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Abstract

This paper presents a method to perform Iner-
tial Measurement Unit (IMU)-to-pose extrin-
sic calibration. Considering the pose informa-
tion collected with a motion-capture system or
from the pose of a robotic arm’s end effector,
the goal is to estimate the geometric transfor-
mation between the reference frame of an IMU
and the one of a marker tracked by the motion-
capture system (with the marker being rigidly
mounted with the IMU) or the arm gripper.
The method models the pose data in a contin-
uous manner using Gaussian Processes (GP).
With the use of linear operators, the GP mod-
els are utilised to predict the dynamics of the
system in terms of velocities and accelerations
without relying on any explicit motion model.
Accordingly, the extrinsic parameters as well as
the inter-sensor time-shift are estimated with a
non-linear optimisation, minimising the differ-
ence between the IMU data and the predicted
dynamics. Note that the method is not tailored
to a specific motion-capture system or robotic
arm and can be used with any exteroceptive
sensor from which data can be preprocessed
into poses through time. We demonstrate the
soundness of our approach with real-world data
throughout multiple experiments testing the
robustness and repeatability of the results. We
will release our open-source implementation1.

1 Introduction

Over the years, the performance of robotics state esti-
mation has relentlessly been improving. A challenging
part of robotics research is the ability to measure the ac-
tual accuracy/performance of an estimation framework.
A common approach is the use of motion-capture sys-
tems to obtain the 6-Degree-of-Freedom (DoF) pose of a

1https://github.com/UTS-CAS/imu_pose_calib

FW

FIFM

Fixed frame

Marker’s frame
IMU’s frameTI

M?

TM
W (t) Pose information

modelled with Gaussian Processes

Figure 1: The proposed method aims at performing
pose-IMU extrinsic calibration using Gaussian Processes
to represent continuously the pose through time. An
application example is the generation of an IMU ground
truth trajectory using motion-capture systems or robotic
arms.

marker through time. Attaching the marker to a sensor
suite, it is possible to recover the accurate pose of the
sensor suite. However, as illustrated in Fig. 1, the refer-
ence frame of the marker and the reference frame used
in the robotic system (e.g., camera frame) are not the
same. There is generally an unknown geometric trans-
formation between the marker’s frame and the one of the
state estimation pipeline. The work presented in this
paper originates from the task of obtaining the ground
truth trajectories of Inertial Measurement Unit (IMU)-
only sensor suites as needed in [McDonald et al., 2023]

or [Le Gentil and Vidal-Calleja, 2023]. The scope of this
work is not limited to motion-capture to IMU calibra-
tion as the method is agnostic to the way the pose of
the marker is obtained. Accordingly, the method could
be applied to gripper-IMU calibration using a robotic
arm’s end effector pose. Similarly, it could perform the
calibration between an exteroceptive sensor, such as li-
dar or camera, and an IMU given a preprocessing step
that would convert the exteroceptive data into pose es-
timates through time.

https://github.com/UTS-CAS/imu_pose_calib


In the context of multi-sensor perception, the extrin-
sic calibration (geometric transformation) between the
different sensors is a crucial step for the overall per-
formance of the system. As cameras are ubiquitous, a
large number of works addressed the problem of vision-
based extrinsic calibration. The works in [Alves et al.,
2003] and [Lobo and Dias, 2007] perform camera-IMU
calibration relying on complex rigs with actuators and
additional sensors. Later, [Kelly and Sukhatme, 2009]

and [Furgale et al., 2013] address the same problem by
simply moving a handheld visual-inertial sensor suite in
front of a simple checkerboard. Additionally, the con-
tinuous pose state representation based on basis func-
tions in [Furgale et al., 2013] allows for the estimation of
an inter-sensor time-shift, therefore, accounting for un-
synchronised data collection. Targeting the lidar-camera
transformation estimation, [Nowicki, 2020] also leverages
a continuous model of the systems pose to perform spa-
tiotemporal calibration via the use of B-Splines. Sim-
ilarly to camera-IMU, the lidar-IMU extrinsic calibra-
tion problem has been extensively studied starting with
[Le Gentil et al., 2018] where Gaussian Processes (GPs)
are used to continuously model the inertial data before
performing preintegration [Forster et al., 2015]. Later,
works like [Lv et al., 2020] and [Mishra et al., 2021] en-
abled such calibration without the need for any calibra-
tion target.

All the aforementioned works involve an exterocep-
tive sensor (camera or lidar) and use modality-dependent
data. Other works address the calibration as a pose-to-
pose or motion problem like [Taylor and Nieto, 2015]

where the exteroceptive data is first preprocessed into
pose estimates. This is related to the classic hand-in-eye
calibration problem where the original purpose was to es-
timate the transformation between the reference frame
of a camera and the one of a robotic arm [Tsai and Lenz,
1989]. Throughout the years, the hand-in-eye problem
has been solved in multiple ways like [Park and Martin,
1994], [Andreff et al., 1999], [Daniilidis, 1999]. More re-
cently, [Zhang et al., 2022] addresses the issue of camera-
IMU-arm calibration using IMU preintegration in a first
step to calibrate the camera with the IMU before per-
forming the hand-in-eye calibration with the arm based
on the previously estimated IMU poses.

In this paper, we directly perform the pose-IMU ex-
trinsic calibration in a single formulation. Our method
is based on GPs to continuously represent the pose mea-
surements. GP regression is a non-parametric approach
for probabilistic interpolation. With the use of linear
operators [Särkkä, 2011], it is possible to analytically
query the system’s velocities and accelerations at any
timestamp without relying on any explicit motion model
(e.g., constant acceleration). This representation is in-
spired by our previous works on inertial preintegration

for multi-modal state estimation [Le Gentil and Vidal-
Calleja, 2021] and [Le Gentil and Vidal-Calleja, 2023].
These works demonstrate the ability of GP models to ac-
curately accommodate unsynchronised sensor measure-
ments in state estimation pipelines. While our previous
works represent the pose derivatives and infer their in-
tegrals to get the actual pose, here we model the pose
and infer the derivatives. Thus, similarly to [Furgale et
al., 2013], the residuals of our non-linear optimisation
consist of the discrepancy between the inertial measure-
ments and the dynamics predicted from the continuous
pose models. This alleviates the need for constant bias
assumptions between pose estimates which is common
to any integration-based frameworks. The contributions
of this work are:

• A novel GP-based formulation for spatiotemporal
pose-IMU extrinsic calibration.

• The open-source implementation of the proposed
method.

• Real-world experiments to demonstrate the sound-
ness of the proposed method.

2 Gaussian Process background

2.1 Gaussian Process regression

GP regression is a kernel-based probabilistic method for
non-parametric interpolation [Rasmussen and Williams,
2006]. Let us consider a signal h(t) ∈ R as a function of
time t. Modelling h with a GP as h(t) ∼ GP (0, kh(t, t

′)),
the kernel function kh(t, t

′) corresponds to the co-
variance between any two instances of h: kh(t, t

′) =
cov(h(t), h(t′)). Given noisy measurements yi of h(ti)

yi = h(ti) + η with η ∼ N (0, σy), (1)

and i = 1, · · · , N , it is possible to express our GP model
as a multivariate Gaussian distribution[

y
h∗

]
∼ N

(
0,

[
Kh(t, t) + σ2

yI kh(t, t)
kh(t, t) kh(t, t)

])
, (2)

where y =
[
y1 · · · yN )

]⊤
, t =

[
t1 · · · tN

]⊤
,

kh(t, t) =
[
kh(t, t1) · · · kh(t, tN )

]
, kh(t, t) =

kh(t, t)
⊤
, and

Kh(t, t)=


kh(t1, t1) kh(t1, t2) · · · kh(t1, tN )
kh(t2, t1) kh(t2, t2) · · · kh(t2, tN )

...
...

. . .
...

kh(tN , t1) kh(tN , t2) · · · kh(tN , tN )

 ,

with h∗(t) a novel instance of the function h at any ar-
bitrary time t. By conditioning (2) with respect to the



noisy observations, the value at t is inferred as

h∗(t) =kh(t, t)
[
Kh(t, t) + σ2

yI
]−1

y (3)

var
(
h∗(t)

)
=kh(t, t) (4)

- kh(t, t)
[
Kh(t, t) + σ2

yI
]−1

kh(t, t).

Consequently, (3) allows for the continuous probabilis-
tic interpolation of a signal h provided a set of noisy
measurements yi

2.2 Linear operators and Gaussian Process
regression

Atop their probabilistic and non-parametric nature, an-
other interesting property of GPs lies in the fact that
applying a linear operator to a GP results in another
GP [Särkkä, 2011]. In the context of GP regression, it
means that given noisy measurement of a signal h, it is
possible to directly infer a linear operation g(t) = Lh(t)
of the signal where L can be for example the differenti-

ation operator Ld = ∂
∂t → g(t) = Ldh(t) = ∂h(t)

∂t . Ac-
cordingly, if we consider a position signal, the use of GPs
and linear operators allows for the direct inference of the
velocity and acceleration without resorting to numerical
differentiation methods.

Rewriting the multivariate Gaussian distribution (2)
as [

y
g∗

]
∼ N

(
0,

[
Kh(t, t) + σ2

yI kh(t, t)L
Lkh(t, t) Lkh(t, t)L

])
, (5)

the linearly operated signal is inferred as

g∗(t) = Lkh(t, t)
[
Kh(t, t) + σ2

yI
]−1

y (6)

var
(
g∗(t)

)
= Lkh(t, t)L

- Lkh(t, t)
[
Kh(t, t) + σ2

yI
]−1

kh(t, t)L. (7)

Note that the left application of the operator on the ker-
nel function k(t, t′) corresponds to the operation being
applied with respect to the first argument of the func-
tion, and the right application to the second argument.

3 Problem statement and system
overview

Let us consider a motion-capture 3D marker and 6-
DoF IMU composed of a 3-axis gyroscope and a 3-axis
accelerometer. The IMU and the marker are rigidly
mounted together. Their reference frames at time ti are
denoted FIti

and FMti
, respectively. The IMU provides

gyroscope measurements ω̃tωi
at times tωi (i = 1, · · · , Nω)

and accelerometer measurements f̃tfi
at times tfi (i =

1, · · · , Nf ). Note that accelerometer and gyroscope mea-
surements can be provided asynchronously by the IMU.

The pose of the motion-capture marker at time tmi is col-

lected as a rotation matrix R
Mtm

i

W and a position vector

p
Mtm

i

W both expressed in a fixed reference frame FW . The
rigid transformation between the IMU and the marker
is denoted as RI

M for the rotation and pI
M for the trans-

lation, corresponding to the pose of FI in the marker’s
frame FM .
The goal of the proposed framework is to estimate the

transformation between the IMU and the marker as well
as a constant timeshift δt to account for the potential la-
tency between the data collection of the motion-capture
system and the IMU. The calibration parameters are es-
timated via a non-linear least-square optimisation that
minimises the discrepancy between the continuous mod-
els of the motion-capture data and the IMU measure-
ments. Before introducing our approach, we need to
provide the reader with an overview of the IMU and
system’s dynamics.

3.1 Inertial dynamics and measurement
model

In this subsection, we define the IMU dynamics and
the inertial measurement model as in [Haug, 1989] and
[Forster et al., 2015]. The IMU pose RI

W (t) and pI
W (t)

in the motion-capture system’s fixed frame are ruled by
the following differential equations:

ṘI
W (t) = RI

W (t)ωI(t)
∧, (8)

p̈I
W (t) = aIW (t), (9)

where ¨ is the double differentiation operator with re-
spect to time t, a the linear acceleration of the sensor in
FW , ωI the angular velocity of the inertial frame relative
to FW expressed in the IMU frame, and ∧ the operator
that transforms a 3-by-1 vector into a skew-symmetric
matrix as follows

ω∧ =

ω1

ω2

ω3

∧

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (10)

While the gyroscope directly measures the system’s
instantaneous angular velocity (subject to noise and ad-
ditive biases), the accelerometer does not measure the
linear acceleration in a fixed frame, but the proper accel-
eration f̃(t). The proper acceleration is a combination
of the acceleration in a fixed frame and the gravitational
acceleration. Overall, the inertial measurement model
can be formalised as

f̃(t) = RI
W (t)⊤(aIW (t)− gW ) + bf (t) + ηf (t),

ω̃(t) = ωI(t) + bω(t) + ηω(t),
(11)

where g is the gravity vector in FW , bf and bω slowly
varying sensor biases (modelled with Brownian motion),



and ηf and ηω the zero-mean Gaussian noises of vari-
ances σf and σω for the linear accelerations and angular
velocities respectively.

3.2 Dynamics in rigid bodies

This subsection provides the dynamics of rigid bodies
([Kane and Levinson, 1985]) applied to our two refer-
ence frames (IMU and marker) linked via a rigid trans-
formation. First, let us consider the angular velocities
as observed from the IMU frame, ωI(t) and from the
marker’s frame, ωM (t). The angular velocity is constant
throughout a rigid body (when expressed in a single ref-
erence frame: ωM

W = ωI
W ). Accordingly, the relationship

between the instantaneous angular velocities expressed
in FIt

and FMt
solely need to account for the change of

orientation RI
M

ωM (t) = RI
MωI(t). (12)

Regarding the acceleration, we need to account for
the distance between the frames as well as the body ro-
tational velocities and accelerations:

aMW = aIW +αM
W × pI

M + ωM
W × (ωM

W × pI
M ), (13)

with αM
W = ω̇M

W the angular acceleration expressed in
the fixed frame FW .

4 IMU-pose extrinsic calibration

4.1 Continuous models

As motivated in the Introduction, we use GPs to model
the pose of the motion-capture marker through time in
a continuous manner. This accommodates asynchronous
measurements from the motion-capture system, the ac-
celerometer, and the gyroscope. It also enables analyt-
ical differentiation to infer velocities and accelerations
(c.f. Section 2.2) and the estimation of a time-shift be-
tween the timestamps of the motion-capture system and
the IMU. The three components of the position are mod-
els as

pM
W• ∼ GP(0, kp•(t, t)), (14)

with • representing one of the 3 different axis x, y, or z.
For the orientation, we first need to convert the rotation
matrix into a minimal representation rMW = Log(RM

W ),
with Log, the reverse operation of the SO(3) exponential
mapping [Barfoot, 2017]. In order to ensure the conti-
nuity of the orientation through time we use the initial-
isation algorithm introduced in [Le Gentil and Vidal-
Calleja, 2023]. The rotation vector rMW is modelled with
three independent GPs

rMW• ∼ GP(0, kr•(t, t)). (15)

Leveraging (3) with the pose GPs (14) and (15), it is
possible to infer the pose of the motion-capture marker,

RM
W

∗
(t) = Exp(rMW

∗
(t)) and pM

W
∗
(t) at any timestamp t.

Additionally, using linear operators Ld = ∂
∂t , Ldd = ∂2

∂t2

and (6), we can estimate the linear acceleration, angular
velocity and acceleration in the fixed frame as

aMW
∗
(t) = Lddp

M
W

∗
(t),

ωM
W

∗
(t) = Ldr

M
W

∗
(t),

and αM
W

∗
(t) = Lddr

M
W

∗
(t),

(16)

respectively.

4.2 Cost function

Given the GP models of the marker’s pose and its deriva-
tives, residuals can be derived to quantify the discrep-
ancy between the motion-capture data and the IMU
measurements. Atop the motion-capture and inertial
data, the residuals involves a set of unknown variables
that are estimated in a non-linear least-square problem

S∗ = argmin
S

(
Nf∑
i=2

∥eibf
∥2Σb

f

+

Nω∑
i=2

∥eibω
∥2Σbω

+

Nf∑
i=1

∥eif∥2Σf
+

Nω∑
i=1

∥eiω∥2Σω

) (17)

with S the estimated state S =
[RW

E ,RI
M ,pI

M ,b1
f , · · · ,b

Nf

f ,b1
ω, · · · ,bNω

ω , δt ], eibf

and eibω
the accelerometer and gyroscope bias residuals,

eif the accelerometer measurement residuals, and eiω
the gyroscope measureents residuals. The rest of this
section will detail the different residuals in the cost
function.

Gyroscope residuals

From (12), we can link the instantaneous angular veloc-
ities of the IMU and marker frames. While the instan-
taneous angular velocity of the IMU corresponds to its
measurement minus the estimated biases, the one of the
marker is not readily available. Fortunately, as derived
in [Barfoot, 2017], the instantaneous angular velocity can
be deduced from the marker’s orientation and its deriva-
tive with respect to time

Jr(r
M
W (t))ṙMW (t) = ωM (t).

Accordingly, the gyroscope residual is given by

eiω = Jr(r
M∗
W (tωi + δt))ṙ

M∗
W (tωi + δt)−RI

M

(
ω̃tωi

− bi
ω

)
.

(18)

Accelerometer residuals

The residuals for the accelerometer are derived from (11)
and (13). While most components of these equations are
available as measurements, inferred from the GP mod-
els, or directly estimated, the gravity in the world frame



is not known. To address this issue, we included in the
state S the orientation RW

E of the fixed frame with re-
spect to an Earth-gravity aligned frame FE in which

the gravity is known as gE =
[
0 0 g

]⊤
, leading to

gW = RW
E

⊤
gE . Thus, the residuals eif are defined as

eif =RM∗
W (tfi + δt)R

I
M (f̃tfi

− bi
f )− aM∗

W (tfi

+ δt) +αM∗
W (tfi + δt)× pI

M

+ ωM∗
W (tfi + δt)× (ωM∗

W (tfi + δt)× pI
M )

+RW
E

⊤
gE .

Bias residuals

The bias residuals are used to enforce the Brownian mo-
tion model of the gyroscope and accelerometer biases.
Intuitively it prevents two consecutive bias estimates
from being drastically different. Formally, the residuals
are defined as

eibf
= bi

f − bi−1
f , (19)

eibω
= bi

ω − bi−1
ω . (20)

5 Experiments

5.1 Implementation and hardware

The formulation presented above considers the simulta-
neous extrinsic calibration of the rotation and position
between the IMU and marker. However, the rotational
component can be estimated using only the gyroscope-
related residuals (18) and (20). Thus, we are first op-
timising a rotation-only version of (17) with a reduced
state that solely comprises RI

M , the gyroscope biases bi
ω

and the time-shift δt . This provides good initial con-
ditions for solving the full calibration as formulated in
Section 4.

The proposed method has been implemented in C++
using Ceres [Agarwal et al., 2022] for the non-linear opti-
misation, and Python for data pre-processing and result
visualisation. The square exponential kernel has been
used for the GP models. Our open-source code has been
made available publicly2.

5.2 Datasets

The rest of this section provides empirical evidence of
the soundness of our method. To do so, we use a sen-
sor suite consisting of an Intel Realsense depth camera
D455 (with an internal 6-DoF IMU) and a Microstrain
3DM-GX5 IMU as shown in Fig. 2. The sensor suite
is equipped with IR-reflective spheres creating a 6-DoF
marker rigidly attached to the sensing plate. A Vicon
system is used to perform motion capture with sub-
millimetre accuracy. We have collected two sequences of

2https://github.com/UTS-CAS/imu_pose_calib

(a) Sensor suite (b) Lab environment

Figure 2: Illustration of our real-world data collection.
The sensor suite (a) consists of a depth camera Intel
Realsense D455 (with an internal IMU), a Microstrain
3DM-GX5 IMU, and IR-reflective spheres (constituting
the motion-capture marker). The datasets are collected
in a lab environment (b) equipped with a Vicon motion-
capture system (IR cameras circled in red).

around 40 s moving the sensing suite exciting the 6-DoF.
The data from both IMUs as well as the point clouds
from the depth camera have been recorded. For the
sake of simplicity, let us denote Seq1I the dataset corre-
sponding to the first sequence with the internal IMU and
Seq1E with the external IMU. Similarly, we use Seq2I
and Seq2E for the second sequence. We also recorded
a series of static image-pose pairs in front of a chess-
board (camera and Vicon’s marker pose) to perform the
pose-camera extrinsic calibration mentioned in the next
subsection.

5.3 Quantitative

Evaluating the performance of extrinsic calibration
methods is always a challenging task as it is not pos-
sible to obtain the actual ground truth in real-world sce-
narios. It is because the ground truth cannot be per-
fectly obtained with other means in the first place that
we need calibration methods. This subsection provides
the reader with a number of quantitative results aiming
at analysing the performance of the proposed approach.

Comparison with chained calibration

First, let us compare the results of the proposed pose-
IMU extrinsic calibration against the chained calibra-
tion that consists of pose-camera and camera-IMU. The
pose-camera component corresponds to the classic hand-
in-eye calibration problem in which a camera is attached
to the end effector of a robotic arm and the goal is to
estimate the effector’s pose-to-camera. Regarding the
camera-IMU link, we have used the provided proprietary

https://github.com/UTS-CAS/imu_pose_calib


Sequence →
IMU ↓ Seq. 1 Seq. 2

Internal
0.52◦ 0.32◦

15.6mm 13.3mm

External
0.41◦ 0.51◦

32.3mm 33.4mm

Table 1: Difference between the proposed pose-IMU cal-
ibration and a chained pose-camera/camera-IMU cali-
bration pipeline.

calibration method for the internal IMU and Kalibr [Fur-
gale et al., 2013] for the external IMU.

Table 1 shows the norm of the difference of estimated
calibration parameters with both our method and the
chained calibration pipeline. Overall, the orientation dif-
ference is consistent throughout all the datasets. How-
ever, the use of the internal IMU leads to smaller trans-
lation differences. While it is not possible to quantify
the exact error of the proposed method, one can see the
soundness of the proposed method compared to well-
established methods. Nevertheless, we would like to em-
phasise that the chained calibration can easily be subject
to errors by compounding multiple sources of inaccuracy
(e.g., lack of precision of the target for camera intrinsic
and hand-eye calibration, or motion blur of the camera
for the camera-IMU link). We would also like to stress
the repeatability of the proposed method as the results
between Seq1 and Seq2 are very similar.

Robustness to initial conditions

The set-up presented in this paragraph aims at analysing
the sensitivity of our method with respect to the ini-
tial guess of the extrinsic parameters RI

M and pI
M . Us-

ing Seq1I, we have performed a first calibration given a
good initial guess. Then, provided the optimal param-
eters, the calibration have been run 200 times using a
noisy initial guess. Please note that the biases and time-
shift have been initialised to zero all for all the runs.
Fig. 3 shows the error of the estimated extrinsic param-
eters with respect to the initial guess error. The plot
shows that the initial guess has little to no impact on
the method’s accuracy.

Robustness to noise

In this set of experiments, we analyse the impact of the
input data noise on the method’s output. Similarly to
the previous set-up, we first obtained the optimal ex-
trinsic parameters with Seq1I. Next, the calibration has
been performed by adding various combinations of noise
to the input data. It is important to remember that the
original data come from a real sensor suite and there-
fore already contain some noise (standard deviations of
≈ 0.02m.s−2 and ≈ 0.005 rad.s−1). In the following, the
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Figure 3: Analysis of the initial guess value for the pro-
posed calibration accuracy. The error is shown with the
colour of the scatter points as a function of the error on
the initial guess (rotation and position).



Gyr std →
Acc std ↓ 0.001 0.005 0.01

0.001 0.0012 0.0053 0.0129
0.01 0.0011 0.0060 0.0102
0.1 0.0012 0.0055 0.0115

Table 2: Analysis of the IMU noise on the calibration
accuracy. Rotation RMSE [◦] computed over 30 trials.

Gyr std →
Acc std ↓ 0.001 0.005 0.01

0.001 0.050 0.043 0.049
0.01 0.498 0.654 0.638
0.1 1.776 1.865 1.850

Table 3: Analysis of the IMU noise on the calibration
accuracy. Position RMSE [mm] computed over 30 trials.

mention of the standard deviation corresponds to the
standard deviation of the additional noise.

Tables 2 and 3 present the Root Mean Squared Er-
ror (RMSE) [◦] over 30 trials for additional noise to both
the gyroscope and accelerometer measurements. As ex-
pected, the accuracy of RI

M is mostly impacted by the
noise of the gyroscope data while the accuracy of pI

M

is correlated with the accelerometer noise. In Tables 4
and 5, we perform a similar analysis for the motion-
capture noise. It is interesting to see that the noise on
the pose measurements have significantly more impact
on the calibration accuracy than the IMU noise. This is
sensible as the poses are differentiated once or twice in
the various residuals of the proposed method, leading to
a larger impact on the cost function and, therefore, the
optimisation result.

5.4 Qualitative

In this subsection, we provide qualitative results by ag-
gregating together point clouds from the depth camera
using the pose from the Vicon system and the differ-
ent transformation previously estimated: (a) uses the
proposed pose-IMU calibration, combined with IMU-
camera extrinsics, while (b) leverages directly the pose-
camera eye-in-hand calibration. Fig. 4 shows both recon-
structions of the scene as well as the difference between
them after an ICP alignment [Segal et al., 2009]. The

Rot std →
Pos std ↓ 0.001 0.005 0.01

0.001 0.011 0.065 0.118
0.005 0.011 0.056 0.135
0.01 0.011 0.064 0.125

Table 4: Analysis of the pose noise on the calibration
accuracy. Rotation RMSE [◦] computed over 30 trials.

Rot std →
Pos std ↓ 0.001 0.005 0.01

0.001 3.38 3.07 4.08
0.005 12.4 11.7 13.8
0.01 16.7 21.7 23.5

Table 5: Analysis of the pose noise on the calibration
accuracy. Position RMSE [mm] computed over 30 trials.

camera range has been limited to 2m to prevent highly
noisy points further from the sensor. The transforma-
tion estimated with the ICP consists of a rotation of
0.4◦ and translation of 19mm which is close to the dif-
ference between the two calibration pipelines discussed
in Section 5.3. According to the histogram on the right
of Fig. 4(c), the difference between the point clouds is
mostly sub-millimetric, demonstrating the soundness of
our calibration approach.

6 Conclusion

In this paper, we presented a novel approach to pose-
IMU using GPs to represent the pose measurements in
a continuous manner. The method optimises the geo-
metric transformation between the IMU and the pose
reference frame as well as a time-shift between the two.
We have demonstrated the soundness of the method
with real-world data by comparing our approach with
a chained calibration pipeline using a camera. We have
also performed various experiments to evaluate the ro-
bustness of our framework with respect to measurement
noise and initial guesses of the parameters. Future work
includes the multi-modal calibration with other sensors
like cameras or lidars.
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