation with them.

5.4.1 Identify Stakeholders

As indicated earlier, a stakeholder can be any person or organization that has an
opinion, a responsibility for, or who may be influenced or affected by the proposed
system. The types of stakeholders vary according to the nature of the system, e.g.
on whether the system is a consumer product or a public service such as air traffic
control or a railway.

People who have an opinion about the proposed system include those people
who will use the system directly. Note that this can include the general public, who
may be passengers on aircraft or trains, or may be affected by a crash when they
were otherwise not involved in travelling. People with responsibility for a system
may be managers in charge of operating the system or safety authorities.

The following list contains possible stakeholder categories that can be used as
the basis for establishing whether a complete list of stakeholders has been iden-
tified. The list does not claim to be complete, but provides guidance to help when
brainstorming to create the list.

• Managers: people who have a responsibility for either the development budget
or operating budget of the proposed system. It is also a good plan to involve
senior policy makers who will take a view on whether the proposed develop-
ment conforms to the aims and philosophy of the company or organization.

Analyze
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Model

Statement of
need

Change Request

Use
ScenariosStakeholders

Create
Models

Identify
Stakeholders

Figure 5.2 Analyze and model process for stakeholder requirements.



• Investors: people who either have made or are being invited to make a con-
tribution to the funding of the proposed system or the organizations respon-
sible for developing or operating the system.

• System users: clearly this is a very important group of stakeholders. They
have a direct interest in the capabilities provided by the new system or serv-
ice. Note that there may also be users who do not interact directly with the
system. For example, the users of the Hubble telescope are astronomers. They
ask for photographs to be taken in specific directions and they receive the
information when it arrives, but they do not directly control the telescope
itself. Users of an existing system are also valuable sources of knowledge of
problems with that system. They can give invaluable insight into how they
would like to see the system improved.

• Maintenance and service staff: although their prime responsibility is to keep
the system running once it has been delivered, they do have important require-
ments that the system must address in order to help them do their job.

• Product disposers: this is an increasingly important role as environmental
protection legislation develops. Requirements from this source can have a
massive impact on design especially with respect to the materials employed.

• Training personnel: like the maintenance staff, these people have a vested
interest in making the system easy to use and consequently easy to train people
to use. These people may also require the system to be able to work simultan-
eously in a mode where live data and training data can be mixed without
interfering with the safe operation of the system.

• System buyers: for public services and other large systems, the person 
who buys the system may not be involved directly with its development or 
operation. They will, though, have an important role to play in scoping the 
system from the point of view of cost versus perceived benefit. For product-
based developments, the buyer may be the actual user, e.g. mobile phone user,
car driver.

• Sales and marketing: these people have a vital role to play in formulating 
the capabilities for new systems, especially for product-based developments,
because, for mass-produced consumer products, it is not possible to have access
to all potential users.

• Usability and efficiency experts: these people have a view on how the system
can be optimised to make it efficient in use. These factors include ergonom-
ics, ease of learning and, where relevant, ability to be used reliably under
pressure (e.g. in air traffic control).

• Operational environment experts: usually a new system is not created to
work in a “green fields” situation; it will have to inter-operate with existing
systems. There may also be other environmental aspects such as emission con-
trol where the system must not pollute the environment and, conversely,
aspects where the system must be able to tolerate the environment in which
it is placed (e.g. in extreme weather conditions, submersed in water)

• Government: rules, regulations and laws determine and influence what a sys-
tem may or may not do.

• Standards bodies: existing and future standards can affect the goals of a pro-
posed system. These may be international such as the GSM mobile phone
standards, national standards or internal company standards.
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• Public opinion and opinion leaders: different regions of the world have dif-
ferent attitudes. These factors must be recognized where a product is to be
marketed in a wide range of countries.

• Regulatory authorities: these organizations may require that certain evi-
dence be collected as part of a certification or authorization process. Examples
include the Rail Regulator in the UK and the Food and Drug Administration
(FDA) in the USA.

Having arrived at a list of potential stakeholders types, it is necessary to deter-
mine which types are relevant and how each stakeholder type can be accessed. In
some cases, e.g. system users, it may be possible to have direct access to them. In
other cases, e.g. general public, it is not possible. It is necessary to decide, for those
that are accessible, who will be nominated as the stakeholder(s), and for those 
not accessible, who will take on the “role” of that stakeholder and speak on their
behalf. This list then constitutes the output stakeholders from this process (see
Figure 5.2).

5.4.2 Create Use Scenarios

Most conversations are built around a set of assumptions on which the speakers
agree. These assumptions can be interpreted to be a model of their mutual under-
standing. Attempting to discuss requirements in the absence of any agreed ground
rules would be unproductive.

One basic structuring mechanism for discussing capability requirements is
the operational or use scenario. This produces a structure that is organized hier-
archically by time. Stakeholder requirements use the notion of a scenario as a
means of establishing a framework in which meaningful dialogue can take place.

The scenario encourages the stakeholders to think about the job that they are
doing and how they would like to do it. In effect, they are rehearsing the way in
which they would like to do their job. Once the scenario has been agreed, indi-
vidual requirements can be generated to define precisely what it is the stakeholders
would like to be able to do at each point in the scenario.

Scenarios provide an excellent method for exploring requirements with stake-
holders – they are inherently about what the stakeholders want to achieve. A sce-
nario is the sequence of results produced (or states achieved) through time for the
stakeholders. As shown in Figure 5.3, a use scenario may be represented as a hier-
archy of goals and represents the capabilities provided by the system to the stake-
holders – without saying how to provide them. In other words, the use scenario
is a capability hierarchy.

The time orientation allows a rehearsal of what the system will provide and
the stakeholders can step through and see missing and overlapping elements.
This structure therefore avoids over-commitment to solutions while defining the
problem well.

There is a clearly defined approach to follow when creating use scenarios. The
basic question to ask the stakeholder is “what do you want to achieve?” or “what
state do you want to be in?” The approach is then to start with the final state and
then expand that, by asking what states, or intermediate steps, need to be attained



on the way. The states are then explored as a tree or hierarchy. Hence the following
procedure emerges:

• Start with the end goal.

• Derive the necessary capabilities to get to that point.

• Break large steps into smaller steps.

• Keep the set hierarchical.

• Review informally at each stage.

• Be wary of defining solutions.

If the stakeholder finds it difficult to define the intermediate stages, the stake-
holder can be asked to describe a typical situation – it is important to know what
the stakeholder would do in a situation such as this. If the system is completely
new, they may need to use their imagination. They can postulate what they want
or expect to happen or achieve at each step. It is important at this point also to iden-
tify if any stages are optional or if there are any repetitions. Would different condi-
tions lead to different sequences?

The stakeholder also needs to identify the order of the capabilities and whether
this is fixed or variable and, if it is variable, under what circumstances it varies.
For example, before you can paint a picture you must have paper (or canvas, etc.),
paints and brushes, but it does not matter which is ready first. This gives the
opportunity to change sequencing or do things in parallel.

It is important, as in all forms of requirements capture, to accept everything that
the stakeholders say. It can always be refined later. Frequently it will be necessary
to ask the stakeholders to expand on what they mean.

Scenarios represent the capabilities to be provided by the system (in problem
domain terms) organised into a hierarchy – without saying how to provide them.
They are seen to be beneficial for the following reasons:

• enables stakeholders to step through operational use;

• missing steps can be found;

• different stakeholders can have different scenarios;

• time constructs can be identified.
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Characteristics of Use Scenarios

Figure 5.4 contains an example scenario based on a day out with a sailing boat,
which can be transported on a car. It covers all the aspects of the trip starting with
loading the boat on to the car, getting ready to sail, sailing and returning home.

The scenario also illustrates some other points:

• generally, it follows a time sequence;

• its nodes are high-level capabilities;

• it shows alternatives;

• it shows periodic repeated behaviour;

• it shows where sequence is not important (parallel branches);

• it shows exceptions.

The use of a time sequence is important. Not only does it provide a simple frame-
work for the stakeholder to understand, but it also helps to place stakeholder
requirements into a context.

It is important that all the nodes are expressed as capabilities at the appropriate
level. Using the phrase “able to …” in the names of these nodes helps to avoid the
tendency to think of the capabilities as functions (and hence to move towards
implementation detail).

exception
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Boat lifted

Boat on car

Able to rig mast

Able to rig rudder

Able to rig centre-plate

Able to gybe

Able to tack

Able to cruise

Able to
survive
capsize

Able
to go

sailing

Able to
get ready

to sail

Able to
sail

Able to
return
home

Able to
rig boat

Able to
unload

boat

Able to
load boat

Able to
manoeuvre

Able to
go ashore

Able to right
capsize

Able to contact
Coast Guard

Able to
sail

normally

Figure 5.4 Example use scenario.



Scenarios provide a very powerful method of exploring exceptions. In many
systems, the functionality to handle exceptions is more complex than that needed
to provide the main stakeholder capabilities. The stakeholder can be prompted
for exceptions by asking questions such as “what can go wrong in this state?” or
“what can go wrong in reaching this state?” Recovery actions can be explored by
asking what should be done (or happen) if something does go wrong.

In the example in Figure 5.4, it can be seen that the scenario includes the need
to communicate when the boat is capsized. In the absence of a scenario, this
requirement may not be spotted.

The example also illustrates how scenarios can make it easy to spot missing
areas of requirements. In this case the capabilities of being able to transport the
loaded boat (to the place where it will be sailed) and being able to launch are
missing.

The purpose of creating a scenario is to promote understanding and commu-
nication. A scenario is not itself a requirement; it is rather a structure for elicitation
of requirements. It is an aid to finding a complete set of requirements, by covering
every aspect of operational use. Any one modelling technique does not attempt
to represent all possible concepts. There is no single correct way of modelling 
a given operation. Different people come up with different models.

5.4.3 Scoping the System

When preparing the scenarios, it is best to set the boundary slightly wider than
the anticipated system boundary. This ensures that the view taken is not “blink-
ered” and serves to set the system in its context. At some point it is essential to
determine where the boundary of the system is to be placed and hence to set its
scope.

Once the complete set of scenarios has been assembled, the scope of the system
can be finalized. This decision may have to be changed once the cost of developing
the system has been estimated. Such estimation can be made by people with
experience of system development for the domain of the proposed system.
Estimates based purely on scenarios are very coarse and consequently must have
a high degree of uncertainty associated with them. Nevertheless, making such an
estimate can serve to give an initial idea of whether the proposed budget is in the
right ballpark.

5.5 Derive Requirements

The derive requirements and qualification strategy process has been split into two.
These two parts are handled in this section and the next.

The derive requirements process is instantiated for the problem domain as
shown in Figure 5.5. The key activities are to capture requirements and define a
structure into which to place them. Once the structure and the candidate require-
ments have been decided, it is possible to place the candidate requirements into
the structure. In practice, the two activities go on in parallel and the structure
evolves as experience of using it develops. Therefore, instead of having a separate
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activity to take the candidates and place them into the structure, Figure 5.5 indicates
that both activities contribute to the creation of structured requirements.

When the structure has been completed, the requirements and the structure
can be reviewed and refined.

5.5.1 Define Structure

Structure is critical for handling all complex elements in the whole life cycle.
Stakeholder requirements are usually captured one by one, cleaned up and then
attached into the structure.

Some approaches assume that:

• stakeholder requirements are inherently unstructured;

• traceability to design is enough;

• we never see a complete requirements model – requirements need be viewed
only one at a time.

These approaches have nothing to do with quality, but are merely in the short-term
interests of the developer.

Requirements need to be organized and there needs to be a good structure to
manage the individual requirements as they emerge. The arguments about struc-
ture and the need for it are the same for requirements engineering in both the
problem domain and the solution domain. Therefore, they have been put

Candidate
Requirements

Stakeholder
Requirements

Generate Stakeholder
Requirements

Stakeholders Statement of
Need
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Structured
Requirements

Define
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Figure 5.5 Derive output requirements for problem domain.



together in Chapter 4. In this chapter it is assumed that providing an understand-
able structure is vitally important. It remains therefore to indicate how to derive
a structure for stakeholder requirements.

The main structuring concept for stakeholder requirements is the use scenario.
However, there can be many such scenarios, depending on the nature of the system.
It is recommended that time and effort be expended to try to merge scenarios
together to make, if possible, a single overall scenario. Obviously this will not always
be possible, but it is a good idea to attempt to do it. Apart from any other results,
it really makes people aware of the overall extent of the system and frequently
exposes many issues.

To explain the way in which scenarios can sometime be merged, an example
of running a restaurant will be taken. Three scenarios can be used to describe the
restaurant as follows:

• the overall life of the restaurant – owner’s scenario;

• a day in the life of the restaurant – manager’s scenario;

• a meal at the restaurant – customer’s scenario.

These are shown in Figures 5.6–5.8.
The first goal in the restaurant life scenario is that the owner acquires the

restaurant. This is followed by a period of operating the restaurant and finally
the restaurant is sold.

The restaurant day scenario considers the states that the restaurant is in during
the day. The first goal is to replenish the stocks of food and drink. These aspects
of the scenario indicate that there will be several suppliers, but it does not matter
in which order their deliveries arrive. It could be argued that the completion of
replenishment is not necessary before the restaurant is opened, but for the sake
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of creating a reasonable example it has been decided that no deliveries will be
accepted whilst the restaurant is open to customers. The day scenario than has a
period of being open and ends the day closed with everything tidied up and the
replenishment needs recorded ready for the following day.

The customer meal scenario is a straightforward sequence of states.
If we now examine how these scenarios can be put together, it can be seen that:

• the restaurant day scenario can be a repeating scenario in the operating state
of the restaurant life scenario, and

• the meal scenario can be a parallel repeating scenario in the open state of the
restaurant day scenario.

An overall structure for these three different stakeholder scenarios is shown in
Figure 5.9.

6 Bill paid

Customer Meal

1 Table booked

2 Arrived and seated

3 Food served

4 Food eaten

5 Bill received

Figure 5.8 Customer meal scenario.
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This can then become the structure for the headings of the capabilities in the
requirements document.

There are, of course circumstances when it is just not possible to fit scenarios
together. There is no easy answer here. If all else fails then all the separate scen-
arios can be used one after the other. Hence the structure of the stakeholder
requirements document will be a sequence of scenarios, each with their own
requirements embedded. Essentially the structure is driven from the list of stake-
holders. Even in this approach attempts should be made to nest one scenario
inside another.

However, care must be exercised to ensure that there is no duplication. Where
there is duplication the duplicated parts must occur once. Two approaches can
be used. The first entails cutting out the common items and putting them in a
separate section of their own. Then each occurrence must reference the sep-
arated section at the appropriate point. The other approach is to place the dupli-
cate section in the first scenario in the document and then reference this from all
the other occurrences.

5.5.2 Capture Requirements

Sources of Stakeholder Requirements

Stakeholder requirements can come from a variety of sources as illustrated by the
following list:

• interviews with stakeholders;

• scenario exploration (generally through stakeholder interviews);

• descriptive documentation (perhaps from studies or market research);

• existing systems which are being upgraded;

• problems and change suggestions from existing systems;

• analogous systems;

• prototyping, either partial systems, mock-ups or even simple sketches, of the
product or the requirements themselves;

• opportunities from new technology (approved by stakeholders);

• studies;

• questionnaires;

• anthropomorphic studies or analysis of videos.

Stakeholder Interviews

To undertake this task, the requirements engineer must be a good communicator,
able to dig out real requirements from stakeholder interviews. It is an intense
psychological task, with little in common with the technical or operational side
of system development. It is important to remember that extracting stakeholder
requirements is a human, not a technical problem, and therefore preparing in
advance is important so that the world of the stakeholder is understood.

It is important to talk the stakeholder’s language about the stakeholder’s
world, not about the final product or any technical issues. During the interview
the stakeholder should be asked to step through the process of his/her work.
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A comprehensive set of notes should be taken, which later can be organized into
a structured set of requirements and returned to the stakeholder. Interviews are
an interactive process and it is important that the requirements engineer should
not be judgmental, but should repeatedly ask the question “Why?” There are sev-
eral ways of asking this question, including: “What is the purpose of this…” or
“Can you give me more background on this…”. Clearly, the requirements engin-
eer is not expected to be an expert in the stakeholder’s domain and therefore will
need clarification at various points. Do not worry about asking (apparently) stu-
pid questions. The only stupid question is the one that it not asked! It is impor-
tant, however, that finally the stakeholder will take the responsibility for the
requirements.

Discuss scenarios with the people interviewed!
The following provides a set of tips for stakeholder interviews:

• interview every type of stakeholder;

• take them seriously;

• document the interviews and invite stakeholders to sign the record of the
interview;

• identify which scenarios are relevant to the stakeholder(s) being interviewed
and talk them through it (them), inviting the interviewee(s) to state what
they want to be able to do in each state of the scenario;

• if necessary create new scenarios as the discussion proceeds and then develop
requirements from them;

• attempt to discover the relative importance to the stakeholder of each
requirement;

• if the stakeholder is vague about any requirement, ask first what is the purpose
of the requirement and second ask how the proposed requirement could be
demonstrated;

• enquire about any constraints the stakeholder is aware of;

• make stakeholders aware that their requirements will shape the system;

• stimulate and provoke the stakeholders to respond;

• do not be judgmental about stakeholder requirements;

• process the notes into single requirements quickly, and then iterate.

Generally, the questioning will proceed from the general to the specific. It is
important to be sure to cover all the ground, defining which areas are irrelevant.
Experience in interviewing dictates the form of questioning that takes place,
depending on the stakeholder and the situation.

Extracting Requirements from Informal Documents

Informal documents such as letters, studies, action lists and other types of descrip-
tive material may all contain requirements hidden in the documentation. Such user
requirements should not remain hidden, but should be brought out into the open.
However, in doing so it is important to record where the stakeholder requirements
have come from; in other words, the source must be recorded. Further, requirements
extracted in this way must be “substantiated” by one of the stakeholders.



Identifying Capability Requirements from Scenarios

When an outline scenario has been developed, it is possible to postulate capabil-
ity requirements directly from them. Sometimes, a simple paraphrase of the state
is all that is required. For example, the state ready to sail can be paraphrased as
the capability the user shall be able to make the sailing boat ready to sail. In other
cases, more work is required. Figure 5.10 shows some examples, although they
are not very well formulated. Consider the requirement:

Two people shall be able to lift the boat on to the roof of the average saloon car

This raises the questions:

• How strong are the people?

• What is an “average saloon car”?

These questions must eventually be answered. However, the important thing
when gathering requirements is to write it down. It does not matter if it is not well
formulated at first, it can always be improved. The critical issue is not to lose the
idea! Misquoting a well-known proverb sums up this approach:

A job worth doing is a job worth doing badly!

More information on how to formulate requirements properly can be found in
Chapter 4.

Chapter 5 • Requirements Engineering in the Problem Domain 101

periodic alternate

parallel

sequential

alternate

exception

The sailor shall be able to
contact the coastguard

Able to contact
Coast Guard

Able to
go ashore

Able to right
capsize

Able to cruise

Able to tack

Able to gybe

Stakeholder
requirements

The sailor shall be able
to perform a gybe

Able to rig centre-plate

Able to rig rudder

Able to rig mast

Boat on car

Boat lifted Two people shall be able to
lift the boat into the roof of

the average saloon car

Able to
load boat

Able to
unload

boat

Able to
rig boat

Able to
manoeuvre

Able to
sail

Able to
return
home

Able to
get ready

to sail

Able to
survive
capsize

Able
to go

sailing

Able to
sail

normally

Figure 5.10 Deriving capabilities from scenarios.



102 Requirements Engineering

Requirements Workshops

An alternative way of collecting stakeholder requirements is to hold require-
ments workshops. This can be an excellent way of rapidly eliciting and capturing
requirements. It is important from the outset that the stakeholders are gathered
in a conducive environment and that they realize that capturing requirements is
not hard and need not take a long time. There should be a structure to the work-
shop, but it should also be iterative. As shown in Figure 5.11, stakeholders should
be educated to understand what is expected of them. For example, they need to
understand the concepts of:

• stakeholder;

• use scenarios;

• capability requirements.

Depending on the starting point of the workshop, there may be an existing set of
requirements already in draft form. Alternatively, start by splitting the attendees
into teams and get them to create scenarios for the intended system. Then review
the set of scenarios generated with the full group. Make any required changes to
the scenarios and then move on to extracting requirements based on them.

As soon as possible, present the draft requirements to the full group and
encourage criticism and discussion. The possibility of interactions between the
different stakeholder groups adds significant value to the requirements. Often this
can be the first time that such a group has ever been together. It is always interesting
and satisfying when the interactions between the groups leads to the creation of

Gather stakeholders in a
conducive environment

Structure the meeting
teach the subject area

Present stakeholders with
a requirements document

or
a set of use scenarios

Encourage criticism and
interaction among

stakeholders

Rapidly process the
amendments

Produce a new version

Figure 5.11 Workshops for requirements capture.



requirements that give a greater insight into what each group wants to be able to
do and how these capabilities fit in with those of other groups.

These days with video projectors, the whole group can be involved with editing
the requirements online, but it can be more productive to split into smaller
groups to work on subsets for a period and then review the whole set together. In
this way, for a typical project, a set of requirements can be produced in 3–4 days.

The key element of a workshop is first to establish momentum and then to keep
it up. Running a workshop can be very demanding, but the results can be very
rewarding for all concerned.

It is vital that all stakeholder groups are represented and that they are empowered
to make decisions.

Requirements Learnt from Experience

Problems reported by real users of a system are gold dust – yet this information
is often thrown away. There is somehow a negative attitude to such information
because it is associated with a problem, but it can be of real value. Obviously,
the earlier the problem is detected the less will be the cost of change, and allow-
ing changes to be made too easily kills a project. However, in an iterative develop-
ment, it is often possible to postpone changes until the next pass through the
system.

Requirements from Prototypes

Prototypes can be invaluable when creating unprecedented systems. They can be
used to give stakeholders an idea of what may be possible. They are also very
important in the development of software-based systems where the user interface
is difficult to imagine. The problem with prototypes can be that the developers
get carried away and spend too much time and effort. Prototype development
should therefore always be treated as a small sub-project with its own stakeholder
requirements. The objective of the prototype should always be clearly indicated
and will usually be to provide greater insight so that stakeholder requirements
can be more easily and accurately formulated.

There are three problems with prototyping:

• the developers get carried away and go into far too much detail;

• the prototype tends to cause stakeholders to stray into implementation;

• the stakeholders may be so impressed with the prototype that they want to
use it operationally.

The first two problems can be countered by properly formulating the requirements
for the prototype. To counter the third problem it is always important to ensure
that stakeholders are fully aware of the illusory nature of a prototype, since a
prototype can be a partial system, a mock-up or even a set of simple sketches.

Constraints in the Stakeholder Requirements

A constraint is a type of requirement that does not add any capability to a system.
Instead, it controls the way in which one or more capabilities are to be delivered.
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For example, consider the following:

A customer shall be served within 15 minutes of placing the order.

This does not make the system different per se – it just quantifies the service to
be provided.

Nevertheless, a word of caution is required here. A mass of constraints, each one
reasonable, can make a development impossible, therefore they have to be analyzed
as a system in addition to individually.

When the design is known, each constraint should be analyzed for its cost–
benefit value or impact on the system. A constraint may bring a function into
existence, for example, a caution and warning system or a backup. The cost of a
constraint can only be guessed before the design is known. This unfortunately
depends on the design choice, but some minimum assumptions can be made – too
many unnecessary constraints can ruin a system.

By default, a constraint applies to the top capability and all its child capabilities
inherit it. The applicability should be pushed down the capability hierarchy as
much as possible (see Figure 5.12) to limit its applicability and hence its cost
impact. When a constraint applies to just one capability, that constraint can be
written as part of the capability.

It is interesting to note the difference between stakeholder constraints and
system requirements constraints. Stakeholder constraints refer to the results that
the stakeholders want. System constraints are “professional” or engineering con-
straints that affect the quality of the product.All of the stakeholder constraints must
be addressed in the system requirements. Sometimes they must be reformulated;
sometimes they can be passed on without change.

Refine Requirements

Review each requirement in its context and ensure that

• it belongs in the place it is in;

• it conforms to the criteria for well-written requirements as explained in
Chapter 4.

Applicability link

CapabilitiesConstraints

Safety
Comfort

Availability
Ease-of-use

Running costs

Figure 5.12 Capabilities and constraints.



Derive Qualification Strategy

There are two subprocesses used to derive the qualification strategy, as shown in
Figure 5.13. These are described in the following subsections.

5.5.3 Define Acceptance Criteria

Understanding the criteria that will satisfy the stakeholders that a requirement
has been met is an essential and vital part of gathering requirements. Asking the
question:

What will convince you that this requirement has been satisfied?

can often lead to a clearer and more focused formulation of a requirement. This
question is therefore often used during stakeholder interviews. The question can
be answered in two ways:

• stakeholders may define an operational situation in which the requirement
can be demonstrated and/or

• stakeholders may define a numerical value for a level of achievement that
must be demonstrated.

The first type of answer feeds directly into the process of creating a set of tests,
trials or demonstrations that must be part of the qualification strategy. The sec-
ond type of answer indicates the “pass mark” for a trial test or demonstration, i.e.
it indicates the acceptance criterion for the requirement.

Acceptance criteria define, for each requirement, what would be a successful
outcome from the qualification approach adopted. Acceptance criteria are usu-
ally recorded in an attribute associated with the requirement. In other words
there is usually a one-to-one relationship between a requirement and its accept-
ance criterion. In the example of the restaurant, the acceptance criterion for the
running of the restaurant may be that it is “successful”. Success can be measured
in a number of ways, e.g.:

• profitability;

• return on investment;
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• reputation as indicated in guidebooks, newspaper articles, etc.;

• forward load in terms of how far ahead is the restaurant fully booked.

Different stakeholders may well have differing ideas about success; for example,
the owner’s bank manager will be more interested in the first two, but the chef will
certainly be more interested in the last two.

Hence it is important to determine the acceptance criteria for any requirement
from all the stakeholders who may have an opinion.

5.5.4 Define Qualification Strategy

The way in which acceptability is demonstrated depends to a very large extent on
the nature of the application and the way in which it has been acquired. For large
one-off systems such as air traffic control, it will be necessary to make sure that
all the functionality has been properly provided and that the controllers are happy
that the system can used easily and quickly when they are busy. This will require
a mixture of tests and trials. First, the capability of the system under light loading
must be demonstrated. If this capability is not acceptable then there is no point
in progressing to tests that involve much more investment such as live trials at 
a busy time of day.

The cost of the qualification strategy must also be borne in mind. Mounting
extensive trials is a very costly business and so there must always be a gradual
build-up. For example, most ships will undergo harbour trials before sea trials.

The overall cost must also be taken into consideration, but this must be set
against the risk of failing to discover a significant flaw in the system during oper-
ational use. Thus, where there is a large safety, environmental or financial risk,
the qualification strategy must be very carefully engineered to ensure a gradual but
steady build-up of confidence in the system. On the other hand, where the con-
sequences of malfunction are fairly light, a less expensive approach can be under-
taken. The bottom line is that a requirement that cannot be demonstrated (in some
way) is not a requirement. Properly engineered requirements are requirements
that are easy to understand and demonstrate.

5.6 Summary

Stakeholder requirements must be kept as small as possible and easy to under-
stand. The stakeholder requirements must be non-technical and at the same time
realistic. There must be a focus on roles and responsibilities, and it is important
to distinguish properly between stakeholder groups.

The common problems that can occur when deriving stakeholder require-
ments are:

• over-emphasis on solutions;

• under-emphasis on defining the real problems to be solved;

• failure to understand that stakeholders must own and approve these 
requirements.



Stakeholder requirements should be built as quickly as possible; they define the
capabilities that the stakeholders require, expressed in terms with which they are
comfortable and familiar. There should therefore be a concentration on the
stakeholder domain, not on system solutions. They should be structured and
traceable to the source of the information. Stakeholder requirements are owned
by stakeholders, scoped by the budget holder and often written by requirement
engineering specialists.
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Never tell people how to do things.
Tell them what to do,
and they will surprise you with their ingenuity.

George Smith Patton, general, 1885–1945

6.1 What is the Solution Domain?

The solution domain is the domain in which engineers use their ingenuity to solve
problems. The primary characteristic that differentiates the solution domain from
the problem domain is that, invariably, requirements engineering in the solution
domain starts with a given set of requirements. In the problem domain require-
ments engineering starts with a vague objective or wish list. The extent to which
the input requirements for the solution domain are “well formed” depends on the
quality of the people within the customer organization that developed them. In an
ideal world, all the requirements would be clearly articulated, individual testable
requirements.

As indicated in Chapter 2, the solution is very rarely arrived it in a single step
(see Figure 6.1).

At each level there is modelling and analysis done first to understand the input
requirements and second to provide a sound basis for deriving the requirements
for the next level down. The number of levels of design is dictated by the nature
of the application domain and the degree of innovation involved in the develop-
ment. No matter how many levels are necessary, it is always vital to understand
how many solution details – the “how” – should be introduced at each step.

At every level in the solution domain, engineers must make decisions that
move towards the final solution. Each of these decisions, by their very nature,
reduces the available design space, i.e. they preclude certain design options, but
it is impossible to make progress in the absence of decisions. Engineers are
always very strongly tempted to go into too much detail too soon. This tempta-
tion must be avoided, in order to allow creativity and ingenuity to work together
to produce innovative solutions that could never be achieved in the presence of
the constraints imposed by premature design decisions.

Typically the first level of system development in the solution domain is to
transform the stakeholder requirements into a set of system requirements. These
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must define what the system must do in order to solve the problems posed by the
stakeholder requirements. This first level is illustrated by the top instantiation of
the generic process in Figure 6.1.

The issue of premature design detail is especially problematic at the first step.
The system model indicated in Figure 6.1 must be created at a level of abstrac-
tion that enables the functionality of the system to be defined without going into
unnecessary detail.

The next step on from defining the system requirements is to create an archi-
tectural design as indicated by the second instantiation of the generic process in
Figure 6.1. This must be expressed in terms of a set of components that interact
to generate the emergent properties identified by the system requirements. The
derived requirements from the architectural design process (Figure 6.1) define
the requirements that the component suppliers must satisfy for each component.

Development proceeds by further levels of design that move further towards
implementation detail.

This chapter concentrates on the transformation from stakeholder requirements
to system requirements because it is the most problematic in most developments,
because typically too much detail is added too soon.

6.2 Engineering Requirements from Stakeholder
Requirements to System Requirements

The full instantiation of the generic model for this transformation is shown in
Figure 6.2.

As with all instantiations, the process commences by agreeing the input
requirements, which, in this case, are the stakeholder requirements. The agree-
ment process must not assume that the input requirements have been produced
according to the guidelines given earlier in this book. Instead, it is necessary to
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Figure 6.1 Possible instantiations of the generic process.



consider the requirements and the associated qualification strategy on their 
merits and apply the review criteria for stakeholder requirements with rigour and
thoroughness.

6.2.1 Producing the System Model

To avoid the tendency to go into too much detail, engineers should always work
in the context of a model (see Figure 6.1) that is sufficiently detailed for the pur-
pose of defining requirements in terms of what should be done rather than how.
The level of detail that should be provided in derived requirements depends on
the level of development at which requirements engineering is being done, but the
maxim is always “do not add more detail than is necessary”. The temptation to go
into detail is always greatest at the top level where stakeholder requirements
expressed in problem domain terms are being translated into high-level system
requirements that indicate what the system must do to solve the problems posed
by the stakeholders. The difficulty arises because of the need to work at an
abstract level. The creation of an abstract system model, which will provide the
framework for the system requirements, always causes problems. At all levels
below this, development work progresses in the context of a design architecture.
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Engineers are much more comfortable with this level of detail, because they can
become involved with determining how the system will work. Even at these levels,
care must be exercised to ensure that the amount of detail imposed is appropri-
ate. Consequently, the architecture models should be expressed in terms of com-
ponents that work together, but care should be taken to ensure that components
are defined in terms of what they are required to do rather than how they should
achieve it. In other words, components should be specified as “black boxes”
whose internal details are of no concern provided that they achieve their overall
purpose as defined in the requirements.

The next sections of this chapter concentrate on the preparation of system
models for the derivation of system requirements. Following this, the ways in
which the same approach is applied at more detailed levels is explained.

6.2.2 Creating System Models to Derive System Requirements

The system model must be created at an appropriate level of abstraction such
that it encompasses:

• internal functionality that the system must exhibit – this must concentrate
on what the system must do rather than on how it should be done to avoid
pre-empting the design;

• functionality necessary to enable the system to interact with other systems in
its environment;

• functionality necessary to enable people to successfully interact with it;

• functionality to prevent the system from malfunctioning owing to the pres-
ence of other systems (threats) in its environment. (Note that some of these
systems may not be deliberately threatening, e.g. electromagnetic emissions
from neighbouring equipment.) This “safeguard” functionality must also
prevent the system from interfering in an adverse way with the environment.

The way in which these types of functionality interact with each other and with
elements in the system’s environment is expressed diagrammatically in Figure 6.3.
It is clear that the context of the system within its environment must be defined
with respect to:

• the existing systems with which the new system is required to cooperate;

• the types of people who are intended to interact with the system;

• the threats that the system must defend against;

• the adverse effects that must be prevented.

The functionality can be represented in a number of ways, for example:

• operations or methods on classes in class diagrams;

• message sequence charts;

• state transition diagrams;

• function flow block diagrams;

• processes in data flow diagrams.

In practice, it will be necessary to use several models in order to cover the many
different aspects required. Each model contains information of a defined set of



types and each modelling technique carries its own semantics. The information
for some models may be separate from information in other models. On the
other hand, the same information may appear in more than one model. In the
latter case, it is essential that, when information is changed, the change is
reflected in all other models in which that information occurs. Ideally this would
be achieved automatically by linking the modelling tools. If this is not the case
then extreme care should be exercised to ensure that any change is applied iden-
tically in all relevant models. The Venn diagram in Figure 6.4 indicates that some
models represent islands of information whereas others may have common
information presented in different forms. Figure 6.4 also indicates that there
may be some system information that is not present in any model.

Internal Functionality

This is the primary element of the creation of the system requirements, because
it is the main focus of defining what the system will do. It is necessary to create a
structure or model that can be the basis for creating the system requirements.
This model must have the capability to express some form of decomposition of
the system into modules or high-level components such as subsystems. The use
of terms such as “module” or “component” tends to make developers think more
in terms of implementation rather than specification. This is generally considered
to be bad practice, especially in software-based systems. In general systems, the
need to move to a more physical model is not considered to be particularly prob-
lematic, since the application domain will generally be of a more physical nature.

Chapter 6 • Requirements Engineering in the Solution Domain 113

People
Human

Interaction
Functionality

Internal
Functionality

Interface
Functionality

Safeguard
Functionality

External
Cooperating

Systems

External
Threatening

Systems

Figure 6.3 System context and types of functionality.

Model A

Model C Model D

Model E

Model B
System

Information
Domain

Figure 6.4 Scope of system models.



114 Requirements Engineering

As an alternative to terminology that may induce premature implementation,
there is an increasing tendency (some would say “fashion”) to use the term “object”
as the decomposition element, especially for software-based systems, since
objects can refer to items in the problem domain. This discipline helps to pre-
vent the premature descent into solution terms. Functionality can then be intro-
duced as methods or operations on objects and as interactions between objects.

The use of this object-oriented approach can also make the creation of trace-
ability from the system requirements to the stakeholder requirements an easier
task, because the same objects tend to be visible in both the problem domain and
the solution domain.

In addition to stating what the system must do, the system model may also be
required to indicate the intended behaviour of the system. There are a number of
ways in which to represent this type of information. Models in this area usually
represent the fact there are a number of concurrently active “actors” that interact
in some way. Examples of this sort of notation are message sequence charts and
behaviour diagrams. Message sequence charts have long been used in the
telecommunications industry. Behaviour diagrams originated in the US ballistic
missile early warning system (BMEWS) in the 1970s and have been imple-
mented in tools such as RDD-100 from Ascent Logic Corporation and CORE
from Vitech Corporation.

Behaviour can also be modelled using state transition diagrams or state-
charts. State transition diagrams have the limitation that they can only model a
sequence of states and the item being modelled can only be in one of these states
at any one time. State transition diagrams cannot represent hierarchical states
directly. Separate diagrams must be used for each level in the hierarchy and, in some
cases this means that there may be a set of active diagrams at certain times. Such
sets of diagrams can be difficult to understand. To avoid this complexity, it is better
to use statecharts because they have been developed to handle state hierarchies
directly. They also address parallel states.

In any system it is necessary to consider whether there is information to be
handled. Some systems, e.g. insurance company systems, require that information
must be gathered and retained for use over a number of years. In other systems,
e.g. radar data processing systems for air traffic control, there is some informa-
tion that has a long lifetime, e.g. flight plans, whereas the current position of an
aircraft in flight, by its very nature, is soon out of date. Hence the information
requirements must be examined to ascertain:

• the longevity of the information, i.e. for how long is the information rele-
vant, and for how long must it be retained?;

• the freshness of the information, i.e. how up to date must it be (seconds, min-
utes or hours)?

It is also very relevant to know the amount of information that may be involved.
This can have a profound effect on the design of the system.

Interface Functionality

It is necessary to define the nature of the interactions required with any other
system. Interactions may involve the movement of information or material



between the systems. The movement may be in one direction or both, and there
may be limits on the capability that can be transferred. It may be necessary to
provide temporary storage (e.g. data buffer or warehouse) for items that are held
up. There may be time response requirements on the speed with which either
system must react to a stimulus from the other.

The nature of interfaces varies significantly. However, there must always be 
a baseline reference that indicates what each party undertakes to do or provide
as part of the interface. These obligations are frequently documented in an 
interface control document (ICD). Where the interactions are controlled by
national or international standards, the standard becomes the interface control
document to which all relevant parties can work. Where the interface is less well
defined, the obligations (i.e. interface requirements) must still be written down
and agreed. Control of these requirements is notoriously difficult because there is
often no organization with a clear mandate to control the interface. Consequently,
each party to the interface tends to have its own version of the document and,
worse, each party tends to have its own interpretation of it.

It is usual for interface documents to be controlled by the organization that
has responsibility for the system that encompasses the two (or more) systems
that interact. Such an organization is difficult to define when a new system is
being developed. Often the existing system(s) will have been developed earlier
and the interfaces may not be properly documented. Further, the development
organization may well no longer have any responsibility for that system, having
handed it over to a higher level customer or other operating authority.

Care must be exercised to ensure that all interface obligations are accurately
reflected in derived requirements at the appropriate level and, as far as possible,
the interface control authority is clearly defined.

Human Interaction Functionality

The crucial issue for human interactions with a system is to know what inter-
actions are going to be required. The context in which the users will work is also
important. This can have an impact on the way they can work. For example,
users working in a standard office environment will be warm and able to work
conveniently without gloves. Other users may have to operate the system in harsh
environments such as extreme cold weather or hazardous situations where pro-
tective clothing will be necessary. In these circumstances, the design of the displays
and keyboards must take note of these aspects.

Safeguard Functionality

The environment in which a system must operate will also have a significant
influence especially with respect to safety and security. For example, in a bank-
ing system it is necessary to provide assurance that information and money will
not be given to unauthorised people. In a car (system) it is necessary to be assured
that the car will stop when the brake pedal is operated.

There may also be other systems operating in the environment of the system
that may be competing with the system being developed. This competition could
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be commercial competition as in online banking for example. Here the need for
any system to be evolved rapidly can be of prime importance.

Other “competing” systems include those that could interfere with the correct
operation of a system by, for example, making radio transmissions that confuse
the system or overload sensitive receivers. An example of this is the worry that
the use of mobile telephones on board aircraft in flight could interfere with the
aircraft’s navigation systems.

System Transactions

It is worthwhile revisiting the use scenarios that were developed for the system
from the stakeholders or, if none exist, to create a set of relevant scenarios. These
can be applied to the system model(s) to make sure that they are possible within
the system being specified (see Figure 6.5). Working through these “system trans-
actions” provides reassurance that elements of system functionality have not been
lost by a blinkered approach to object modelling or functional decomposition.
(Note that this use of the term “system transaction” is different to the use of the
term within the CORE method described in Chapter 3.)

The system transactions shown in Figure 6.5 as user system transactions are
those derived from the use scenarios. Figure 6.5 also indicates that there can be
other transaction derived from the way in which the system being developed
must interact with external systems.

System transactions encourage system engineers to stand back and take a
“holistic” view of the system. It is all too easy to concentrate on the detail and
forget the big picture, i.e. how do the detailed parts work together to achieve the
overall aim?
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Modes of Operation

Different functionality may be required in some circumstances. A typical example
for information-based systems is the need to be able to provide training for staff
without compromising the integrity of the data held in the system. Other examples
include fallback modes of operation following a failure or, in military systems,
different modes depending on the current state of alertness. These may be related
to the use scenarios in the stakeholder requirements.

Additional Constraints

In addition to the constraints already mentioned, there are additional aspects that
should be considered. Perhaps the most important are those concerned with
safety and certifiability. In these areas, additional requirements can be introduced
and these will certainly have a strong influence on the means adopted for quali-
fication. The relevant authorities will have to be convinced that a system is safe to
use or to be deployed or, in the case of an aircraft, that it can be given a certificate
of airworthiness.

A further set of additional constraints are introduced by the need to manu-
facture the system. It may be necessary to use an existing facility or the design
may have to be changed in order to reduce the cost of manufacturing.

6.2.3 Banking Example

In this example of a management information system, the primary concern will
be to model the information that must be handled, but it is clear that there are
many other areas that should be addressed. Several system models are therefore
likely to be used, one focusing on the information, others focusing on the flow
and security of information.

Figure 6.6 shows a model that provides an alternative abstraction for the bank
example. It identifies the types of locations where equipment might be sited and
thus from where transactions may be initiated.

Internal Functionality

The primary internal functionality is concerned with supporting the services
provided by the bank such as current accounts, deposit accounts, loans and
investment portfolios. To support these services, the system must be able to col-
lect, update and retain information. Of vital importance here are the types (or
classes) of information (e.g. accounts, customers), the relationships that exist
between them (e.g. how many accounts is a customer allowed to have?) and the
longevity, freshness and volume of each type.

It is important to determine how information is collected, disseminated and
manipulated.

A further important aspect of a banking system is the number and location of
sources of information and/or transactions. These will include branches, auto-
matic teller machines and credit card point of sale machines.
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From a performance point of view, it is important to understand the likely
loading that the system must be able to cope with, such as the number and mix
of transaction types. This will clearly vary from day to day and from hour to
hour within each day. There may be constraints imposed by existing infrastruc-
ture such as landlines or other communication mechanisms.

Interface Functionality

The primary interfaces for this type of system are to other banks for fund trans-
fers and use of their teller machines.

Banks also have existing systems for clearing cheques, etc, that are jointly cre-
ated amongst several banks.

It is highly likely that a banking system will make use of telecommunications
services from external providers.

Human Interaction Functionality

Information systems generally have to cope with a wide variety of user types. For
a bank the following list covers many of them:

• General public – Must be able to use automatic teller machines and, increasingly,
online facilities via the web without any prior training, i.e. the user interfaces
must be intuitive.

Manage
Accounts

Manage
Investments

Manage
Loans

Services
Provided

Teller
Machines

PCs / Terminals

Branch Office

Teller
Machines

Other Banks

Teller
Machines

Credit Card
Point of Sale

Machines

Retail Outlets

Teller
Machines

Inter-bank
Services

Cheque
Clearing

Figure 6.6 An abstract model for the bank example.



• Counter staff – Must be able to use the system quickly in order to provide a
fast and efficient service to customers queuing up. These counter staff will
require training and the most important aspect of this type of interface is
that it should be “slick” when the staff have been trained.

• Managers at various levels – Some managers may not be as computer literate
as the counter staff (although, of course, some may have been promoted after
becoming proficient as counter clerks). The facilities to be provided for the
managers may include some of the counter staff facilities, but will include
more summary types of information derived from looking at a wider set of
information than a single account. These may include statement summaries
or branch or area business summaries. Note that these types of information
demand that information is retained over a period of time so that trends and
other historical information can be deduced and/or presented.

• Policy makers and marketing staff – Require different capabilities, perhaps
introducing the capability to start new business products.

• System maintainers – Must be able to update system facilities. Ideally they
should be able to do this while the system is fully operational, but in practice
they may take down all or part of the system (usually for a brief period in the
middle of the night) in order to guarantee integrity of data.

Safeguard Functionality

Security in banking systems is of paramount importance. The key element is the
need to protect the integrity of the information that is at the heart of the business.

Obvious mechanisms used include the personal identification numbers
(PINs) on credit or debit cards and encryption for transfers between branches,
teller machines, etc.

Other areas that must be considered are the need to keep the systems working
in the presence of computer faults, power failures or communication failures.
These categories of functionality are related to the perception of risk. The degree
of protection that can be afforded to mitigate the risks depends critically on the
exposure that is perceived.

Finally, and most importantly, it is necessary to consider threats from hackers,
embezzlers or others with fraudulent intent. The software must provide ade-
quate protection to safeguard the bank and its customers from these threats.

System Transactions

Each type of user is likely to be a stakeholder in this category of system. Therefore,
it is likely that there will be a set of use scenarios for each type of user. For the
bank customers these include regularly used facilities such as withdrawals, deposits
and transfers, whether made in person or done automatically as direct debits,
salary payments, etc. There will also be other transactions used less frequently
such as negotiating a personal loan or a mortgage.

For each type of user it is worthwhile considering the load that will be
imposed, so that the response time can be estimated. Of course, this will not be
a fixed time, but will depend on the current loading and this, in turn, will depend
on the time of day and day of the week.
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Increasing use of web-based facilities must add a further dimension to load
prediction.

Modes of Operation

The predominant mode of operation will be the normal mode. However, there
may be additional modes to cover training, backup and recovery operations and
system evolution.

6.2.4 Car Example

The second example addresses a more physical type of system, but it is interesting
to see that the same categories of information are still present, although in an
entirely different form.

The big issue in this example is whether the system model is a physical model
and to what extent it can become abstract. It is unlikely that a new car is going to
be radically different in architecture from previous models – it will still have a
wheel at each corner, an engine, a gearbox, suspension, a windscreen, etc. For this
reason, the system model for a car may well make reference directly to the phys-
ical objects of the architecture as indicated in Figure 6.7. The arrows on this dia-
gram indicate “some influence” in the direction of the arrow. The driver presses
the brake pedal and the brake pedal activates the brakes. The connections
between the body and the parts fastened to it are shown as double-ended arrows
to indicate that there is a dependency in both directions, e.g. the engine is fas-
tened to the body and the body has mountings to take the engine.

However, where aspects of the new car are likely to be rather different – such
as in an electronic vehicle control system – remaining more abstract will present
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Figure 6.7 An abstract model for a car based on physical objects.



advantages in determining the best solution. To the extent that the functionality
of a car is fairly well understood, what is required is to quantify the functionality.
For example, it is clear that a car must be able to move people and their luggage
or other items from one place to another. The key questions that should have
been addressed in the stakeholder requirements are:

• How many people?

• How much luggage?

• How comfortable will the car be?

• How fast will the car travel?

• How quickly will the car accelerate?

• How much will it cost?

• What information will be provided to the driver?

• What in-car entertainment facilities will be provided?

• What safety features will be necessary?

• Where will the car be used?

Internal Functionality

The key requirements that must be addressed at the functional level include:

• The acceleration rate of the car. This requires a balance between the engine
power, the overall weight of the car, the wind resistance of the body and the
drag induced by the wheels.

• The range of the car. This requires a balance between the fuel efficiency of the
engine, the fuel capacity, whether a manual or automatic gearbox is used and
the way in which the car is driven.

• The comfort level of the car. This will influence cost and weight of the car plus
people of different stature may perceive the end result differently.

Note that these key aspects are not independent. This is typical in a systems 
engineering situation. It is these interactions that tend to move the model to a
more abstract level. For example, the above factors will be different depending
on the type of engine and fuel used. Fuel types include petroleum, diesel and 
liquefied petroleum gas (LPG). The fuel efficiency and weight of engine, fuel 
and fuel tank are different in all three cases. Consequently, it is necessary to
determine:

• whether to make a selection at all at this point, or

• whether to keep all options open or

• whether to provide a customer selectable option for one, two or three of these
types.

The nature of the design will be significantly affected by the decision(s) that are
taken. It may be that multiple options are evaluated, each more detailed than the
overall model. Alternatively some options, for example LPG fuel, could be elim-
inated right at the start.
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Interface Functionality

One might expect that a car is going to be isolated in terms of its need to inter-
face with other systems. Increasingly this is not the case. One trivial example is
that a car will usually have a radio receiver and this entails conforming to certain
standards of demodulation in order to decode the transmitted signals.

As sophistication increases, so there are wider sets of standards that must be
conformed to. For example, cars that have GPS navigation must understand how
to receive and decode the satellite signals on which this system depends. Cars
that can provide traffic information to drivers must be able to interface with the
relevant information providers. In future, it is possible to envisage that the navi-
gation system may well be influenced by the traffic information and hence a 
further (internal) interface will be introduced.

For modern cars, the way in which they are serviced is an important consid-
eration. Frequently cars are required to retain information about events during
their operational use so that the service technician can access it to aid in diag-
nosing problems or to guide him to check or change relevant items that are
either faulty or nearing the end of their useful life. This is an example of a test
system that is partly installed in the operational system (i.e. the car) and partly
installed in the garage where the maintenance operations are undertaken.

Human Interaction Functionality

Many aspects of the “user interface” of the car are set by conventions that have
evolved over the years. For example, the relative positions of the foot pedals
(accelerator on the right, brake to the left and, if present, clutch to the left of
that) are identical all over the world.

Other aspects, such as left-hand or right-hand drive and position of indicators
and windscreen wipers, have local conventions in different geographical areas.

On the other hand, for entertainment systems, navigation systems and other
less common systems there are, as yet, no agreed conventions and therefore the
designers are free to provide an interface of their choice. As with most electronic
systems, there is a need to make the interface easy to use (or even possible to use)
for anybody who needs to use it. This is a challenge, because the only explanation
that can be provided is a user guide. It is not possible to send drivers and pas-
sengers on training courses and it is not appropriate to make any assumptions
about the educational level or experience of those who may need to use it.

Safeguard Functionality

The primary safeguard functionality in cars is to ensure the safety of the car and its
occupants. A further, increasingly important, area of functionality is the prevention
of theft.

Safety functionality starts with the braking system. It is essential that effective
braking is available to the driver at all times. Dual-circuit hydraulic brakes that
provide redundancy such that braking is still provided after any single hydraulic
failure is one way of providing this. The system model could include the imple-
mentation directly; alternatively, the model could just include the need for braking.



In the latter case, the fact that braking must still be available in the event of a single
hydraulic failure must be added outside of the model.

Note that this discussion has tacitly assumed that braking will be effected
using hydraulics! Some aspects of detailed design can be included especially
where there is a well-established precedent, or the decision can be taken in
response to a business objective introduced into the input requirements by the
developer organization.

Other areas of safety include ABS braking and the provision of air bags to
cushion the impact of a collision. Again these can either be explicitly included in
the model or the designer can be given freedom to invent alternative solutions.

The starting point for security is the provision of locks on doors. This can be
enhanced by the provision of an alarm system and engine immobilizer. The limit-
ing factor here is the cost of introducing the extra functionality and the amount
that a customer is prepared to pay for it. However, there are other factors such as
the facilities provided by competing cars and the attitude of insurance companies.
Both have a strong influence not only on the functionality that must be provided,
but also on the way its inclusion is justified.

System Transactions

There are many possible transactions for a car. All are based on journeys but with
specific objectives or characteristics, for example:

• Driver, shopping trip in town – leave parking bay, travel, park, secure vehicle,
unlock vehicle, load vehicle, leave parking bay, travel, park, unload, secure
vehicle.

• Driver, motorway trip.

• Driver, airport trip (with luggage).

• Driver, trip with accident.

• Passenger – get in, fit belt, travel, undo belt, get out.

• Garage technician – repeatedly service, with major/minor intervals.

• Owner – buy, depreciate, sell/dispose.

• Salesman – repeatedly attempt to sell, ended by selling, warranty period.

Each of these may add new requirements such as luggage capacity or maintenance
facilities. Therefore, it is important to consider them all and understand how the
implied requirements of each are addressed. Of course, this does not mean that
all of them will be satisfied. It may be that some are rejected because they are too
expensive or are not considered to be relevant for the market being considered.
Alternatively, the transactions may cause different models to be created for different
markets.

Modes of Operation

One could imagine a car in which the prevailing terrain could influence the way
in which the car operates. For example, in mountainous terrain, the gearbox could
automatically select lower ratios and the engine management system would take
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into account the amount of oxygen in the air and consequently alter the mixture
of petrol and air to take account of this. Alternatively, these could be options that
could be selected either at the time of purchase or when driving.

A further important mode of operation is the maintenance mode, in which the
engine management system is downloading the collected information for analysis
by the maintenance system and technician.

A more extreme mode could be to join a motorway “train” composed of a set
of cars all travelling at the same speed with minimal spacing. The cars would then
be controlled as a group and local driving facilities would be disabled.

6.2.5 Deriving Requirements from a System Model

Create a Document Structure for the Requirements

As indicated earlier, the system model may be composed of many independent
and potentially overlapping models. It is possible to start deriving requirements
from any of these models as has already been alluded to in the previous sections
covering the banking and car examples. However, the challenge is to find a struc-
ture into which all of these derived requirements can be placed such that every
requirement has an obvious place in that structure and that any empty sections
are empty by design rather than by accident. The structure is referred to as a
“document structure” in Chapter 4.

It is recommended that one of the models be chosen as the primary source for
generating the document structure. The model selected should be the one with
the widest scope, since the system requirements must cover the complete system
and not one small area. In practice, the decision is usually obvious. For data-
oriented systems such as the banking example, the data model is often the best
focus, since every function is concerned, to some extent, with establishing, dis-
seminating, updating or safeguarding the data. For more physical systems such
as the car example, it is often best to use a model derived from the physical struc-
ture of the system (assuming one exists), because most of the requirements refer
to one or more of these elements.

Derive or Allocate Requirements

Once the structure has been agreed, it is possible to collect all the requirements
that have been derived and to place them in the structure. It may be possible to
allocate some input requirements directly to the document structure. Where this
is the case, it frequently means that the input requirements are too detailed, i.e.
too close to the implementation.

All the rules for writing good requirements outlined in Chapter 4 should be
observed when formulating requirements. Remember that the golden rule is to
write each requirement as a single testable statement. As each requirement is
formulated, it is necessary to establish traceability back to the one or more input
requirements that the newly derived requirement satisfies wholly or partially.

When considering testability, it may be worthwhile thinking about the criteria
that will determine whether a test is considered successful or not. These acceptance
criteria should be documented with each requirement. Sometimes the criteria



can be embodied as a performance clause within the text of the requirement. An
alternative is to write the criteria in a separate attribute alongside the requirement.

As testability and performance are being considered, it is vital to consider how
the testing, or other demonstration of successful implementation, will be organ-
ized. This leads naturally into the issue of qualification strategy and the identifi-
cation, in outline, of the set of trials tests and inspections that will be necessary.

In this context, it is also essential to consider the test harnesses or special test
equipment that will be required. These may require separate development and,
in some cases, can become separate projects in their own right. A further con-
sideration in this area is the notion of built-in tests and the provision of monitor
points. Built-in tests are increasingly important, especially in safety-related areas.
For example, in the car example, most electronic systems will have a built-in test
that is performed when the car engine is started up. Monitor points are places
where significant information can be made available that would otherwise not
be visible. A simple example of this is an oil pressure gauge on cars. An information
example for the banking system could be a display screen showing the current
transaction rates across the whole of the banking network.

The final set of requirements that should be considered is the set of constraints.
These add no additional functionality, but control the way in which the func-
tionality is delivered. At the systems requirements level, there may be some con-
straints that come straight from the stakeholder requirements. For example, the
space that a system can occupy may be limited or the stakeholders may have
insisted that a pre-existing system is used as a subsystem in the new system.

Some other sources of constraint are:

• Design decisions – e.g. the decision to have a dual hydraulically operated
braking system.

• The application itself – e.g. that the equipment must be able to cope with the
vibration generated by the car when it is in motion.

• Safety – e.g. how can the developers convince the authorities that the car will
not constitute a hazard to other road users?

• Manufacturing – e.g. can the car be manufactured using the existing facilities
at a reasonable cost?

6.2.6 Agreeing the System Requirements with the Design Team

The final step in the creation of the system requirements is to agree the require-
ments with the team who will be responsible for developing the design. This uses
the agreement process described in Chapter 2 and therefore no further explanation
is necessary.

6.3 Engineering Requirements from System 
Requirements to Subsystems

The logical next step on from the creation of the system requirements is to pro-
duce a design architecture whose components are the major subsystems of the
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proposed system, as shown in Figure 6.8. As usual, the process starts off by agree-
ing the input requirements with the customer. The review criteria for system
requirements must be used as the basis for the agreement process together with
the general criteria presented in Chapters 2 and 4. The requirements should be
free from implementation bias unless there is a specific need to constrain the
design. In the latter case the requirement must be explicitly stated as a constraint.
All too frequently constraints are assumed because “that is what the customer
asked for”. It is always good practice to challenge any design constraint, especially
if the constraint is implied rather than explicit. Sometimes requirements are
expressed in design terms owing to laziness and because engineers have a tendency
to go into too much detail too soon.

The analysis work necessary to support the agreement process helps to educate
the designers about what is intended and starts them thinking about possible
solutions.

6.3.1 Creating a System Architecture Model

An architecture model identifies the components of the system and the way in
which they interact. The designer must understand how the components work
together to develop the emergent properties of the system, i.e. to indicate how
they satisfy the input requirements. The designers must also be able to predict
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whether there are any emergent properties that are definitely not required, such
as catastrophic failures or other safety or environmental hazards. There may,
however, be emergent properties that a given design generates that, although not
actually requested by the customer, may be perfectly acceptable. These additional
capabilities must be discussed with the customer. They may give rise to changes
in the input requirements to request them, or the customer may request that
they are inhibited. Finally, the designers may find that it is impossible to satisfy
the requirements at all or at reasonable cost.

It is only when a design architecture has been generated and explored that
these possibilities come to light. Once a design exists it is possible to predict the
cost and development time for a system with much greater accuracy than earlier.
Hence it is possible to enter a round of negotiation with the customer to hone
the input requirements by the customer making concessions where problems or
cost dictate the need.

In many circumstances, it is worthwhile considering two or more alternative
designs and then investigating the relative merits of each. Again this can lead to
further negotiation (trade-off) with the customer to determine the most appro-
priate options in terms of cost versus benefit.

When an agreed architecture has been established, each component must be
described in terms of its internal functions and its interaction obligations with
other components and with external systems.

6.3.2 Deriving Requirements from an Architectural Design Model

From the descriptions of the components, requirements can be derived. The
requirements must address the functionality that the component must provide,
the interfaces that it must use or provide and any constraints to which the com-
ponent must conform. These constraints may come directly from the overall system
constraints (e.g. a particular electronic technology must be used for all compo-
nents), or they may be derived from them (e.g. the overall weight limit for the
system has been divided amongst the components). The component (i.e. subsys-
tem) requirements are essentially the system requirements for that component
when it is viewed as a system in its own right.

As each requirement is derived, it should be traced back to one or more of the
input requirements that it partially or fully satisfies.

The strategy for testing each component must also be determined. This will
not be the first occasion that testability has been considered. Testability is one of
the most important aspects of the design and must be considered as the design
is being created.

6.4 Other Transformations Using a Design Architecture

As the development proceeds from one level down to lower levels, so each level
introduces its own architectural design model (see Figure 6.1). At each level the
process followed is as described in the previous section. Thus the next level down
from the creation of subsystems is to create the components of each subsystem
and so on.
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There is one special case in which an architectural model is used that is an
exception to this rule. This is indicated in Figure 6.9, which shows that a design
architecture and subsequently subsystem requirements are created directly from
the stakeholder requirements. This is only possible where the system architecture
model is known in advance. Examples of this include some of the physical sys-
tems already considered, e.g. cars and aeroplanes. Another important group of
applications are those in the telecommunications industry. Here the overall
design architecture is mandated in the telecommunications standards that gov-
ern the application domains. It is a moot point whether the input requirements
to such a process which are often taken directly from the standard are really
stakeholder requirements or are, in fact, system requirements. Whatever inter-
pretation is placed upon these requirements, during the transformation it is
usual to make direct allocations from the input requirements to the subsystem
requirements. Again this suggests that such standards are providing require-
ments at a detailed level.

6.5 Summary

In this chapter, the nature of the solution domain has been described and 
the way in which requirement engineering is applied to transform stakeholder
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Figure 6.9 Transforming stakeholder requirements directly to subsystems.



requirements to system requirements and thence to subsystem requirements and
components requirements has been explained.

Two different examples have been used to explore the types of functionality
that must be used to define requirements in the solution domain. It has been
shown that, in addition to the required internal functionality, additional func-
tionality must be added to cope with external cooperating systems, human inter-
actions, to safeguard the system from external threatening systems make the
system safe to use. The latter aspect may also involve additional constraints on
the means of qualification in order to convince the relevant authorities.
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For starters I’ll have “Who?”, “What?”, “When?”, “Where?”, and then “Wither?”,
“Whence?” and “Wherefore?” to follow, and one big side order of “Why?”

Zaphod Beeblebrox in The Hitch-Hiker’s Guide to the Galaxy 
Douglas Noel Adams, writer, 1952–2001

7.1 Introduction

So often, the real rationale for a particular design and the deeper understanding
of how the components of a system work together to achieve an end result remain
in the minds of the engineers. Months or years later, when the original designers
have long since moved on, or their memory has dimmed, the loss of that under-
standing may seriously impede the ability to evolve, maintain or reuse the system.

This chapter first presents a technique for maintaining this greater under-
standing of a system, through capturing the rationale associated with the rela-
tionships between problem, solution and design. Christened “rich traceability”,
the approach builds on the basic concepts of “elementary traceability” presented
in Chapter 1 and applied in subsequent chapters.

While rich traceability may represent one big side order of “Why?”, the
“Wither?”, “Whence?” and “Wherefore?” of traceability are perhaps addressed
through another subject of this chapter: metrics in relation to traceability.

7.2 Elementary Traceability

There are many ways of representing many-to-many relationships. One consult-
ant visited a defence contractor just prior to a customer traceability audit to find
the office all laid out ready. Along the length of the floor on one side was spread
out the requirements document and on the other side the code listing. Trace-
ability was shown by pieces of string taped between the documents. Space con-
suming, time consuming, non-maintainable and non-transportable. But it did
some of the job.

Many engineers will have seen traceability represented in matrix form as an
appendix to relevant documents. The two dimensions identify, for instance, user
requirements on one axis and system requirements on the other, with marks in
those cells where a relationship exists.

Advanced Traceability 7
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There are a number of disadvantages to this approach:

• Where there are a large number of statements to index on both axes, the
paper or screen is too small to show enough information.

• Traceability relationships tend to be sparse, resulting in most of the cells in
the matrix being empty, which is a waste of space.

• It is very hard working your way through multiple layers of traceability pre-
sented in a number of separate matrices.

• Information about traceability is separated from the details of the require-
ments themselves.

Another method is to use hyper-linked documents, where statements can be
highlighted, linked to other statements and traversed at will – in either direction
if you are clever. Now the traceability information is visible in the text of the
statement, but there are still problems:

• To carry out analysis you may have physically to traverse the link before text
at the other end is visible.

• It is hard to spot when the item at the other end of a hyperlink has been
deleted, leaving a dangling link, making traceability difficult to maintain.

Whatever approach you use, unless supported by a tool, traceability will be
very hard to manage.

The simplest form of traceability is achieved by linking statements together
using some kind of database support. It is helpful if linking information is held
separately from the documents. It is essential that statements are independently
and uniquely identifiable.

With analysis in mind, the essential capabilities for implementation of trace-
ability are:

• ability to create links between statements, thus forming permitted relationships;

• ability to delete links between statements in a controlled manner;

• ability to view simultaneously the text (or other attributes) of statements at
both ends of a selected relationship;

• ability to carry out coverage analysis to show those statements covered or not
covered by a selected relationship;

• ability to carry out single- and multi-level impact analysis to show sets of
impacted statements;

• ability to carry out single-level and multi-level derivation analysis to show
sets of originating statements;

• ability to carry out upwards and downwards coverage analysis to show sets of
statements covered and not covered by selected relationships.

Figure 7.1 shows an example of elementary traceability. A user requirement
traces down to three responding system requirements. In this presentation, the
text of the user requirement is visible together with the set of system require-
ments that respond to it. Having this information together allows the traceabil-
ity to be reviewed easily. Figure 7.2 shows a second example.



7.3 Satisfaction Arguments

Implementation of elementary traceability as discussed in Section 7.2 represents
a major step forward for many organizations. Indeed, changing the culture of an
organization to embrace even this simple approach may be a big enough leap in
itself. However, there is, as always, more that can be done.

The intention in the example of Figure 7.1 is that the three system require-
ments are somehow sufficient to satisfy the user requirement. It is difficult, how-
ever, for a non-expert to assess the validity of this assertion. This is because the
reasoning has not been presented.

What is better is to present a “satisfaction argument” for each user requirement.
With the elementary traceability of Figure 7.1, the only information provided is
that the three system requirements play some kind of role in the satisfaction
argument, but there is nothing to indicate exactly what the argument is.

Rich traceability is a way of capturing the satisfaction argument. This appears
as another statement sitting between the user requirement and the correspond-
ing system requirements, as illustrated in Figure 7.3.
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UR 21: The driver shall be
able to deploy the vehicle
over terrain type 4A

SR 15: The vehicle shall transmit
power to all wheels

SR 32: The vehicle shall have ground
clearance of not less than 25 cm

SR 53: The vehicle shall weigh not
more than 1.5 tonnes

Figure 7.1 Elementary traceability example: military vehicle.

UR 3: The user shall be able
to boil 10 litres of water in 4
minutes in a flat-bottomed pan

SR 37: The cooker shall have a
3 kW, 15 cm diameter electric
plate

SR 31: The cooker shall have a
10 cm diameter gas ring

SR 41: The cooker shall be
supplied with gas pressured at
not less than 25 psi

Figure 7.2 Elementary traceability example: cooker.
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Not only is the satisfaction argument expressed textually, but an indication is
given about the way in which the system requirements combine in the argument
using a propositional operator:

• by conjunction (&), indicating that the contribution of all the system require-
ments is necessary for the user requirement satisfaction argument to hold;

• by disjunction (or), indicating that the contribution of any one of the sys-
tem requirements is necessary for the user requirement satisfaction argument
to hold.

An example of disjunction is given in Figure 7.4, where satisfaction is
achieved through provision of either an electric ring or a gas ring or both. Note
the two-level propositional structure of the argument.

Much more information is now provided about how the user requirements
are being satisfied. Even one who is not a domain expert may feel capable of
assessing important aspects of the argument. The text helps in assessing the logic
of the argument for validity and completeness. The operator makes the structure
of the argument more precise.

Notice in particular that it is not at all clear in Figure 7.2 that the set of system
requirements represent alternative solutions, whereas in Figure 7.4 the fact is
made absolutely specific. If an electric ring cannot be supplied, the requirement
can still be satisfied through a gas ring.

The authors first came across the concept of rich traceability in the Network
Rail (then Railtrack) West Coast Route Modernization project in the UK, where
a team from Praxis Critical Systems had devised a requirements management
process and data model that used “design justifications”. The same concept can
be identified in a variety of similar approaches in which satisfaction arguments
are called variously “requirements elaboration”, “traceability rationale”, “strat-
egy”, etc.

UR 21: The driver shall be
able to deploy the vehicle
over terrain type 4A

SR 15: The vehicle shall transmit
power to all wheels

SR 32: The vehicle shall have ground
clearance of not less than 25 cm

SR 53: The vehicle shall weigh
not more than 1.5 tonnes

Terrain type 4A specifies
soft wet mud, requiring
constraints on weight,
clearance and power
delivery

&

Figure 7.3 Rich traceability example: vehicle.



Satisfaction arguments may depend for their validity on things other than lower
level requirements. Figure 7.5 shows an example using “domain knowledge” to
support the argument. Domain knowledge is a fact or assumption about the real
world and not something that constrains the solution in and of itself. In this
case, the statement of domain knowledge is an essential part of the satisfaction
argument, shown in a slanted box.
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UR 3: The user shall be able
to boil 10 litres of water in 4
minutes in a flat-bottomed pan

SR 37: The cooker shall have a
3 kW, 15 cm diameter
electric plate

SR 31: The cooker shall have a
10 cm diameter gas ring

SR 41: The cooker shall be
supplied with gas pressured at
not less than 25 psi

&

A large gas ring,
with medium-
pressure gas
supply

Two kinds of flat
plates can achieve
this performance:

or

Figure 7.4 Rich traceability example: cooker.

UR 21: The driver shall be
able to deploy the vehicle
over terrain type 4A

&

A wheeled vehicle
requiring constraints
on weight, clearance
and power delivery

SR 35: The vehicle shall
have 3 axles

SR 15: The vehicle shall
transmit power to all wheels

SR 32: The vehicle shall have
ground clearance of not less 
than 25 cm

SR 53: The vehicle shall weigh
not more than 1.5 tonnes

DK 5: Terrain type 4A can
support 0.5 tonne per axle

Figure 7.5 The role of domain knowledge.
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Capturing such assumptions is important, not least because the world, and the
assumptions one can make about it, have a habit of changing. Once captured,
derivation analysis can be used to understand the impact of changing assump-
tions on the ability of the system to meet its requirements.

An example of this comes from the New York underground. A series of accidents
in the 1970s were due to a false assumption concerning the stopping distance of

& &

BR14: The journey time between
Euston and Glasgow shall be not
more than 250 minutes

VT 15: Vision model no. V54a

SR 32: Linespeed
           requirements

SR 32: Stations dwell-time
   requirements

VISION timetabling 
model shows feasability
of journey times for 
given line speeds and 
dwell times

This requirement is satisfied by:
– ensuring sufficient running 

           in each line segment,
– ensuring minimum non-running

           time
– ensuring feasability of overall 

           timetable

Figure 7.6 The role of modelling.
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Xxx xxxx xxx x xxxx
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xxxxxxx xxx xxxx
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Figure 7.7 Multiple layers of rich traceability.



trains. Initially valid, the assumption was invalidated as trains got heavier over the
years, and the stopping distance increased. Although the performance of the sig-
nalling software was originally correct, and it did not evolve, the changing
assumptions meant that it ceased to meet requirements from a certain time.

The ability to document and trace the role of such assumptions is possible
through effective traceability.

Another example of non-requirements information playing a role in satisfac-
tion arguments comes from modelling activities. Satisfaction arguments are
often derived from complex modelling activities, the complete details of which
are too detailed to be captured in rich traceability.

Figure 7.6 shows an example abstracted from a railway project in which a sat-
isfaction argument depends on the results of a complex timetable modelling
activity using specialized software. A set of assumptions and subsystem require-
ments are derived from the modelling tool and these are documented in the 
rich traceability structure. The modelling reference is shown in a box with
rounded ends.

In this case, the modelling activities that need revisiting become apparent
under impact analysis.

Rich traceability can, of course, be used through multiple layers of requirements
or objectives. Figure 7.7 depicts three layers and the traceability between them.

7.4 Requirements Allocation

The satisfaction argument is often trivial, amounting perhaps only to the alloca-
tion of an identical requirement to one or more subsystems or components. This
is sometimes referred to as requirements “allocation” or “flow-down”.

Where this pure flow-down of requirements is used, the change process may
be simplified. Changes to high-level requirements may be automatically flowed-
down to lower levels.

A simple extension of rich traceability allows such cases to be captured. A new
value representing “identity” is added to the “and” and “or” operators used to
annotate the arguments. Figure 7.8 shows an example of this. The symbol “�” is
used to indicate identity.

7.5 Reviewing Traceability

Every time a requirement is reviewed, it should be reviewed along with its satis-
faction argument. Based on rich traceability, a review process can be established
that focuses on one requirement at a time, together with its satisfaction argu-
ment, and the requirements that flow from it.

Figure 7.9 shows a screen shot of a tool used in a defence project to review
requirements and satisfaction arguments. On the screen is just the right parcel of
information to assess a requirement and how it is satisfied.

The dark triangles are for navigating downwards through the layers of trace-
ability or across to the next requirement at the same level.
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or

=

Requirement flowed down to 2 subsystems

SHR 3
SR 37

SS1-73
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SS1-132

SS1-24

SS2-14

SS2-131

SS1-42

SR 41

SR 31

&

Xxx xxxx xxx x xxxx
xxxx xxxx x xxxxxx:

&
X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

or

Figure 7.8 Flow-down of requirements using “identity”.

Figure 7.9 Reviewing tool for satisfaction arguments.



7.6 The Language of Satisfaction Arguments

As with requirements, it helps to have a uniform approach to expressing satis-
faction arguments. The key guideline is to start the sentence with “This require-
ment will be satisfied by …”, which focuses the mind on the kind of statement
being made.

While requirements should be strictly atomic (see Chapter 4), satisfaction
arguments need not be so limited. However, if statements become too complex,
a structured argument should be used instead.

Repeated patterns of satisfaction arguments may be identifiable, in which case
a palette of boilerplate statements could be used to good effect.

7.7 Rich Traceability Analysis

The presence of satisfaction arguments in rich traceability does not preclude the
ability to carry out elementary impact and derivation analysis as described in
Chapter 1. Indeed, the arguments add important clues as to the nature of the
impact by capturing understanding, or raison d’être.

The propositional structure (ands and ors) of the satisfaction arguments
offers opportunities for other kinds of analysis. For instance, the structures can
be analyzed to show the number of degrees of freedom that exist for meeting a
particular objective.

Take the example of Figure 7.4. The proposition structure for UR3 can be 
captured in the expression SR37 or (SR31 and SR41). Using the laws of proposi-
tional logic, this can be converted to a special disjunctive form in which each 
disjunct shows one way of meeting the requirement:

[SR37 and (not SR31) and (not SR41)]
or [SR37 and SR31 and (not SR41)]
or [SR37 and (not SR31) and SR41]
or [SR37 and SR31 and SR41]
or [(not SR37) and SR31 and SR41]

In simple cases, this analysis may not seem that useful, but imagine more
complex scenarios where there are hundreds of requirements in several layers
with complex interactions. One may want to know whether there is any way of
meeting the requirements and, if there is no way, then what the cause is – where
the conflict exists.

7.8 Rich Traceability for Qualification

Rich traceability can be used in any traceability relationship. The discussion so
far has been based on the satisfaction relationship, but it is also applicable to
qualification. In this case, the “satisfaction argument” may be referred to as the
“qualification argument” or “qualification rationale”. All the same advantages of
using satisfaction arguments apply to the qualification strategy.
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7.9 Implementing Rich Traceability

We describe here two approaches to the implementation of rich traceability: single-
layer and multi-layer.

7.9.1 Single-layer Rich Traceability

In this approach, illustrated in Figure 7.10, each high-level requirement has a
single statement of satisfaction or strategy as an attribute, and multiple low-level
requirements may flow from it in a many-to-many satisfaction relationship.
Another attribute (not shown in the diagram) is used to type the argument as
either a conjunction or a disjunction.

7.9.2 Multi-layer Rich Traceability

Here satisfaction arguments can be structured into multiple layers: a main argu-
ment attached (as an attribute or linked in an “establishes” relationship) to the
requirement to be established, and a hierarchy of subarguments hang off of the
main argument. Low-level requirements are linked to the subarguments in a
“contributes to” relationship. This is shown in Figure 7.11.

High-level
requirements

Requirement Satisfaction
argument

satisfies (n:n)

Low-level
requirements

Requirement

Requirement

Figure 7.10 Single-layer rich traceability.

High-level
requirements

Low-level
requirements

Satisfaction
Arguments

Main
argument Sub-

argument

Sub-
argument

Requirement

Requirement

Requirement

establishes contributes to

Figure 7.11 Multi-layer rich traceability.



Some implementations limit the depth of the argument hierarchy to two,
using a main argument – the satisfaction argument – and a single layer of subar-
guments that explains the role played by the contributing requirements.

7.10 Design Documents

Astute readers will have noticed that the layer of rationale introduced by satis-
faction arguments is very like the “filling” in the systems engineering sandwich
presented in Figure 1.9. Indeed, the satisfaction arguments can be gathered into
a document which may be best characterized as an “analysis and design” docu-
ment. It is this design document which is the focal point of the integration
between requirements and modelling. The role of the design document is to
summarize – textually and visually – those parts of the modelling activity that
explain why one layer of requirements is sufficient and necessary to satisfy the
layer above. The document references data from the modelling process as evi-
dence for the rationale. Traceability between layers of requirements passes
through the design document. In this way, the results of modelling appear in the
traceability chain and can engage in impact analysis.

Figure 7.12 portrays this approach. Layers of requirements are filled by design
documents appropriate to the level of abstraction. The modelling activities at
each level give rise to data that is referenced by the design document. The thin
arrows represent the flow of information; the thick arrows represent traceability.

We now show an example of the kind of information that may be collected
into a design document. A sequence of figures shows extracts from an “analysis
of need” document that models a baggage check-in system at the problem domain
level. The model sits between the “statement of need” and the “stakeholder
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Figure 7.12 Analysis and design documents.
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requirements” documents, and uses UML2 to portray the analysis in 
visual form.

The following kinds of information are typical:

• Concepts. A UML class diagram is used to identify the domain concepts and
the relationships between them. Each concept is a UML class and each rela-
tionship is a UML association. Both appear as entries in the design document
where a textual description of the concept or relationship is supplied. Figure
7.13 shows an example for the baggage check-in system. The symbols to the
left of each paragraph indicate that that part of the document corresponds to
a UML entity in the model.

• Stakeholders. This section lists the stakeholders that have been identified during
analysis, and includes a class diagram showing relationships. In the example
shown in Figure 7.14, there are two stakeholders with a single relationship.

• Static context. The purpose of this section (Figure 7.15) is to identify the context
in which the baggage check-in system exists. The baggage check-in system
itself is modelled as a class in a class diagram, along with classes representing all
the surrounding and enclosing systems. Relationships between these systems

Figure 7.13 Concepts section of design document.



are modelled using aggregations and associations. Again, each class and asso-
ciation appears in the design document with a textual description.

• Usage. This section describes the top level use cases for the system. This is pre-
sented as a series of use case diagrams, each with one or more sequence dia-
grams. Figure 7.16 shows just one of the use cases and its sequence diagram
showing the normal course of action for the scenario. The sequence diagram
shows the interactions between the stakeholders (some of which are external
subsystems) and the system in question (the baggage check-in system) and
thus helps to define the scope, process context and external interfaces.

• Design rationale. This section summarizes the analysis and modeling activity
by giving an explanation of how the need is going to be satisfied by the cap-
abilities of the system. One way of presenting this information is in the form
of a “satisfaction argument” for each statement in the input requirements
document. It is here that the traceability to high-level requirements and from
low-level requirements is established. The satisfaction argument, in effect,
explains how the statement of need has been decomposed into statements of
capability. This is illustrated in Figure 7.17.

In this figure, the first column shows the text of the statement of need that is
addressed by the rationale, the middle column contains the rationale and the
right-hand column shows evidence for the rationale in the model and require-
ments that are derived from it. This tabular presentation is, in effect, the sand-
wich on its side: two layers of requirement with the design rationale in between.
With effective tool support, this view of the project data can be generated from
the presence of tracing between the layers.
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Figure 7.14 Stakeholders section of design document.
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7.11 Metrics for Traceability

Since the concept of traceability is so central to requirements engineering, it is
interesting to consider what process measurements may be useful in relation to
the flow-down of requirements.

Figure 7.15 Context section of design document.



Focusing on the satisfaction relationship, and moving down through the 
layers of requirements, there are three dimensions of traceability that may 
interest us:

• Breadth: how well does the relationship cover the layer, upwards and 
downwards?

• Depth: how far down (or up) the layers does the relationship extend?

• Growth: how much does the relationship expand down through the layers?
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4 Usage Context

4.1 Travel with baggage

4.1.1 Use Case

Here we give top-level use cases.

General description of use case.

‘Baggage Check-in System’

‘Baggage Transport System’

‘Baggage Collection System’

‘Travel with Baggage’

4.1.2 Travel with Baggage: Normal Course of Events

Passenger

General description of the normal course of events for this use case.
<<actor>>
Passenger

<<actor>>
:‘Baggage Check-in System’

<<actor>>
:‘Baggage Reclaim System’

<<actor>>
:‘Baggage Transport System’

‘Trackable baggage’ ()

‘Trackable baggage’ ()

receipt ()

receipt ()

baggage ()

baggage ()

Figure 7.16 Usage section of design document.
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To help in determining which aspects of these dimensions are useful in terms
of measuring the requirements engineering process, it is necessary to distinguish
between two types of metrics:

• Phase metrics: measurements relating to a single stage of development, e.g.
just to the systems requirements layer.

• Global metrics: measurements spanning several stages of development.

The three dimensions are now addressed, along with a discussion about balance.

7.11.1 Breadth

Breadth relates to coverage and as such is a phase metric. As discussed in Chapter
1, coverage can be used to measure progress of processes that create traceability
at a single stage. It focuses on a single layer and measures the extent to which
requirements are covered by the adjacent level above or below (or “beside” when
looking at qualification.)

7.11.2 Depth

Depth looks at the number of layers that traceability extends upwards or down-
wards from a given layer, making it a global metric. One application may relate

Figure 7.17 Rationale section of design document.



to determining the origins of requirements of the lowest level. How many com-
ponent requirements have actually flowed down all the way from the stakeholder
requirements, and how many have their origin somewhere in the design?

7.11.3 Growth

Growth is more interesting. It is related to potential change impact. How many
requirements at lower levels are related to a single requirement at the top level?
Consider Figure 7.18, in which four situations are contrasted.

In case (a), a single requirement is satisfied by a single requirement at the next
level down. The growth factor is 1. In (b) the single requirement is met by 6, giv-
ing a growth factor of 6. What does this say about the differences between the
two requirements? Possibilities are:

• requirement (b) may be poorly expressed, and needs decomposing into several;

• requirement (b) may be inherently more complex than (a), and therefore
may need special attention;

• changing requirement (b) will have more impact than changing (a), and
therefore needs special attention.

Of course, an apparent imbalance at one level may be addressed at the next
level down. This is illustrated by cases (c) and (d), where the growth factor two
levels down is identical. What could be deduced from this? Possibilities are:

• the top requirement in (c) was at a level too high;

• the middle requirements in (d) were at a level too low.
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(a) (b)

(c) (d)

Figure 7.18 Traceability growth.
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Only after considerable experience in a particular organization developing
particular kinds of systems could one begin to ascertain what growth factor of
requirements between layers is to be expected. More readily useful, however,
would be to examine the balance of growth between requirements as a means of
identifying potential rogue requirements, or imbalances in the application of
process.

7.11.4 Balance

One idea for a metric is to look at the distribution of growth factors for individ-
ual requirements between two given layers, and examine those that lie in the
outer quartiles of the distribution. The goal is to identify requirements that have
an abnormally high or low growth factor, and subject them to special scrutiny.

Figure 7.19 shows what a typical growth distribution may look like. The
graph plots the growth rate against the number of requirements that possess 
that growth rate. Most lie between 2 and 6, whereas a few have only 1 or more
than 6. It is these latter requirements that should be identified and given special
attention.

The discussion above was about downwards growth – examining the number
of requirements that flow out of another. What about the opposite direction: the
number of requirements that flow into another?

Bearing in mind that traceability is a many-to-many relationship, consider
Figure 7.20. Two requirements at the lower level have more than one require-
ment flowing into them. What can we say about these requirements? They are
perhaps more critical than others, since they satisfy multiple requirements, and
should therefore be given special attention.

The distribution of upward traceability can be used to single out these
requirements. Figure 7.21 shows the typical shape of such a distribution.
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Figure 7.19 Frequency distribution of requirement growth.



7.11.5 Latent Change

Change management is perhaps the most complex requirements engineering
process. The processes and information model detailed in Chapter 2 take advan-
tage of traceability to determine the potential impact of change. When a change
request is raised against one requirement, all those tracing to it move to a suspect
status until the engineers ascertain the true impact.

The raising of a single change request, therefore, can suddenly introduce a
cascade of potential latent change into the system. In such circumstances, it
would be highly desirable to track progress and estimate the consequential work.

Figure 7.22 illustrates the complexity of change impact. A change request is
raised on one of the highest level requirements. Part (a) shows the potential
impact using downwards traceability. Those boxes marked with a white circle are
subject to change assessment.

Part (b) shows the potential change using upwards impact. This occurs
because of a low-level requirement that flows down from two higher require-
ments. It is necessary to access upwards impact from these changes, because
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changes in a low-level requirement may cause renegotiation at a higher level.
Suddenly everything in this example is potentially subject to change!

Of course, as engineers assess the real impact, it may be found that in fact
some of these requirements are not subject to change after all, and the cascade of
potential changes can thankfully be pruned, sometimes substantially.

A change proposal is
raised here

These need reviewing
for impact

(a)

(b)

Maybe so do these
(upwards impact)

… and therefore these
(downwards impact)

Figure 7.22 Potential change resulting from a change request.
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Figure 7.23 Progress in processing change.



The status of change can simply be measured in terms of the number of
requirements still in a suspect state. When a change request is raised, all other
requirements traceable downwards and upwards are marked as suspect. Then
the number of suspect requirements will steadily decrease as assessments are
made of each, their state is reset, possibly resulting in a cascade of others also
being reset. The amount of residual change in a system will therefore peak every
time a new change is introduced, and tail-off, as illustrated in Figure 7.23.

The above discussion of the change process supposes that change is propa-
gated from requirement to requirement purely through the existing set of links.
However, a change in a requirement may necessitate the addition or removal of
traceability links. Changes in links should propagate change to the connected
requirements at both ends.

7.12 Summary

Of all the advantages in the use of traceability cited in Section 1.5, it is the
increase in confidence in meeting requirements that is so clearly addressed
through rich traceability. The discipline of capturing the rationale associated
with traceability builds that confidence.

There is no doubt that there is considerable effort involved in the creation of
complete satisfaction arguments, especially in complex systems with hundreds
of requirements.

In the Network Rail project, there are some 500 satisfaction arguments that
serve to decompose the high-level requirements through to subsystem require-
ments. A team of between two and five requirements engineers was dedicated to
the maintenance of this information over about 3 years.

Experience suggests, however, that the cost is amply repaid in the increased
confidence that comes from the greater reflection required. The ability of the
Network Rail sponsor organization to take a high-level objective and demon-
strate in detail through the layers of rich traceability exactly how that objective is
going to be met was a major selling point for the concept.

It is clear, also, that traceability is a rich source of metrics for process meas-
urement. It is the formalization of relationships through traceability and associ-
ated processes that makes such measurement possible.

Chapter 7 • Advanced Traceability 151



In theory there is no difference between theory and practice. In practice 
there is.

Yogi Berra, baseball player, b. 1925

8.1 Introduction to Management

The management of the requirements engineering process is similar to the man-
agement of any other endeavour. Before starting out, it is necessary to under-
stand what needs to be done. We need to know the sorts of activities that must
be undertaken. We need to know whether there are any dependencies between
the activities, e.g. whether one activity can commence only when another one
has been completed. We need to know what kinds of skills are required to 
perform the activities.

It is good practice when preparing a plan to concentrate on the outputs that
will be generated by each activity. Outputs can be seen and provide tangible 
evidence that work has been or is being done.

From all of this information, we can generate a plan in which we have identi-
fied the activities to be undertaken, the people who will perform the activities
and the time it will take them to complete the activities. We can then start work
following the plan and the manager can monitor work against the plan. In an
ideal world, the plan will be followed to the letter. Nothing will go wrong and we
shall arrive at the completion date of the plan with all the work done.

Reality can be very different. First, estimating the time and effort required to
complete a task is very difficult unless the manager has extensive experience of
tackling similar jobs in the past. Second, there may be difficulties discovered 
as work progresses that could not have been foreseen. For example, the plan 
may have relied on the availability of a key person at a specific time and, for any
number of reasons, that person is not able to be there.

These events cause deviations from the plan and lead to the need to change it.
Once a new plan has been put in place, the whole process is repeated. A frequent
consequence of changing the plan is that, almost inevitably, the cost will increase
and/or the time to completion will be later than previously estimated. An alter-
native approach is to keep the costs and completion time constant and reduce the
amount of work to be done. This can be a viable strategy in some circumstances;
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for example, it may be imperative that a company has a new product out in the
market place at a given time (to address the competition) and within a given
budget (because that is all the company can afford), irrespective of how capable
the product is (although at least a threshold level is usually necessary to avoid
triviality). This situation is typical of the way in which commercial pressures can
drive a project.

It is important to recognize that any project is constrained by three factors:

• product capability;

• cost;

• time-scale.

These three factors are related as indicated in Figure 8.1. Any change to one of
these factors will have a consequential change to at least one of the others. Figure
8.1 also indicates that projects make progress by taking decisions. Every decision
positions the project with respect to these three fundamental factors. It is the
pipe dream of every project manager that each decision will improve the prod-
uct capability while simultaneously reducing cost and shortening development
time. In spite of its improbability, this dream is widely held.

8.2 Requirements Management Problems

This section introduces the specific problems that make the management of
requirements more difficult than some other management activities. The first
problem is that very few people have had significant experience of managing
requirements. This is mainly because very few organizations have a defined
requirements management process that is followed across the organization. As a
result, people faced with a project that must address requirements, have very lit-
tle experience to draw on. This makes estimation very difficult, because one of
the main ingredients of the production of good estimates is extensive relevant

Cost

Cheaper Faster

Better

Time

Product
Capability

Decisions

Figure 8.1 Capability, cost and time are interrelated.



experience. Hence the starting point is not good and one is reminded of the joke
in which one person asks another the way to a specific place and receives the
reply “I wouldn’t start from here”!

A corollary of this problem is more fundamental. If people have had little
experience of requirements management, they may not even know what activ-
ities are necessary to develop requirements. Earlier chapters have addressed this
issue and give direct guidance on the sorts of activities necessary to develop
requirements of various types and in several contexts.

The second problem is that many people do not properly distinguish between
user or stakeholder requirements and system requirements. Further, they often do
not distinguish between system requirements and design specifications. In other
words, they go straight for a solution rather than defining a solution-independent
set of requirements. Again, this topic has been dealt with in preceding chapters.

The third main problem is that the way in which requirements are managed
will depend upon the type of organization in which the work is being done. In
preceding chapters we have discussed the different types of requirements and
indicated how they are related. However, the way in which these processes are
applied will depend upon the type of organization applying them. There are
three main types of organization:

• Acquisition organizations that purchase systems and then use them to provide
an operational capability. These organizations are mainly concerned with
creating and managing stakeholder requirements, which subsequently are used
as the basis for acceptance of the delivered system.

• Supplier organizations that respond to acquisition requests from acquisition
organizations or higher level supplier organizations. These organizations
receive input requirements and develop system requirements (and subse-
quently a design that is manufactured) in response to them. (Suppliers may also
be acquirers of lower level subsystems or components, but this is a different
form of acquisition because it is based on a design architecture.)

• Product companies that develop and sell products. These organizations col-
lect stakeholder requirements but from their market place rather than from
individuals or from operations organizations. The marketing department
usually performs the collection of requirements. Product companies develop
products in response to the stakeholder (marketing) requirements and sell
the developed products. In a sense, these types of organizations encompass
both acquisition and supply, but they tend to have a different relationship
between the parts of the company that perform these roles compared with
the standard acquisition and supplier relationship.

We will return to these types of organization later in this chapter.
The fourth problem that makes the management of requirements more difficult

than some other management activities is that it is difficult to monitor progress
when requirements are being generated. One difficult issue is to know whether
the requirements set is complete – in order to decide whether the activity should
stop. Even worse is the problem of determining how much progress has been
made when the activity is nowhere near completion. This problem is further
exacerbated by the need to assess the quality of the requirements generated.
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A long list of requirements may have been generated, but how does the manager
assess whether each requirement is well expressed? How can he or she tell
whether each requirement is unique and whether they are all necessary?

The final problem is the perennial problem of changes. Requirements man-
agement should be the primary focus for change management. Any proposed
change will usually relate to one or more requirements. The impact or knock-on
effects of proposed changes are often difficult to assess, yet without this know-
ledge it is impossible to estimate the cost and time impact of introducing a
change.

8.2.1 Summary of Requirement Management Problems

Specific management issues for requirements development arise in connection
with:

• planning;

• monitoring progress;

• controlling changes.

The problems are subtly different depending on the organization involved.
Therefore, in the rest of this chapter we consider each of these activities in the
context of the three types of organizations introduced earlier. Finally, we draw
together some common approaches in a concluding section.

8.3 Managing Requirements in an Acquisition 
Organization

8.3.1 Planning

The starting point for a project in an acquisition organization will be some form
of concept description. In its most basic form this will be just an idea, but usually
it will be more concrete and well founded. The reason for this is simple: projects
must be authorized by the organization and the authorization process will
require some documented evidence to support the case for spending time and
money (resources). The evidence usually contains a brief description of what the
users want to be able to do (the concept) and a supporting argument to indicate
the benefits that will ensue to the operating organization from the provision of
such a capability.

The information in the concept definition enables the project manager to
begin planning. Since the concept definition contains a “description of what the
users want to be able to do”, we immediately have an initial set of stakeholders
(users) for the system and an outline of one or more scenarios (ability to do
something).

The first step in constructing a plan consists of identifying a fuller set of stake-
holder types and a more complete set of scenarios that cover the complete range
of expected operation of the system including, where useful, different modes of
operation. Once the number of stakeholder types is known, it is possible to plan



in detail how to set about eliciting requirements. Actions that may be 
instantiated in the plan include:

1. Plan to interview one or more candidates of each stakeholder type. The
requirements manager is responsible for ensuring that authorization to con-
duct the interviews is obtained from the candidates’ managers. Authorization
may depend on appropriate job codes and budgets being agreed (so that the
candidates interviewed can book their time to the new project and conse-
quently their managers are not penalized for their staff ’s absence while being
interviewed). The requirements manager should also ensure that access to key
operations staff is provided. Often the candidates’ managers will be unwilling
to release their most competent (useful and well informed) staff for an activ-
ity that is not in their short-term interests. It is up to the requirements 
manager to convince them of the value of doing so.

2. Allocate time to write up the interviews as interview reports and agree them
with candidates interviewed.

3. Decide the interview strategy and communicate to the interviewers (who
may be involved in the decision process anyway). The interview strategy will
determine how each interview is conducted, for example, whether candidates
should be prompted to express scenarios themselves, or be presented with a
suggested scenario that they can criticize, etc.

4. Prior to the interviews it can be useful (but not necessarily easy) to get all the
candidates together and explain the purpose of the interviews. If such a
meeting can be arranged, it provides an excellent forum in which to dis-
cuss/develop user scenarios and to seek confirmation that all stakeholder
types have been identified.

5. Agree and document the set of user scenarios that best reflect the purpose
and operation of the system in its context. It is essential to ensure that the
scenarios are not too blinkered in their scope.

6. Following the interviews, suggested stakeholder requirements can be extracted
from the interview reports and agreed with the interview candidates.

7. Decide on a structure into which each of the stakeholder requirements can be
entered.

8. Place each identified stakeholder requirement within the agreed structure
and modify the structure as necessary.

9. Identify and record any constraints. Some constraints are product require-
ments such as physical size. Others are plan constraints such as budgeted cost
and completion time. The product constraints should be entered into the
stakeholder requirements specification. The planning constraints (such as
budget, schedule, resource or quality) belong in the management plan and
will have an influence on the planning activity.

10. Decide whether additional attributes are required to support the text of the
requirements. Many organizations have standard sets of attributes that may
be required or are merely advisory. Examples are priority, urgency, status,
validation method and acceptance criterion.

11. Agree the criteria for the review of each individual requirement and for the
requirement set as a whole. These criteria are best presented as a checklist for
the reviewers. Ideally the review criteria should be created as early as possible
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and distributed to the people writing the requirements. This enables them to
appreciate what is required of them before they start to write.

12. Define the review process and relate this to the status of the individual require-
ments. This process can be summarized as a state transition diagram as
shown in Figure 8.2. This shows that the initial state of a stakeholder require-
ment is “Proposed”. When the requirements management team has reviewed
it, it can move to the “Reviewed” status. Reviewed requirements can then be
subjected to a further review by the sponsor’s team and, when successful, will
achieve “Endorsed” status. Note that, at any time, an “Active” requirement
can be rejected. Review criteria must be determined for each review.

13. Perform reviews as required by the review procedure defined.

This list of activities implies the need for several decisions to be taken. This is the
requirements manager’s responsibility in collaboration with other interested
parties such as the interview candidates, their managers and the overall sponsor
for the system.

Care should be taken to assess any planning constraints to ensure that they are
feasible and sensible. Stakeholders may demand that the system is put in service
in a very short period of time and at low cost, but this may not be possible. A prime
example of an unrealistic time constraint comes from the London Ambulance
System developed to control ambulances in London in the early 1990s. The
managers wanted to have the system in place so that they could supply the gov-
ernment with the performance statistics they were demanding. This very short
development period and early in-service date were placed on the project as overall
constraints, but were absolutely impossible to meet. Many contractors tried to
persuade the ambulance service that it was impossible to meet these constraints
and asked for the in-service date to be put back. These requests were refused and so
many contractors did not bid. This left less experienced contractors to attempt to
meet the impossible constraint. History shows that they completely failed to meet
the demanded deadline and in the process caused serious harm to many people.

Realism in planning is essential for professional integrity.

8.3.2 Monitoring

Monitoring can start once the plan is in place. Obvious monitoring points are
the completion of each activity in the plan. In the early stages the activities will

Active

Requirements
Management

Team
Review

Sponsor’s
Team

Review

Proposed Reviewed Endorsed Rejected

Figure 8.2 Example state transition diagram for stakeholder requirement status.



mainly revolve around preparing for the interviews, conducting them and
reporting on them. These are easy to assess.

Three major milestones help to define the monitoring for the rest of the
process:

• the definition of the structure for the requirements specification;

• the definition of the attributes required for each requirement;

• the definition of the review process(es) with associated checklists.

Once the structure is in place, it is possible to determine whether there are any
areas where there should be requirements but none exist. These “holes” can be
addressed by specific actions.

Once the attributes have been decided, progress in filling them can be 
monitored.

Finally, the progress against satisfying the review checklist criteria can be
checked by measuring the number of requirements that have a specific status.

8.3.3 Changes

During the development of stakeholder requirements there will be a period of
rapid and intense change. At this stage it is not sensible to have a formal change
control process in place, because the situation is too dynamic and would just get
in the way. However, at some point stability will begin to emerge and the require-
ments manager can determine when the requirements are sufficiently stable to
subject further changes to a more formal process. Often this stage only occurs
once all the requirements have been reviewed and reach the “Endorsed” state
(see Figure 8.2).

Managing change is a vital activity in requirements development. The for-
mality with which the process must be applied depends upon the development
state of the project. Important stages include the following:

• stakeholder requirements used as the basis for a competitive bidding process;

• contract in place for the development of a system;

• design complete and manufacturing about to start;

• acceptance trials are being undertaken;

• the system is in service.

This list defines a set of points in a sequence of increasing commitment. Hence
the further down this list a project is, the more formality is required in the
change control process and the higher the likely cost impact of any change.

Whatever stage a project is at, the following steps are required in a change
control process:

1. record the suggested change;
2. identify the impact of the suggested change;
3. decide whether to accept the change;
4. decide when to implement the change.
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The suggested change should indicate the reason for the change and identify the
stakeholder requirements that must be changed, added or deleted. The person or
organization requesting the change must also be recorded.

At step 2 the impact will depend on the stage at which the change is suggested
and this will require information about how the impacted requirements will
influence the downstream information such as system requirements, design,
manufacturing and in-service operations.

A Change Control Board will take step 3. The constitution of this board will
depend on the organization, the scale of the system and the stage of development
or operational use of the system. If a change is accepted, then step 4 is required.
It may be that the change must be incorporated immediately irrespective of cost.
Alternatively, the change may be deferred until a later release of the system. Any
number of intermediate points may be appropriate and this clearly depends on
circumstances.

It is always useful to have a set of states for a change and to represent this
using a state transition diagram or statechart. Figure 8.3 contains an example.

It is also important to decide whether the status of requirements that are the
subject of a change proposal should be changed to indicate this. There are at least
two schools of thought on this point. One group takes the view that the depend-
ency between the change and the requirements is held in the change proposal
and hence it is not necessary to modify the requirement’s status. Another group
takes the view that when it has been decided that a change proposal will be incorp-
orated, this means that the requirement is subject to change and this indicates
that its review status has changed. (This is the view taken in Chapter 2.) Whatever
position is adopted, it is necessary to decide on the status values for change pro-
posals and whether these have any impact on the review status of the affected
requirements.

In summary, acquisition organizations are mainly concerned with the cre-
ation of stakeholder requirements. This is a creative process that is difficult to
bound initially. However, as the work progresses and the numbers of stakehold-
ers and scenarios are agreed, it is possible to plan more accurately.

Proposed

Agreed

Incorporated

Rejected

Planned

Deferred

Figure 8.3 State transition diagram for change control.



Change control starts off with little formality, but this evolves as the project
matures through development, manufacture and in-service operation.

8.4 Supplier Organizations

Supplier organizations respond to requests from customers to build systems or
components for systems. Prior to obtaining a contract to build a system, they
must prepare a proposal to indicate how they intend to go about the job and
containing estimates of cost and time to complete the work. Often proposals are
requested from a number of supplier organizations that compete to get the busi-
ness. It is therefore useful to consider supplier organizations from two points of
view: bidding for work and executing a contract once the work has been won.

8.4.1 Bid Management

This section looks at the management aspects of the process to create a proposal
in response to a customer’s set of requirements.

Planning

Often the starting point for requirements management within a supplier organ-
ization will be the receipt of an invitation to tender (ITT), also known as a
request for proposal (RFP). Such an invitation or request will contain a set of
requirements that must be satisfied by the system to be delivered.

The nature of the requirements received will depend upon the organization
type of the customer (i.e. the organization that issued the invitation). If the cus-
tomer is an acquisition organization it is likely that the requirements may be
stakeholder requirements. Alternatively, the customer may be another supplier
organization that is planning to subcontract one or more subsystems in a higher
level system. In this case the requirements are likely to be system requirements
with imposed design constraints. To make the narrative clearer we shall refer to
the requirements received by a supplier as input requirements irrespective of
what they really are.

Whatever the nature of the input requirements received, the first task is to
assess them to determine whether they are:

• clearly identified and distinguished from purely descriptive information;

• unambiguous;

• consistent;

• free from undue design constraints.

In short, it is to determine whether they form a sound basis upon which 
to bid.

From a planning point of view, it is important to identify the number of
requirements that must be satisfied. This provides a metric that can be used to
get an idea of the scope of the work to be done.
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During the review of the input requirements, any problems must be high-
lighted by identifying specific problems and proposing a potential solution for
them. Such solutions may involve suggesting alternative wording for the require-
ments or even alternative requirements that can be satisfied – perhaps with 
off-the-shelf components.

Once the review has been undertaken, the problems it identifies must be
addressed. This will usually involve entering a dialogue with the customer to
obtain clarification or authorization for a proposed change. The extent of this
dialogue will depend on the conditions attached to the invitation. If the invita-
tion is to a single supplier, the dialogue can be entered into immediately.

However, if the invitation comes as part of a competitive bid it may be neces-
sary to be more circumspect. The reason for this is that usually the competition
rules insist that any queries from one potential supplier are copied (together
with the customer’s response) to all the other potential suppliers. Hence it is pos-
sible that, by asking questions, one supplier can give information to the other
competing suppliers. In this situation, it may be more appropriate to flag the
problems and observations, but rather than going back to the customer with
them, discuss them internally and decide how to handle them. Possible options
for each problem include:

• ignore it;

• make an assumption and document it;

• decide that it is essential to ask the customer whatever the consequences.

The last action may lead to a further action to formulate the request to the 
customer in such a way that the competitors are helped least.

In parallel with sorting out the input requirements, work must proceed on cre-
ating a proposed solution. Obviously, the primary output from this work is the pro-
posal ready to be submitted to the customer. There are many different approaches
to the creation of a proposal, but they all involve ensuring that each input require-
ment is properly addressed. The bid manager must allocate each requirement to an
individual or team who will be responsible for creating a response.

It is vital that all these responses be coherent, otherwise the proposal could
end up proposing a random and disconnected set of bits and pieces. The best
way of achieving this is to create a model that can form the basis for the solution.
Depending on the nature of the proposal, this could be either an abstract model
that can form the basis for building a set of system requirements, or it can be an
outline design architecture. Each response to an input requirement can then be
related to the model. This provides traceability from the input requirements and
it provides the coherence so that inconsistencies can be identified. The problem
is always that the people working on the solution must work with incomplete
information based on documented assumptions and potentially best guesses at
what the customer really meant. However, this is life!

At the end of the bid phase, when the proposal has been submitted, it is
important that the bid team record all the information they have accumulated
during the bid preparation. The bid team will often be under extreme pressure to
finalize and submit the bid by the required submission date. Often, they will be
ready to take a break and may forget to record properly all the information in a



form that can be used by the development team later. For large proposals, the
amount of information can be significant and also the delay between submitting
the proposal and starting development can be long (e.g. 6–8 months). In these
circumstances, it is even more important that information is recorded, because
the development team may not have any people who were involved in the bid
preparation and, even if it does, after a significant period of time, they are likely
to have forgotten some of the key assumptions and rationales.

A further important activity during the bid phase is the setting up of agree-
ments with suppliers. These will usually be made conditional on the bid being
successful, but they will have an impact on the level of detail to which the solu-
tion is developed. The basis of an agreement between a supplier organization
and its suppliers must be founded on a set of requirements for the components
to be supplied. The level of detail that is required during the bid phase will be set
by agreement between the organizations involved. This will depend upon the
nature of the working relationship that exists between the organizations and 
the degree of experience and trust that exists. (See the agreement process in the
generic process introduced in Chapter 2.)

Monitoring

Measuring progress during the creation of a proposal is vital, because time-scales
are usually constrained and the submission date is not negotiable. The end-point
must be that the proposal clearly indicates how each input requirement will be
met. However, merely asserting how a requirement will be met is not sufficient.
It is also necessary to check that all the assertions are valid. This is an aspect of
the review process, but an indication of progress can be obtained by comparing
the percentage of input requirements that have been traced to the solution
model (and hence to either system requirements or design components).

A measure of the amount of outstanding work to be done can be obtained by
assessing the number of input requirements that still have outstanding problems
logged against them together with the number of input requirements that still
have no proposed solution.

Another important milestone in the development of a solution is the creation
of a model with which the team are content. Ensuring that such a model is 
produced quickly and that there is “buy in” is a crucial task for the manager.

In addition to all of these monitoring devices, a measure of the quality of the
system requirements must also be made. This can be done in a similar manner to
that described above for acquisition organizations monitoring the creation of
stakeholder requirements, by defining states and linking the progression through
those states to review criteria.

Changes

During the preparation of a proposal there are three potential sources of change:

• customer;

• suppliers,

• internal.
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One might think that there would be no customer changes during the prepar-
ation of a proposal, and ideally this would be true. However, it is safest not to
assume this. Typically the probability of change is roughly proportional to the
size of the system (or component) to be developed. For very large systems, sup-
pliers often commence their bidding activities with an early draft of an RFP 
in order to get the bid team running and thinking along the right lines. Later 
versions are issued at intervals and may contain significant changes.

The first task on receipt of a new version of the RFP (or its requirements) is to
determine the nature and extent of the changes. Depending on the customer and
the medium used to issue the RFP, the location of the changes may be high-
lighted or completely unknown. Once found, the changes must be related to the
work already done and an assessment made of the new work and rework that is
now necessary.

Changes from customers can also come via responses to queries from bidders.
These are usually well focused and can be assessed quite readily.

Changes instigated by suppliers are more likely. These may be in response to
an initial request for a proposal to indicate that they cannot meet the require-
ments as defined, or the changes may come later in the process when the supplier
discovers that what was originally thought to be possible turns out not to be.

Internal changes arise for much the same reasons as the suppliers’ changes.
Initial assumptions turn out to be invalid and therefore an alternative approach
must be taken.

Whatever the source of the change, it is essential that the various require-
ments baselines are kept up-to-date, i.e.:

• input requirements;

• requirements placed on suppliers;

• assumptions and interpretations made within the bid team.

8.4.2 Development

Planning

The development stage of a project commences with an agreed contract based on
the proposal submitted to the customer and modified during contract negotiations.
In addition, there will be other information generated during the bidding process,
but not necessarily incorporated into the proposal. This may include detailed
requirements, assumptions, outline or detailed design information and an initial
assessment of the risks involved in undertaking the development. This informa-
tion will have been used to arrive at the estimated time and cost of the work.

The activities involved in the development stage have to be more considered
and in much more detail than those at the proposal preparation or bidding stage.
One important difference is that instead of producing a proposal, the proposal
previously submitted may now be part of the input requirements.

The information generated during development activities will depend on the
nature of the development but will inevitably include the creation of a solution
model. This may be done in two stages, the first producing an abstract model
and the second producing one or more potential design solutions. If more than
one solution is created, then it will be necessary to define the criteria for making



a comparative assessment of the solutions and then deciding which one to take
forward. This comparative assessment leads to the creation of options and the
possibility of trading off some requirements against others. This tradeoff may 
be done entirely internal to the supplier organization or it may involve the 
customer and/or the suppliers.

Activities are necessary to ensure that all the input requirements in the contract-
ual specification are addressed and that the proposed solution embodied in the
system requirements and design is adequate. The level of detail will usually have to
be improved to ensure that, at the most detailed level, nothing is left to chance.

During the development stage, it is important to ensure that the means of
testing (or otherwise demonstrating the satisfaction of) each requirement is
understood and documented.

The first step is to undertake an audit of the available information to deter-
mine its extent and quality. Ideally all the information created by the bid team
should have been collected together and archived ready for use in the develop-
ment process. All too frequently this is not the case and significant information
can be lost. This can cause a major discontinuity between the intentions of the
bid team and what is actually done by the development team. This, in turn, can
put the organization’s business at risk.

Following the audit the project manager must determine, by comparing 
the proposal submitted with the contract, what has changed since the proposal
was submitted. The next step is to determine what the impact of these changes
will be and to plan activities to make any consequential changes to the system
requirements, design and component specifications.

Any outstanding assumptions and comments must be referred back to the
customer, although ideally these will have been addressed during the negotiation
of the contract.

A further issue that often arises when planning a development is whether the
system will be delivered with full functionality at once, or whether there will be
a series of releases with increasing functionality culminating with the final com-
plete release. Supplying a series of releases provides the customer with an initial
capability early. This approach is very popular in software development where
there may be some doubts about the usability of the system.

From a requirements management point of view, releases must be planned on
the basis of the set of requirements that will be implemented in each release. These
decisions can be recorded by adding a release attribute to each requirement.
Such attributes can either be enumerated lists or Boolean. A set of possible values
for an enumeration list would be:

{TBD, Release 1, Release 2, Release 3}

where TBD stands for “to be decided” and will usually be the default value.
When using Boolean attributes each has the value true or false and one is 

created for each release.

Monitoring

Monitoring progress during the development should be focused on assessing the
current extent and quality of the output information to be generated. It is also
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vital to know how much time and effort have been consumed. From this know-
ledge it is possible to estimate whether the outputs will be complete within the
effort and time allowed in the plan. This estimate must take into account the
manager’s knowledge of when or at what rate the information outputs are expected
to be achieved.

If the manager discovers that progress is lagging behind the plan, then appro-
priate corrective actions can be taken. These will inevitably lead to a change in
the plan, such as adjusting the duration or resources of existing activities, or
adding extra activities.

The monitoring activities must ensure that project information is up-to-date.
It is especially important that input requirements and supplier requirements are
modified in line with agreed changes and that traceability links exist from input
requirements through to supplier requirements via the proposed solution.

Changes

The same three sources of changes arise in the development as already identified
in the bidding stage. The extent of customer changes is likely to be far less dur-
ing development than during bidding. Internal and supplier changes are just as
likely. The procedure for identifying the nature and consequence of any change
is just the same. However, the consequence of a change at this point is far more
serious. Small changes can be accommodated within the customer contract or
supplier agreement. However, more serious changes may require a change to the
terms and conditions of either. Changes introduced during development will
usually have an impact on both the time-scale (schedule) of the development
and the cost. Once the consequences have been determined, it is then a com-
mercial decision whether to absorb any cost and time penalties or whether to
negotiate with the customer and/or suppliers.

When a change is proposed for a development with several releases, it is a
function of change management to decide which release the change will be
implemented in.

In summary, supplier organizations respond to customer requests by prepar-
ing a proposal and if successful they go on to develop a system. Making sure that
the requirements issued by the customer are a sound basis for the development
is of prime importance. Keeping the input requirements up-to-date as changes
are introduced ensures that the project is soundly based. Traceability from the
input requirements to the proposed solution, to their suppliers’ requirements
and to testing information ensures that the impact of change can be assessed and
that the organization at all times knows the status of the development.

8.5 Product Organizations

Product organizations define stakeholder requirements and develop a product
to satisfy them. Hence they have many of the characteristics of acquisition 
and supplier organization. The main difference is that the customer–supplier
agreement at the top level of the supply chain is within the overall organization,



although different departments usually undertake the roles of defining stake-
holder requirements and developing products to satisfy them.

8.5.1 Planning

Single Product Version

Planning for a single version of a single product involves the same activities as
for the acquisition and the supplier organizations. The difference between the
bidding and the development stages may still be there. For example, when start-
ing a new product, the company may want to have an initial idea of what is
involved in building it. To achieve this it is necessary to elicit the stakeholder
requirements and to produce an outline solution.

Producing the stakeholder requirements is very similar to the way in which
acquisition organizations do it. There is a need to identify stakeholders and user
scenarios. However, rather than interviewing real stakeholders, what usually
happens is that people volunteer (or are volunteered) to act as “surrogate” stake-
holders. This means that they adopt the role of a defined stakeholder and define,
from that point of view, what the stakeholder requirements are. From a planning
point of view there is little difference. People must still be identified and inter-
viewed. Requirements must be extracted, properly formulated and embodied 
in an agreed structure. Finally, the requirements must be reviewed and their
quality established.

Producing an outline solution is very similar to the work done when creating
a proposal. The main difference is that there is direct access to the people who are
formulating the requirements and hence there is the possibility of a much more
interactive development where the stakeholder requirements can be modified to
make implementation easier, to reduce time to market and to reduce cost. It is
even possible that the capability of a proposed product can be enhanced within
the given budget by feeding back technical possibilities to the owners of the
stakeholder requirements. It is clearly much easier to gain clarification where
requirements are vague or confusing etc. This may sound very informal and, in
some cases, it can be. However, the degree of formality must be agreed prior to
starting the work.

When an agreed set of stakeholder requirements and an outline solution have
been produced and reviewed by the product organization, it may decide not to
proceed with the development or it may decide to invest further funds and go to
a more detailed design or even to produce an early prototype. Thus it can be seen
that a product can proceed by means of a set of stages where each stage builds
upon previous work. Each stage has a given budget and a set of objectives. At the
end of each stage there is a review at which progress against the budget and the
objectives is assessed. This procedure can be described using the stage gate 
concept as indicated in Figure 8.4.

At the initial gate (Stage Gate 0), a set of objectives, budget and time-scale are
defined. These feed into a planning process which determines the information
which must be generated in order to achieve the stage’s objectives and a work
plan which will achieve the required state within the budget. The initial objective
may be merely an exploration of the concept and some preliminary estimation
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of market size, etc. At the end of the stage the work done is reviewed against the
objectives to determine whether the project should continue or whether it
should stop. This review should also take into account the current business
objectives, which may have changed or evolved during the stage.

If the project is allowed to continue then a further budget, time-scale and
objectives will be agreed. For the second stage it may be decided to go for a costed
proposal as discussed above and a more detailed exploration of market condi-
tions. The stage gate review will then check whether the estimated cost is in line
with the expected revenue that can be earned. This leads naturally into a decision
to cancel or commit further funds. If the latter, then a decision has to be taken
about how far the development should be taken, for example:

• do more investigation into the development and production costs;

• develop a prototype;

• produce a small batch and try them out with real customers;

• go into full production;

• and so on.

Hence the stage gate process can continue one stage at a time with gradual com-
mitment of funds and resources. This enables the organization to control its
investment strategy and keep an eye on its likely return on investment.

Multiple Products and Versions

Product organizations may have several versions of the same product at different
stages in their evolution. Typically they will have some product versions in use by
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Figure 8.4 Stage gates and project work.



people who have purchased them, some in development and some being
defined. From a planning point of view, each version can be treated as a separate
“project” going through its own set of stages and gates. However, there is an
additional need to plan for the different versions of the products in the pipeline.
It is important to plan when each version in current use will be phased out and
replaced by a later model. These aspects can also be brought under the stage gate
process, so that a set of stage gate reviews can be held at the same time to deter-
mine the best investment strategy to keep or increase market share.

A further factor in this area is that there may well be different versions for 
different markets. For example, it may be necessary to have user interfaces that
support different natural languages for sale in different countries.

To cope with this type of difference we introduce the notion of a “variant”
meaning “differing in form or details from the main one”. Thus we can have the
“main one” (perhaps better expressed as the “core product”) being a product
with the user interface in English and variants for the French, German and Spanish
markets. Each variant can have its own versions such that each version is an
improvement over the previous one.

Figure 8.5 indicates how there can be parallel versions and variants of a single
product each at a different stage of its evolution. The letters S, D and U indicate
whether a product is being specified, being developed or being used. Each of
these states corresponds to one or more stages in the stage gate lifecycle.
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From a requirements management point of view, each variant will have many
requirements in common with the core product, but it will have some require-
ments that are specific to that variant and therefore differentiate it from other
variants. On the other hand, there may be no different requirements for each
version of a variant, because each version is an attempt to satisfy the same set of
requirements (hopefully improving as the sequence goes on).

In the previous section we used the term “release” and readers may be con-
fused between a release and a version. The difference is that a release is a version
that is delivered to the customer, whereas not all versions will be.

Planning the evolution of the variants and their versions for each product is a
further organizational task that can also be controlled using the stage gate mech-
anism. The development for these may overlap in time and there will be a need
to support at least one version of each variant while it is in operational use.

The activities involved in doing the specification and development are very
similar to those introduced earlier for the acquisition and supplier organiza-
tions. The major difference is that, where different versions and variants of the
same product exist, there is common information being used in several contexts.
This complicates the management of the requirements and makes it essential to
understand how the requirements baselines for each version and variant overlap.
This overlap is especially important where there are common requirements 
covering several versions and variants and leads to extra complications in the
management of change (see below).

8.5.2 Monitoring

Monitoring progress in a product organization uses exactly the same mech-
anisms as for the other organizations. When stage gates are used as the basis for
organizational decisions, the process of planning will involve the identification
of the data state that must exist at the end of the stage. Progress can then be
measured based on the extent to which the desired state has been reached. As a
general rule such states can be measured in the following terms:

• whether new objects exist that will become targets for traceability links (e.g.
solution objects in response to stakeholder requirements, or design objects in
response to system requirements);

• whether attribute values exist;

• whether the required review status exists;

• whether traceability links exist from one data set to others (e.g. from stake-
holder requirements to system requirements, from system requirements to
design and from all of these to testing strategies and possibly test results).

Measures expressed as a percentage of required data quality currently achieved
provide useful metrics for both quality of data and progress within a stage.

8.5.3 Changes

As mentioned earlier, the major additional factor for change management in 
a product organization is where several variants of a product have common



requirements and a change proposal is raised against one or more of them. The
questions that must be answered are:

• will all the variants want to incorporate the change?;

• when will they want to incorporate it?

Often the answer will be that all variants will want to incorporate the change, but
not at the same time! This introduces an extra state into the change handling
state transition diagram (see Figure 8.6) because each variant must incorporate
the change before the change can be completed.

Figure 8.6 also indicates that it is necessary that there are planned, deferred and
incorporated states for each variant. The change can only achieve the status of
complete when all the variants have reached their individual “incorporated” state.

In summary, product organizations perform similar tasks to both acquisition
and supplier organizations. In addition, they must take care to control their
product portfolio so that an appropriate degree of commitment is made and the
overall commercial exposure is acceptable.

8.6 Summary

The summary is grouped under the headings of planning, monitoring and
changes in line with the presentation of the main body of the text.

8.6.1 Planning

Planning should be driven by the outputs that must be created. Activities to cre-
ate the required outputs can then be introduced. Outputs can be categorized as
follows:

• types of information objects (e.g. stakeholders, stakeholder requirements,
system requirements, design or solution objects);
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• attributes associated with an information object;

• links between information objects to establish traceability, testing 
strategy, etc.;

• review criteria to determine the required quality of information and associ-
ated attributes;

• achievement of a particular state possibly via progression through a series of
states (e.g. by reviews).

Before any work can be started, the work must be authorized by the organization
in which it will be undertaken. A mechanism such as stage gates is appropriate
for acquisition and product organizations to control the level of commitment
and consequent financial and/or commercial exposure they are willing to toler-
ate. In supplier organizations there must be an authorization to prepare a pro-
posal and this is usually accompanied by an allowed budget. Permission to
progress to development will usually be embodied in the signing of a contract
with the customer.

Evolutionary development should be considered to be the norm, especially
for unprecedented systems. This leads naturally into the concepts of releases,
versions and variants.

8.6.2 Monitoring

It is vital that progress is measured by investigating the current state of the
required outputs. Progress measured in this way together with the amount of
effort and time used compared with the plan enables the viability of the plan 
to be established. Ignoring the outputs and just measuring time and effort 
consumed gives a distorted view that is not realistic.

8.6.3 Changes

The most critical aspect of a change is the impact that it will have on the system
to be developed and hence on the development plan. Understanding the impact
can only be achieved provided that the current states of the (project) outputs are
available and up-to-date. Of particular importance here are the links that exist to
provide traceability from input information to derived information.

Deciding when a change can or should be incorporated will usually impact
the plan and may cause serious re-planning – depending on the scope of the
change. Changes can also lead to the introduction of additional releases, version
or variants.



There’s nothing remarkable about it.
All one has to do is hit the right keys at the right time
and the instrument plays itself.

Johann Sebastian Bach, composer, 1685–1750

9.1 Introduction

Systems engineers and managers need the right instruments to assist them with
the requirements management process. A variety of tools currently exist. This
chapter presents an overview of one of these tools – DOORS (Version 7.1).
DOORS (Dynamic Object Oriented Requirements System) is a leading require-
ments management tool used by tens of thousands of engineers around the
world. The tool was originally created by QSS Ltd, Oxford, and is now developed
and marketed by Telelogic.

DOORS is a multi-platform, enterprise-wide requirements management tool
designed to capture, link, trace, analyze and manage a wide range of information
to ensure a project’s compliance to specified requirements and standards. DOORS
provides for the communication of business needs, allows cross-functional teams
to collaborate on development projects to meet these needs and enables one to val-
idate that the right system is being built, and is being built right. The views provided
by DOORS on the screen provide a powerful familiar navigation mechanism.

Throughout this chapter reference will be made to a case study for a family
sailing boat.

9.2 The Case for Requirements Management

Today, systems engineers require effective requirements management in order to
provide solutions. Requirements management is the process that captures, traces
and manages stakeholder needs and the changes that occur throughout a pro-
ject’s lifecycle. Products, too, are becoming more complex, to the point where no
individual has the ability to comprehend the whole, or understand all of its con-
stituent parts. Structuring is by far the best way of organizing requirements, thus
making them more manageable in terms of omissions or duplicate information.
Hence requirements management is also about communication. For that reason,
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it is important that requirements are communicated correctly, thus ensuring
that team collaboration is enhanced, project risk is reduced and the project meets
its business objectives. If requirements are well managed, the right product will
get to market on time, on budget and to specification.

9.3 DOORS Architecture

For any application, the requirements and related information can be stored in a
central database in DOORS. This database can be accessed in a variety of ways
and exists throughout the lifetime of the application. The information in a
DOORS database is stored in modules (Figure 9.1). Modules can be organized
within the database by using folders and projects. A project is a special kind of
folder that contains all the data for a particular project.

DOORS folders are used to organize data and are just like folders in a com-
puter file store. Folders may contain other folders, projects or modules. Folders
are given a name and description and the ability for users to see or manipulate
the data in a folder may be constrained using access controls.

DOORS projects are used by a team of people to manage a collection of data
relating to that team’s work effort. The project should contain all of the data
related to the requirements, design, development, test, production and main-
tenance for an application. The project provides the capability to manage users
and their access to the data in the project, to back up the data and to distribute
portions of the data to other DOORS databases.

DOORS modules are containers for data sets. Three classes of module exist:

• formal – the most frequently used type of module for structured sets of like
information;

� Folder

� Project

� Module

Figure 9.1 DOORS database structure.



• descriptive – unstructured source information (letters or interview notes);

• link – contain relationships between other data elements.

The user interface works very much like Windows Explorer and lets the user navi-
gate through the database.

9.4 Projects, Modules and Objects

9.4.1 DOORS Database Window

The DOORS Database window allows the user to see and manage the organiza-
tion of DOORS data. Figure 9.2 shows the database window, with the database
explorer to the left and the list of contents of the selected folder on the right.

DOORS provides the capability to change the name or description of existing
folders and projects. Folders and projects can also be moved if there is a need to
reorganize or change the structure of the database. Folders and projects can also
be cut, copied or pasted within the database to reorganize or duplicate portions
of the database.

9.4.2 Formal Modules

Using the DOORS Database window, a new formal module can be created using
the menu File � New � Formal Module as shown in Figure 9.3. The name of
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the new module and its description can be input. The unique identifiers generated
for the objects in the module are numbered using the legal numbering system.

A prefix can be added to this number that reflects the contents of the module,
such as PR for product requirements. By defining a unique prefix for each mod-
ule, a project-wide unique identifier for all information in the DOORS project is
established. This provides a convenient reference.

When a formal module is opened, the default display shows the module
explorer on the left, and the module data on the right as shown in Figure 9.4.

The module explorer makes it easy to move to a specific place in the docu-
ment and also shows the structure of the information in the module. Sections
can be expanded or collapsed in the same way as can be done with Windows
Explorer.

The right-hand pane shows the data for the module. The default display
shows two columns, the “ID” column and the “text” column, the title of which is
the module description. The ID is a unique identifier assigned by DOORS when
an object is created. DOORS uses this identifier to keep track of the object and
any other information that is associated with it, e.g. attributes and links. The text
column displays the data like a document, showing a combination of the head-
ing number, the heading itself and the text associated with each requirement.

DOORS provides a number of display options for formal modules as shown
in Figure 9.5. In the Standard View, all levels of objects are displayed in a “docu-
ment” format. Users can restrict the display level, e.g. Outline displays only head-
ings, hiding all other object details. This result is similar to a typical document
“table of contents”. As stated earlier, the Explorer View is useful for seeing the
structure of the module and for navigating to a specific object in the module.

Figure 9.3 Create new formal module.



Graphics mode, on the other hand, represents the display as a tree (Figure 9.6),
which aids navigation through large data sets. The titles of the objects in 
graphics mode are based on the Object Heading and a shortened version of the
Object Text.
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9.4.3 Objects

As we have seen in the previous section, within formal modules data is stored in
objects. An object may be a block of text, a graphic image or even a spreadsheet
created using another package. The standard view of a formal module display
includes two columns and a number of visual indicators as described below.

As shown in Figure 9.7, the first column displays the Object Identifier assigned
by DOORS. The Object Identifier is made up of two parts:

• a prefix (typically an abbreviation for the requirement set);

• the absolute number, supplied by DOORS.

The absolute number is an integer assigned sequentially (1, 2, 3, etc.) that serves
as a key for each object, unique within the module.

The second column is known as the Main or Text column. It includes a com-
posite three attributes, depending on contents:

• section number (e.g. 1, 2.1, 3.2.3), indicating the object’s position in the
module structure;

• object heading, providing a title for the object;

• object text, giving the full description of the object.

Object numbers are only displayed for objects that have been assigned an object
heading.

Black lines above and below the object indicate the Current Object. Many
functions relating to objects in DOORS modules, e.g. inserting a new object,
pasting an object and moving an object are performed relative to the current
object.

Introduction
Product perspective

General capabilities

General constraints

User characteristics

Operational environment

Assumptions and dependencies

Boat moved to sailing area

Boat ready to sail

Boat launched

Market constraints

Boat transported

Boat loadedUser
requirements
for sailboat

Capabilities

Constraints

General
description

Figure 9.6 Graphics mode.



Green, yellow and red change bars appear at the left edge of the text column.
Green denotes an object that has not been changed since the last module base-
line. Yellow shows that changes have been saved since the baseline and red indi-
cates unsaved changes made in the current session.

Maroon and orange link indicators are displayed on the right-hand side of
objects, which have relationships to other objects. The orange triangle pointing
to the left indicates an incoming link and a maroon triangle pointing to the right
indicates an outgoing link.

A DOORS formal module tree structure provides a simple, yet powerful,
method of writing requirements. Requirements are often organized into a hier-
archy, and so the graphics mode is a useful view.

Creating new objects in DOORS is simple – new objects are placed in one of
two positions relative to the current object. Either:

• a new object is created as the next sibling of the current object with 
Insert � Object, or

• an object is created as the first child below the current object with 
Insert � Object Below.

This is shown in Figure 9.8.
In DOORS, facilities are provided for editing objects. For example, a DOORS

tree can be modified by using the cut and paste functions. The cut operation
removes the current object and all its children from the module display. This
causes the rearrangement of the object hierarchy, collapsing the tree into the

Chapter 9 • DOORS: A Tool to Manage Requirements 179

“No change since 
 baseline”
change bar (green)

“Changed this session”
change bar,
saved  (yellow)

“Changed this session”
change bar,
unsaved  (red)

Current
Object

Object
Text

Object
Identifier

Use as
Datatip

Use in
graphical
view

Column
Heading

Section
Number

Object
Heading

Link
Indicator

Figure 9.7 Displayed information.



180 Requirements Engineering

hole vacated by the objects that have been cut. This produces a renumbering of
the remaining successor objects. The insertion point can then be identified for
the objects that have been cut. Because of the nature of an object hierarchy there
are only two possibilities. Objects are placed after as the next sibling to the cur-
rent object or one level down as the first child of the current object. The former
is shown in Figure 9.9.

9.4.4 Graphical Objects

Graphical objects in the form of embedded OLEs can be inserted into any text
attribute in DOORS, in much the same way as OLEs are handled in Word, for
instance. This allows pictures, diagrams, charts, documents, spreadsheets and
many other kinds of information to be inserted into the requirements document
in support of requirements statements.

9.4.5 Tables

In many cases, requirements or information associated with requirements is pre-
sented in tabular form. Tables can be created after or below an existing object, or

Current
object Insert, Object Insert, Object Below

Section 1 Section 1 Section 1
New Section 1.1

New Section 2

Section 1.1
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Figure 9.8 Creating objects.
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at level one in an empty module. This is achieved by specifying the number of
rows and columns required. The new table can then be inserted into the formal
module as shown in Figure 9.10. Tables can be deleted as long as there are no
links to any of the cell objects or to the table object.

9.5 History and Version Control

9.5.1 History

DOORS maintains a historical log of all module and object level actions that
modify the contents of a module, its objects and attributes.

Every change that is recorded includes who made the change, when the
change was made and what were the before/after states of the object and its
attributes. The module history can be used to track every event in the life of a
given module. The object history can be accessed via the change bar in the for-
mal module window or it can be launched from the main menu. An example 
history window is shown in Figure 9.11.

9.5.2 Baselining

A baseline is a frozen copy of a module. They are typically created at significant
stages of a project, e.g. a set of requirements is normally baselined immediately
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prior to a review, and then immediately after the resulting changes from the review
have been incorporated. This allows the various states of the requirements docu-
ment to be easily reproduced at any time. Baselines can be numbered and
labelled in DOORS.

Baselines are read-only copies of a formal module and cannot be edited.
When a module is baselined, all history since the previous baseline is stored with
the newly created baseline and the history for the current version is cleared. The
life history of a module is therefore stored across a series of baselines.

9.6 Attributes and Views

9.6.1 Attributes

Attributes provide a means to annotate modules and objects with related infor-
mation. Module attributes are used to capture information about the module
itself, such as its owner, document control number and review states. Object
attributes are used to capture information about individual objects. Attributes

Figure 9.11 History window.



may be either system or user defined. System attributes automatically maintain
critical information about a module or object, such as when it was created and
by whom, whereas user-defined attributes may be used to capture any informa-
tion required to support the user’s requirements management process.

DOORS provides a variety of standard attribute types, known as base types,
from which attributes may be defined, e.g. integer, real, date, string, text, user
name. It is also possible to have user-defined attribute types.

Attribute information can be readily viewed and edited by creating columns.
In this way, both on-screen and printable reports can be readily generated.
Whereas an object may contain many attributes, a user is typically interested in
viewing a subset of these attributes at one time. Columns may be created to show
just the desired subset so that the user is not overwhelmed with information.
Simply dragging and dropping the column header can reposition columns.

9.6.2 Views

DOORS provides a facility called views for looking at the same information in
many different ways. Views are stored with modules and it is possible to create
many views from a project’s data. When creating views, the object and attributes
which are to be displayed are specified. For example, you might wish to create a
view that lets you see only those objects in the module whose “Priority” attribute
has a value “High”. A view then appears as a table, where each row contains one
object and the object attributes that have been selected.

9.7 Traceability

Traceability is managed in DOORS through the use of links between objects.

9.7.1 Links

A DOORS link is a connection between two objects. One property of a link is
directionality; all links have a direction, from source to target. To represent data
relationships a link is created, thus enabling the user to visualize information as
a network rather than just a tree. Although links have directionality, DOORS
provides the capability to navigate in either direction through the path that 
a link creates between two objects. Hence it is possible to trace the impact of
changes in one document on another document, or trace backwards to indicate
the original thinking behind a decision.

DOORS provides a variety of methods for creating and maintaining links.
Individual links can be created using drag-and-drop between two objects (usu-
ally in different modules). Whole sets of links can be created in other ways. For
instance, the copy and link function can copy a whole set of objects, and link each
copy to its original.

Links are indicated along the right hand side of the main column in the stand-
ard view of a formal module by triangular link icons. An icon that points to the
left represents incoming links and the opposite for outgoing links.
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9.7.2 Traceability Reports

There are a number of ways in DOORS of creating traceability reports, on 
screen and on paper. The simplest on-screen traceability tool is through using
Analysis � Traceability Explorer, which uses a Windows-style interface to
allow the user to explore traceability across multiple documents in a single win-
dow. This is illustrated in Figure 9.12.

Another way of constructing an on-screen report (which can subsequently be
printed) is by adding traceability columns to a view. These columns can display
data about linked objects from other documents. They are created using
Analysis � Wizard, which guides the user to select which links and which attri-
butes of linked objects are to be displayed. Traceability columns are completely
dynamic and are updated as new links are created or as the distant data is
changed. Through this means, data from several documents can be brought
together into a single report, on-screen or printed on paper.

Figure 9.13 shows an example of a view that contains a traceability column.
The view lives in the current module, which is the stakeholder requirements, and
the column shows data from the system requirements module by following the

Figure 9.12 Traceability explorer.



incoming links. Rich traceability is used in the example, and the columns are as
follows:

• the Stakeholder requirement identifier (from current module);

• the main column showing the stakeholder requirement heading/text (from
the current module);

• the rich traceability combinator (an attribute of the stakeholder requirement
in the current module);

• the satisfaction argument (an attribute of the stakeholder requirement in the
current module);

• a traceability column entitled “Contributing Requirements” showing several
attributes of system requirements linked to the stakeholder requirement.
The object identifier of the system requirement is shown bold in square
brackets, followed by the text. In addition, the section headings of each sys-
tem requirement are shown to give essential context within the system
requirements document.

Figure 9.14 shows a traceability column from the other end of the same links, i.e.
from the system requirements document back to the stakeholder requirements.
In this case, the outgoing links are traversed and information is displayed in the
column entitle “Originating Requirements”. There is no column for the satisfac-
tion arguments.

It is common for requirements documentation to include traceability matri-
ces showing the relationships between documents. Through the use of traceabil-
ity columns in views, DOORS avoids the need to create and maintain such
matrices manually.
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9.8 Import and Export

The capability of exchanging information between DOORS and the tools is
highly desirable. This can range from importing legacy information into
DOORS and for exporting DOORS information to external tools for publishing
and other purposes.

In project development, the ability efficiently and reliably to import and
organize large quantities of information is often necessary. However, the variety
of storage formats and platforms and the inconsistencies in data structures can
make this a real challenge. DOORS provides a wide range of import tools to sup-
port this activity and in particular in relation to documents, tables and data-
bases. For example, Figure 9.15 shows how to input from Word into DOORS.
This is achieved by opening a Word document and exporting it to DOORS,
using the Export to DOORS button – a module name and description needs to
be supplied before the file is exported from Word and imported into DOORS.

The document is imported into DOORS with the same structure as the Word
Outline view, so Heading 1 text becomes an object at level 1 in DOORS. Paragraph
breaks are used for delimiting the content of each object.

Similarly, DOORS supports many export formats to provide a convenient
method of transferring DOORS data to other desktop tools. As an example, con-
sider exporting from DOORS to Word as shown in Figure 9.16.

Figure 9.14 Traceability column on outgoing links.
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Figure 9.15 Export from Word to DOORS.

Figure 9.16 Export from DOORS to Word.
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This is the reverse of the previous operation. The Word document will 
have the same structure as the formal module, i.e. Object Heading 1 becomes
Level 1, Headings become Word style Heading 1, and so on. Text is displayed in
Normal style.

DOORS provides these types of import and export capabilities for a range of
tools and formats, including RTF, Word, WordPerfect, Excel, Lotus, Access, Plain
Text, HTML, PowerPoint, MS Project, Outlook and many others.

9.9 UML Modelling with DOORS/Analyst

DOORS/Analyst is an integration of DOORS with the Telelogic UML modelling
tool TAU. It permits UML models to be created and diagrams to be presented
within a DOORS module.

As requirements are analyzed, objects in a DOORS module can be labelled as
UML elements, such as actors, classes and states. When a diagram is inserted into
the DOORS module by activating the UML modelling tool, the DOORS objects
so labelled are synchronized with elements that appear in the diagrams. The
effect of this is to allow traceability of requirements into elements that appear in
diagrams in UML.

Figure 9.17 shows a screen-shot of a DOORS module in which DOORS/
Analyst has been used to label objects and insert a class diagram. Labelled objects
are indicated by icons in the narrow column to the left of the main column and
the type of UML entity is also shown in the “Object Type” column to the right.

Figure 9.17 UML modelling in DOORS/Analyst.



Double-clicking on a diagram starts up the DOORS/Analyst diagram editor,
shown in Figure 9.18. Saving changes to the model causes information to be
resychronized into the DOORS module.

9.10 Summary

A brief overview of a requirements management tool, DOORS, has been given.
The example used shows the application of some of the principles used in the
book, e.g. instantiations of the generic process in layers and rich traceability.

DOORS/Analyst is also introduced as an example of how modelling tools can
compliment requirements management tools.

The same principles can be applied and implemented in other requirements
management tools. Even if one is just using a word processor, the disciplines
described within the covers of this book will be found beneficial.
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