usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

in-toto: Providing farm-to-table guérantees
for bits and bytes

Santiago Torres-Arias, New York University; Hammad Afzali, New Jersey Institute of
Technology; Trishank Karthik Kuppusamy, Datadog; Reza Curtmola, New Jersey Institute of
Technology; Justin Cappos, New York University

https:/www.usenix.org/conference/usenixsecurity19/presentation/torres-arias

This paper is included in the Proceedings of the

28th USENIX Security Symposium.
August 14-16, 2019 « Santa Clara, CA, USA
978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium
is sponsored by USENIX.

|||H|[|f

'.:IIIIIIIILJIIIH

in-toto: Providing farm-to-table guarantees for bits and bytes

Hammad Afzali¥,
ha285 @njit.edu

Santiago Torres-Arias’,
santiago@nyu.edu

Trishank Karthik Kuppusamy* ,
trishank @datadog.com

Justin Cappos’
jcappos@nyu.edu

Reza Curtmola® ,
crix@njit.edu

"New York University, Tandon School of Engineering
*Datadog
fDepartment of Computer Science, New Jersey Institute of Technology

Abstract

The software development process is quite complex
and involves a number of independent actors. Developers
check source code into a version control system, the code
is compiled into software at a build farm, and CI/CD systems
run multiple tests to ensure the software’s quality among a
myriad of other operations. Finally, the software is packaged
for distribution into a delivered product, to be consumed by
end users. An attacker that is able to compromise any single
step in the process can maliciously modify the software and
harm any of the software’s users.

To address these issues, we designed in-toto, a frame-
work that cryptographically ensures the integrity of the
software supply chain. in-toto grants the end user the
ability to verify the software’s supply chain from the project’s
inception to its deployment. We demonstrate in-toto’s
effectiveness on 30 software supply chain compromises
that affected hundreds of million of users and showcase
in-toto’s usage over cloud-native, hybrid-cloud and cloud-
agnostic applications. in-toto is integrated into products and
open source projects that are used by millions of people daily.
The project website is available at: https://in-toto.io.

1 Introduction

Modern software is built through a complex series of steps
called a software supply chain. These steps are performed
as the software is written, tested, built, packaged, localized,
obfuscated, optimized, and distributed. In a typical software
supply chain, these steps are “chained” together to transform
(e.g., compilation) or verify the state (e.g., the code quality)
of the project in order to drive it into a delivered product,
i.e., the finished software that will be installed on a device.
Usually, the software supply chain starts with the inclusion
of code and other assets (icons, documentation, etc.) in a
version control system. The software supply chain ends with
the creation, testing and distribution of a delivered product.

Securing the supply chain is crucial to the overall security
of a software product. An attacker who is able to control
any step in this chain may be able to modify its output for
malicious reasons that can range from introducing backdoors
in the source code to including vulnerable libraries in the
delivered product. Hence, attacks on the software supply
chain are an impactful mechanism for an attacker to affect
many users at once. Moreover, attacks against steps of the
software supply chain are difficult to identify, as they misuse
processes that are normally trusted.

Unfortunately, such attacks are common occurrences,
have high impact, and have experienced a spike in recent

years [60, 129]. Attackers have been able to infiltrate
version control systems, including getting commit access
to the Linux kernel [58] and Gentoo Linux [76], stealing
Google’s search engine code [22], and putting a backdoor
in Juniper routers [48, 96]. Popular build systems, such as
Fedora, have been breached when attackers were able to sign
backdoored versions of security packages on two different
occasions [75, 123]. In another prominent example, attackers
infiltrated the build environment of the free computer-cleanup
tool CCleaner, and inserted a backdoor into a build that
was downloaded over 2 million times [126]. Furthermore,
attackers have used software updaters to launch attacks, with
Microsoft [108], Adobe [95], Google [50,74, 140], and Linux
distributions [46, 143] all showing significant vulnerabilities.
Perhaps most troubling are several attacks in which nation
states have used software supply chain compromises to target
their own citizens and political enemies [35,55,82,92,93,108,
127,128,138]. There are dozens of other publicly disclosed in-
stances of such attacks [8,33,38,39,41,52,53,65,70,76,79,80,
83,95,107,113,115,118,119,122,130-132,134,139,141,146].

Currently, supply chain security strategies are limited to se-
curing each individual step within it. For example, Git commit
signing controls which developers can modify a reposi-
tory [78], reproducible builds enables multiple parties to
build software from source and verify they received the same
result [25], and there are a myriad of security systems that
protect software delivery [2,20,28, 100, 102]. These building
blocks help to secure an individual step in the process.

Although the security of each individual step is critical,
such efforts can be undone if attackers can modify the output
of a step before it is fed to the next one in the chain [22,47].
These piecemeal measures by themselves can not stop
malicious actors because there is no mechanism to verify
that: 1) the correct steps were followed and 2) that tampering
did not occur in between steps. For example a web server
compromise was enough to allow hackers to redirect user
downloads to a modified Linux Mint disk image, even
though every single package in the image was signed and
the image checksums on the site did not match. Though
this was a trivial compromise, it allowed attackers to build
a hundred-host botnet in a couple of hours [146] due to the
lack of verification on the tampered image.

In this paper we introduce in-toto, Latin for “as a whole,”
the first framework that holistically enforces the integrity
of a software supply chain by gathering cryptographically
verifiable information about the chain itself. To achieve
this, in-toto requires a project owner to declare and sign a

USENIX Association

28th USENIX Security Symposium 1393

layout of how the supply chain’s steps need to be carried out,
and by whom. When these steps are performed, the involved
parties will record their actions and create a cryptographically
signed statement — called link metadata — for the step they
performed. The link metadata recorded from each step can be
verified to ensure that all steps were carried out appropriately
and by the correct party in the manner specified by the layout.

The layout and collection of link metadata tightly connect
the inputs and outputs of the steps in such a chain, which
ensures that tampering can not occur between steps. The lay-
out file also defines requirements (e.g., Twistlock [30] must
not indicate that any included libraries have high severity
CVEs) that will be enforced to ensure the quality of the end
product. These additions can take the form of either distinct
commands that must be executed, or limitations on which
files can be altered during that step (e.g., a step that localizes
the software’s documentation for Mexican Spanish must not
alter the source code). Collectively, these requirements can
minimize the impact of a malicious actor, drastically limiting
the scope and range of actions such an attacker can perform,
even if steps in the chain are compromised.

We have built a series of production-ready implementations
of in-toto that have now been integrated across several
vendors. This includes integration into cloud vendors such
as Datadog and Control Plane, to protect more than 8,000
cloud deployments. Outside of the cloud, in-toto is used
in Debian to verify packages were not tampered with as part
of the reproducible builds project [25]. These deployments
have helped us to refine and validate the flexibility and
effectiveness of in-toto.

Finally, as shown by our security analysis of three in-toto
deployments, in-toto is not a “lose-one, lose-all” solution,
in that its security properties only partially degrade with
a key compromise. Depending on which key the attacker
has accessed, in-toto’s security properties will vary.
Our in-toto deployments could be used to address most
(between 83% - 100%) historical supply chain attacks.

2 Definitions and Threat Model

This section defines the terms we use to discuss the software
supply chain and details the specific threat model in-toto
was designed to defend against.

2.1 Definitions

The software supply chain refers to the series of steps
performed in order to create and distribute a delivered
product. A step is an operation within this chain that takes in
materials (e.g., source code, icons, documentation, binaries,
etc.) and and creates one or more products (e.g., libraries,
software packages, file system images, installers, etc.). We
refer to both materials and products generically as artifacts.
It is common to have the products of one step be used
as materials in another step, but this does not mean that a
supply chain is a sequential series of operations in practice.
Depending on the specifics of a supply chain’s workflow,
steps may be executed in sequence, in parallel, or as a
combination of both. Furthermore, steps may be carried out

by any number of hosts, and many hosts can perform the
same step (e.g., to test a step’s reproducibility).

In addition to the materials and products, a step in the
supply chain produces another key piece of information,
byproducts. The step’s byproducts are things like the STDOUT,
STDERR, and return value that indicate whether a step was
successful or had any problems. For example, a step that runs
unit tests may return a non-zero code if one of the unit tests
fails. Validating byproducts is key to ensuring that steps of
the supply chain indicate that the software is ready to use.

As each step executes, information called /ink metadata
that describes what occured, is generated. This contains
the materials, products, and byproducts for the step. This
information is signed by a key used by the party who
performs the action, which we call a functionary. Regardless
of whether the functionary commits code, builds software,
performs QA, localizes documentation, etc., the same link
metadata structure is followed. Sometimes a functionary’s
participation involves repeated human action, such as a
developer making a signed git commit for their latest code
changes. In other cases, a functionary may participate in
the supply chain in a nearly autonomous manner after setup,
such as a CI/CD system. Further, many functionaries can be
tasked to perform the same step for the sake of redundancy
and a minimum threshold of them may be required to agree
on the result of a step they all carried out.

To tie all of the pieces together, the project owner sets
up the rules for the steps that should be performed in a
software supply chain. In essence, the project owner serves
as the foundation of trust, stating which steps should be
performed by which functionaries, along with specifying
rules for products, byproducts, and materials in a file called
the layout. The layout enables a client that retrieves the
software to cryptographically validate that all actions were
performed correctly. In order to make this validation possible,
a client is given the delivered product, which contains the
software, layout, and link metadata. The layout also contains
any additional actions besides the standard verification
of the artifact rules to be performed by the client. These
actions, called inspections, are used to validate software
by further performing operations on the artifacts inside the
delivered product (e.g., verifying no extraneous files are
inside a zip file). This way, through standard verification
and inspections, a client can assure that the software went
through the appropriate software supply chain processes.

2.2 Threat Model

The goal of in-toto is to minimize the impact of a party
that attempts to tamper with the software supply chain. More
specifically, the goal is to retain the maximum amount of
security that is practical, in any of the following scenarios:

— Interpose between two existing elements of the supply
chain to change the input of a step. For example, an
attacker may ask a hardware security module to sign
a malicious copy of a package before it is added to the
repository and signed repository metadata is created to
index it [27,44,51,76,107,120, 120, 147].

1394 28th USENIX Security Symposium

USENIX Association

— Act as a step (e.g., compilation), perhaps by compro-
mising or coercing the party that usually performs that
step [27,57,62,64,76,81,99, 112, 125]. For example,
a hacked compiler could insert malicious code into
binaries it produces [126, 136].

— Provide a delivered product for which not all steps have
been performed. Note that this can also be a result of an
honest mistake [37,49, 56, 68,73,97, 142].

— Include outdated or vulnerable elements in the supply
chain [59,61,91,94,117]. For example, an attacker could
bundle an outdated compression library that has many
known exploits.

— Provide a counterfeit version of the delivered product
to users [8,35,66,70,71,95,118, 134, 135, 146]. This
software product can come from any source and be
signed by any keys. While in-toto will not mandate
how trust is bootstrapped, Section 6 will show how other
protocols such as TUF [28], as well as popular package
managers [2] can be used to bootstrap project owner keys.

Key Compromise. We assume that the public keys of
project owners are known to the verifiers and that the attacker
is not able to compromise the corresponding secret key. In ad-
dition, private keys of developers, CI systems and other infras-
tructure public keys are known to a project owner and their cor-
responding secret keys are not known to the attacker. In sec-
tion 5.2, we explore additional threat models that result from
different degrees of attacker access to the supply chain, includ-
ing access to infrastructure and keys (both online and offline).

2.3 Security Goals

To build a secure software supply chain that can combat
the aforementioned threats, we envision that the following
security goals would need to be achieved:

— supply chain layout integrity: All of the steps defined
in a supply chain are performed in the specified order.
This means that no steps can be added or removed, and
no steps can be reordered.

— artifact flow integrity: All of the artifacts created, trans-
formed, and used by steps must not be altered in-between
steps. This means that if step A creates a file foo.txt
and step B uses it as a material, step B must use the ex-
act file foo.txt created by step A. It must not use, for
example, an earlier version of the file created in a prior
run.

— step authentication: Steps can only be performed by the
intended parties. No party can perform a step unless it is
given explicit permission to do so. Further, no delivered
products can be released unless all steps have been per-
formed by the right party (e.g., no releases can be made
without a signoff by a release engineer, which would stop
accidental development releases [68]).

— implementation transparency: in-toto should not re-
quire existing supply chains to change their practices in
order to secure them. However, in-toto can be used
to represent the existing supply chain configuration and
reason about its security practices.

— graceful degradation of security properties: in-toto
should not lose all security properties in the event of
key compromise. That is, even if certain supply chain
steps are compromised, the security of the system is not
completely undermined.

In addition to these security goals, in-toto is also geared
towards practicality and, as such, it should maintain minimal
operational, storage and network overheads.

3 System overview

The current landscape of software supply chain security is
focused on point-solutions that ensure that an individual
step’s actions have not been tampered with. This limitation
usually leads to attackers compromising a weaker step in
the chain (e.g., breaking into a buildfarm [115]), removing
steps from the chain [68] or tampering with artifacts while
in transit (i.e., adding steps to the chain [66]). As such, we
identify two fundamental limitations of current approaches
to secure the software supply chain:

1. Point solutions designed to secure individual supply
chain steps cannot guarantee the security of the entire
chain as a whole.

2. Despite the widespread use of unit testing tools and

analysis tools, like fuzzers and static analyzers, software
rarely (if ever) includes information about what tools
were run or their results. So point solutions, even if used,
provide limited protection because information about
these tools is not appropriately utilized or even shown
to clients who can make decisions about the state of the
product they are about to utilize.

We designed in-toto to address these limitations by
ensuring that all individual measures are applied, and by the
right party in a cryptographically verifiable fashion.

In concrete terms, in-toto is a framework to gather and
verify metadata about different stages of the supply chain,
from the first step (e.g., checking-in code on a version control
system) to delivered product (e.g., a .deb installable package).
If used within a software supply chain, in-toto ensures that
the aforementioned security goals are achieved.

3.1 in-toto parties and their roles

Similar to other modern security systems [101, 102, 121],
in-toto uses security concepts like delegations and roles
to limit the scope of key compromise and provide a graceful
degradation of its security properties.

In the context of in-toto, a role is a set of duties and
actions that an actor must perform. The use of delegations
and roles not only provides an important security function
(limiting the impact of compromise and providing separation
of privilege), but it also helps the system remain flexible
and usable so that behaviors like key sharing are not needed.
Given that every project uses a very specific set of tools and
practices, flexibility is a necessary requirement for in-toto.
There are three roles in the framework:

— Project Owner: The project owner is the party in charge
of defining the software supply chain layout (i.e., define

USENIX Association

28th USENIX Security Symposium 1395

Project Owner
Diana

R define

/ AN
S . N .
tag oo build foo package foo kg inspect

Functionary Functionary Functionary
Alice Bob Clara

End user

Figure 1: Graphical depiction of the software supply chain with in-totoele-
ments added. The project owner creates a layout with three steps, each of which
will be performed by a functionary. Notice how the tag step creates foo. c and
alocalization file foo . po, which are fed to different steps down the chain.

which steps must be performed and by who). In practice,
this would be the maintainer of an open-source project
or the dev-ops engineers of a project.

— Functionaries: Functionaries are the parties that perform
the steps within the supply chain, and provide an
authenticated record of the artifacts used as materials
and the resulting products. Functionaries can be humans
carrying out a step (e.g., signing off a security audit) or
an automated system (e.g., a build farm).

— Client: (e.g., end user): The client is the party that will
inspect and afterwards utilize a delivered product.

We will now elaborate on how these three parties interact
with the components of in-toto.

3.2 in-totocomponents

in-toto secures the software supply chain by using three dif-
ferent types of information: the software supply chain layout
(or layout, for short), link metadata, and the delivered product.
Each of these has a unique function within in-toto.

3.2.1 The supply chain layout

Laying out the structure of the supply chain allows the devel-
opers and maintainers of a project to define requirements for
steps involved in source code writing, testing, and distribution
within a software product’s lifecycle. In the abstract sense,
this supply chain layout is a recipe that identifies which steps
will be performed, by whom, and in what order.

The supply chain layout defines a series of steps in the
supply chain. These definitions are used to enforce measures
on what artifacts should be used as materials. To ensure that
only the intended parties execute the right steps, a public key
is associated with each step. In order to ensure that the layout
was created by the project owner, it is cryptographically
signed with the project owner’s private key.

The project owner will define this supply chain layout by
setting different requirements for the project’s steps. These
requirements take the form of types of artifacts that can be pro-
duced (e.g., a localization step can only produce . po files), the
expected return values, the type of host that can carry out this
step and so forth. When consuming the delivered product, the
client (end user) verifies that these requirements are satisfied.

In addition to defining supply chain steps, the layout will
also specify a series of inspection steps (or inspections). These

inspections will be performed by the verifier on the delivered
product to draw further insight about its correctness. This is
useful for complex supply chains in which the basic semantics
of in-toto cannot describe their specific requirements. For
example, an inspection step can be used to namespace restrict
certain VCS-specific operations to specific functionaries such
as making sure that only a QA team member merges code
into the develop branch and that all commits are signed.

For example, as seen in Figure 1, a project owner can de-
fine a supply chain consisting of three steps: a tag, a build
and a package step. With these definitions, the project owner
also defines how the artifacts will flow through the supply
chain (e.g., foo.c is used by build, yet foo.po is packaged
directly from tag). Afterwards, the project owner can assign
functionaries to carry out each of these steps and define an in-
spection so the end user can verify that foo was indeed created
during build and that foo.po came from the tagged release.

Layout creation tool. We provide a web-based layout
creation tool [12] to help project owners create in-toto
layouts. The tool uses an intuitive, graphical interface to
define: (1) the steps of the software supply chain (i.e., how
is the source code managed? how is the software’s quality
verified? how is the software built? how is the software
packaged?), (2) the actors (functionaries) who are allowed
to perform different steps of the software supply chain. An
in-toto layout is generated based on this information. In
addition, the in-toto website [13, 15] provides several
examples of layouts, which can serve as starting templates
for project owners seeking to integrate in-toto.

3.2.2 Link metadata

Verifying the actions carried out in the supply chain, requires
information about all steps performed in creating the
delivered product. Like a chain in real life, an in-toto
supply chain consists of conjoined links, with each link
serving as a statement that a given step was carried out.

Functionaries in charge of executing a step within the
supply chain must share information about these links.
Sharing such information as what materials were fed to
the step, and what product(s) were created, can ensure no
artifacts are altered in transit. To ensure that only the right
functionaries performed this step, the piece of link metadata
must be signed with the private key that corresponds to this
functionary’s key (as defined in the supply chain layout).

There is a one-to-one relationship between the step defini-
tions in the supply chain layout and the link metadata. That is,
each piece of link metadata gathered during each step within
the supply chain must match what the requirements prescribe
for that step. In order to ensure that the link metadata is gener-
ated by the intended entity, it must be cryptographically signed
with one (or more, if there is a threshold higher than one de-
fined) of the keys indicated in the requirements for that link.

When all the link metadata has been collected, and the
supply chain has been properly defined, the supply chain
layout and all the links can be shipped, along with the
delivered product, to the end user for verification. We show

1396 28th USENIX Security Symposium

USENIX Association

a minimal software supply chain, along with a graphical
representation of an in-toto layout in Figure 1.

3.2.3 The delivered product

The delivered product is the piece of software that the end
user wants to install. In order to verify the delivered product,
the end user (or client) will utilize the supply chain layout
and its corresponding pieces of link metadata. The end user
will use the link metadata to verify that the software provided
has not been tampered with, and that all the steps were
performed as the project owner intended. In Figure 1 the
delivered product consists of the foo.pkg file.

3.3 in-toto usage lifecycle

The in-toto usage lifecycle encompasses the following
overarching operations:

1. The project owner defines a supply-chain layout.

2. Each step is carried out as specified, and functionaries
gather and sign link metadata.

3. A delivered product is shipped to the client, who verifies
it upon installation by:

— ensuring the layout provided was signed by the
project owner and is not expired.

— checking that all the steps defined have enough
pieces of link metadata; that such links were signed
by the indicated functionaries; and that all artifacts
recorded flowed properly between the steps as
indicated in the layout.

— carrying out any inspection steps contained in the
layout and making sure that all artifacts recorded
match the flow described in the layout.

As seen in Figure 1 a project owner creates the layout to
describe an overarching structure of the supply chain that the
client can use to verify. Later, functionaries carry out their
operations as usual, and submit link metadata to attest for
the result of their operation. Finally, a client uses a delivered
product, metadata links and a layout to verify the integrity
of the delivered product and of the entire chain.

By following the chain of attestations in the link metadata,

the client can reconstruct the operations described in Figure 1.

Afterwards, the client can verify these attestations against the
layout and execute any inspections to make sure everything
is in order before consuming the delivered product.

4 in-totointernals

In order to avoid tampered, incomplete or counterfeit
software, in-toto ensures the integrity and accuracy of all
software supply chain operations. in-toto ensures supply
chain integrity by the verifying the collected link metadata
against a software supply chain layout file. This ensures that
all operations were carried out, by the intended party and as
the legitimate project owner intended.

Understanding how the system’s metadata helps to ensure
the integrity of the supply chain is critical to a deeper
appreciation of how in-toto works. In this section, we will
explore the specifics of the link metadata and the layout file
to understand how in-toto operates.

For the context of this section, we will demonstrate the
different features of in-toto using Figure 1 as an example.
The project owner Diana will create a layout that describes
three steps and three functionaries for each step. The first
step, tag, will produce a file foo.c to be input into the build
step, as well as a foo.po localization file. The second step,
build, will use the foo.c file from the tag step and produce a
foo binary. Finally, the package step will take the foo.po and
foo files and produce a package installable by the end user.

For a more complete and thorough description of all the
fields, signature schemes, implementations, a layout editing
tool and more, refer to the resources on the project website:
https://in-toto.io.

4.1 The supply chain layout

The supply chain layout explicitly defines the expected layout
of the software supply chain. This way, end users can ensure
that its integrity is not violated upon verification. To do this,
the layout contains the following fields:

{ "_type" "layout",
"expires" "<EXPIRES>",
"readme": "<READMBE>" ,
"keys" {"<KEYID>": "<PUBKEY_OBIJECT>" ...} ,
"steps" ["<STEP>", "..."],
"inspections" : ["<INSPECTION>" K" ..."]

}

NN B W =

Listing 1: The supply chain layout structure

The overarching architecture of the layout definition
includes the following relevant fields:

— An expiration date: this will ensure that the supply chain
information is still fresh, and that old delivered products
can not be replayed to users.

— A readme field: this is intended to provide a human-
readable description of the supply chain.

— A list of public keys: these keys belong to each
functionary in the supply chain and will be assigned to
different steps to ensure that only the right functionary
performs a particular step in the supply chain.

— A list of steps: these are the steps to be performed in
the supply chain and by who. Step definitions, described
in depth in Section 4.1.1, will contain a series of
requirements that limit the types of changes that can be
done in the pipeline and what functionary can sign link
metadata to attest for its existence.

— A list of inspections: these are the inspections to be
performed in the supply chain. As described in depth
in section 4.1.2, inspections are verification steps to
be performed on the delivered product by the client to
further probe into its completeness and accuracy.

Though its structure is quite simple, the layout actually
provides a detailed description of the supply chain topology.
It characterizes each of the steps, and defines any possible
requirements for every step. Likewise, it contains instructions
for local inspection routines (e.g., verify that every file in a
tar archive was created by the right party in the supply chain),
which further ensure the delivered product has not been

USENIX Association

28th USENIX Security Symposium 1397

tampered with. As such the layout allows the project owner to
construct the necessary framework for a secure supply chain.

For our example supply chain, Diana would have to list the
public keys as described on Listing 2, as well as all the steps.

I{ "_type" "layout",

2 "expires" "<EXPIRES>",

3 "readme": "foo.pkg supply chain",

4 "keys" {"<BOBS_KEYID>": "<PUBKEY>" ,

5 "<ALICES_KEYID": "<PUBKEY>" ,

6 "<CLARAS_KEYID" : "<PUBKEY>" } ,

7 "steps" [{"name": "tag", "..."},

8 {"name": "build", "..."},

9 {"name": "package", "..."} 1,

10 "inspections" ["{"name": "inspect", "..."}]

11}
Listing 2: The supply chain for our example

As described, the layout file already limits all actions to
trusted parties (by means of their public keys), defines the
steps that are carried out (to limit the scope of any step) and
specifies verification routines that are used to dive into the
specifics of a particular supply chain. We will describe the
latter two fields in depth now.

4.1.1 Step definition

Listing 3: A supply chain step in the supply chain layout

Every step of the supply chain contains the following fields:

— mname: A unique identifier that describes a step. This
identifier will be used to match this definition with the
corresponding pieces of link metadata.

— expected_materials: The materials expected as input
ARTIFACT_RULES as described in Section 4.1.3. It serves
as a master reference for all the artifacts used in a step.

— expected_products: Given the step’s output information,
or evidence, what should be expected from it? The ex-
pected products also contains a list of ARTIFACT_RULES
as described in section 4.1.3.

— expected_command: The command to execute and any
flags that may be passed to it.

— threshold: The minimum number of pieces of signed
link metadata that must be provided to verify this step.
This field is intended for steps that require a higher de-
gree of trust, so multiple functionaries must perform the
operation and report the same results. For example, if the
threshold is set to k, then at least k pieces of signed link
metadata need to be present during verification.

— alist of public keys id’s: The id’s of the keys that can be
used to sign the link metadata for this step.

The fields within this definition list will indicate re-
quirements for the step identified with that name. To
verify these requirements, these fields will be matched
against the link metadata associated with the step. The

I{ "_name": "<NAMB",

2 "threshold": "<THRESHOLD>",

3 "expected_materials": [["<ARTIFACT RULE>"], "..."],
4 "expected_products": [["<ARTIFACT_RULE>"], "..."],
5 "pubkeys": ["<KEYID>", "..."],

6 "expected_command": "<COMMAND>"

7}

expected_materials and expected_products fields will
be used to compare against the materials and products
reported in the link metadata. This ensures that no disallowed
artifacts are included, that no required artifacts are missing,
and the artifacts used are from allowed steps who created
them as products. Listing 4 contains the step definition for
the build step for our example Layout above.

I{ "_name": "build",

2 "threshold": "1",

3 "expected_materials": [

4 ["MATCH" , "foo.c", "WITH",

5 "PRODUCTS", "FROM", "tag"]

6 1,

7 "expected_products": [["CREATE", "foo"]],
8 "pubkeys": ["<BOBS_PUBKEY>"],

9 "expected_command": "gcc foo.c —o foo"

10}
Listing 4: The build step in our example layout

4.1.2 Inspection definition

Inspection definitions are nearly identical to step definitions.
However, since an inspection causes the verifier on the client
device to run a command (which can also generate artifacts),
there cannot be a threshold of actions. The other fields are
identical to the link metadata generated by a step.

4.1.3 Artifact rules

Artifact rules are central to describing the topology of the
supply chain by means of its artifacts. These rules behave
like firewall rules and describe whether an artifact should be
consumed down the chain, or if an artifact can be created or
modified at a specific step. As such, they serve two primary
roles: to limit the types of artifacts that a step can create and
consume; and to describe the flow of artifacts between steps.

For the former, a series of rules describes the operation
within the step. A rule, such as CREATE, indicates that a
material must not exist before the step is carried out and
must be reported as a product. Other rules, such as MODIFY,
DELETE, ALLOW and DISALLOW are used to further limit
what a step can register as artifacts within the supply chain.
These rules are described in Grammar 5 (full definition in
Appendix A). An example of a simple CREATE rule can be
seen on the step definition in Listing 4.

[CREATE | DELETE | MODIFY |ALLOW|DISALLOW] artifact_pattern

Grammar 5: Grammar for operations within a step. artifact_pattern is a
regular expression for the paths to artifacts.

For the latter, the MATCH rule is used by project owners
to describe the flow of artifacts between steps. With it, a
project owner can mandate that, e.g., a buildfarm must only
use the sources that were created during a tag-release step
or that only the right localization files are included during
a localization step. Compared to the rules above, the MATCH
rule has a richer syntax, as it needs to account for artifacts
relocated during steps (e.g,. a packaging step moving .py
files to /usr/1lib/pythonX.X/site-packages/ or a build
step moving artifacts to a build directory) using the IN
clause. Grammar 6 describes this rule and the Match function

1398 28th USENIX Security Symposium

USENIX Association

describes the algorithm for processing it during verification.

An example of a MATCH rule used to match the foo. c source
from tag into the build step is shown in Listing 4.

MATCH source_pattern [IN prefix]
WITH <MATERIALS|PRODUCTS> [IN prefix] FROM step_name

Grammar 6: The match rule grammar. The IN clauses are optional and
source_pattern is a regular expression

function MATCH
Input: source_artifacts; destination_artifacts, rule
Output: result: (SUCCESS/FAIL)

1: // Filter source and destination materials using the rule’s patterns

2: source_artifacts_filtered = filter(rule.source_prefix + rule.source_pattern,
source_artifacts)

. destination_artifacts_filtered = filter(rule.destination_prefix —+
rule.destination_pattern, destination_artifacts)

: /] Apply the IN clauses, to the paths, if any

. for artifact in source_artifacts_filtered do

artifact.path -=rule.source_in_clause

(95}

. for artifact in destination_artifacts_filtered do

artifact.path -= rule.destination_in_clause

: // compare both sets

. for artifact in source_artifacts_filtered do
destination_artifact = find_artifact_by_path(destination_artifacts,

artifact.path)

12: //the artifact with this path does not exist?

13: if destination_artifact == NULL then

14: return FAIL

15: // are the files not the same?

16: if destination_artifact.hash != artifact.hash then

17: return FAIL

18: // all of the files filtered by the source materials exist

19: return SUCCESS

—_

4.2 Link metadata files

Link metadata serves as a record that the steps prescribed in
the layout actually took place. Its fields show evidence that is
used for verification by the client. For example, the materials
and products fields of the metadata are used to ensure that
no intermediate products were altered in transit before being
used in a step.

In order to determine if the executed step complies with its
corresponding metadata, several types of information need to
be gathered as evidence. A link includes the following fields:

I{ "_type" "link ",

2 "_name" "<NAMBE>" ,

3 "command" : "<COMMAND>",

4 "materials": {"<PATH>": "<HASH>", "..." : "..."
5 "products": {"<PATH>": "<HASH>", "..." : "..." }
6 "byproducts": { "stdin": "", "stdout": "",

7 "return—value": "" },

8 "environment": {"variables": "<ENV>",

9 "filesystem": "<FS>", ...}

W Listing 7: Link metadata format
— Name: This will be used to identify the step and to match
it with its corresponding definition inside the layout.
— Material(s): Input file(s) that were used in this step, along
with their cryptographic hashes to verify their integrity.
— Command: The command run, along with its arguments.

— Product(s): The output(s) produced and its corresponding
cryptographic hash.

— Byproduct(s): Reported information about the step.
Elements like the standard error buffer and standard
output buffer will be used.

— Signature: A cryptographic signature over the metadata.

Of these fields, the name, materials, and products
fields are the counterpart of the fields within the layout
definition. This, along with a cryptographic signature used
to authenticate the functionary who carried out the step can
be used to provide a baseline verification of the supply chain
topology (i.e., the steps performed and how do they interrelate
via their materials and products). For example, the build step
metadata described in Listing 8 shows the file foo.c used
as a material and the product foo as created in the build step.

The byproducts field is used to include other meaningful
information about a step’s execution to further introspect into
the specifics of the step that was carried out. Common fields
included as byproducts are the standard output, standard error
buffers and a return value. For example, if a command exited
with non-zero status, then the byproduct field be populated
with a value such as return-value: "126". In this case,
inspections can be set up to ensure that the return value of
this specific command must be 0.

{ "_type": "link",

1

2 "name": "build",

3 "command": ["gcc", "foo.c", "—o", "foo"],

4 "materials": {"foo.c": { "sha256": "bff95e..."}},
5 "products": {"foo": {"sha256": "25¢696..."}}

6 "byproducts": { "return—value": O,

7 "stderr": "", "stdout": ""},

8 "environment": {},

9}

Listing 8: The link for the build step

Having a software supply chain layout along with the
matching pieces of link metadata and the delivered product
are all the parts needed to perform verification. We will
describe verification next.

4.3 Verifying the delivered product

Verification occurs when the link metadata and the lay-
out are received by the client and upon installing the
delivered product. A standalone or operating-system tool
will perform the verification, as described in the function
Verify_Final_Product. To do this, the user will need an initial
public key that corresponds to the supply chain layout, as
distributed by a trusted channel or as part of the operating
system’s installation [106].

The end user starts the verification by ensuring that the
supply chain layout provided was signed with a trusted key
(lines 2-3) and by checking the layout expiration date to make
sure the layout is still valid (lines 5-6). If these checks pass,
the public keys of all the functionaries are loaded from the
layout (line 8). With the keys loaded, the verification routine
will start iterating over all the steps defined in the layout and
make sure there are enough pieces of link metadata signed
by the right functionaries to match the threshold specified
for that role (lines 10-20). If enough pieces of link metadata

USENIX Association

28th USENIX Security Symposium 1399

function VERIFY_FINAL_PRODUCT
Input: layout; links; project_owner_key
Output: result: (SUCCESS/FAIL)

1: // verify that the supply chain layout was properly signed
2: if not verify_signature(layout, project_owner_key) then
3: return FAIL

4: // Check that the layout has not expired

5: if layout.expiration < TODAY then

6: return FAIL

7: // Load the functionary public keys from the layout

8: functionary_pubkeys = layout.keys

9: // verify link metadata

10: for step in layout.steps do

11: // Obtain the functionary keys relevant to this step and its corresponding
metadata

12: step_links = get_links_for_step(step, links)

13: step_keys = get_keys_for_step(step, functionary_pubkeys)

14: //Remove all links with invalid signatures

15: for link in step_links do

16: if not verify_signature(link, step_keys) then

17: step_links.remove(link)

18: // Check there are enough properly-signed links to meet the threshold
19: iflength(step_links) < step.threshold then

20: return error("Link metadata is missing!")

21: // Apply artifact rules between all steps

22: if apply_artifact_rules(steps, links) == FAIL then

23: return FAIL

24: // Execute inspections

25: for inspection in layout.inspections do

26: inspections.add(Run(inspection))

27: // Verify inspections

28: if apply_artifact_rules(steps + inspections, links) == FAIL then

29: return FAIL

30: return SUCCESS

could be loaded for each of the steps and their signatures
pass verification, then the verification routine will apply the
artifact rules and build a graph of the supply chain using
the artifacts recorded in the link metadata (lines 22-23). If
no extraneous artifacts were found and all the MATCH rules
pass, then inspections will be executed! (line 25-26). Finally,
once all inspections were executed successfully, artifact
rules are re-applied to the resulting graph to check that rules
on inspection steps match after inspections are executed,
because inspections may produce new artifacts or re-create
existing artifacts (lines 28-29). If all verifications pass, the
function will return SUCCESS.

With this verification in place, the user is sure that the
integrity of the supply chain is not violated, and that all
requirements made by the project’s maintainers were met.

4.4 Layout and Key Management

A layout can be revoked in one of two ways, the choice being
up to the project owner. One is by revoking the key that was
used to sign the layout, the other is by superseding/updating
the layout with a newer one. To update a layout, the project

owner needs to replace an existing layout with a newer layout.

This can be used to deal with situations when a public key

!Inspections are executed only after all the steps are verified to avoid
executing an inspection on an artifact that a functionary did not create.

of a misbehaving functionary needs to be changed/revoked,
because when the project owner publishes a newer layout
without that public key, any metadata from such misbehaving
functionary is automatically revoked. Updating a layout
can also be used to address an improperly designed initial
layout. The right expiration date for a layout depends on the
operational security practices of the integrator.

5 Security Analysis

in-toto was designed to protect the software supply chain as
a whole by leveraging existing security mechanisms, ensuring
that they are properly set up and relaying this information to
a client upon verification. This allows the client to make sure
that all the operations were properly performed and that no
malicious actors tampered with the delivered product.

To analyze the security properties of in-toto, we need to
revisit the goals described in Section 2. Of these, the relevant
goals to consider are supply chain layout integrity, artifact flow
integrity, and step authentication. In this section, we explore
how these properties hold, and how during partial key compro-
mise the security properties of in-toto degrade gracefully.

in-toto’s security properties are strictly dependent on an
attacker’s level of access to a threshold of signing keys for
any role. These security properties degrade depending on the
type of key compromise and the supply chain configuration.

5.1 Security properties with no key compromise

When an attacker is able to compromise infrastructure or
communication channels but not functionary keys, in-toto’s
security properties ensure that the integrity of the supply
chain is not violated. Considering our threat model in
Section 2, and contrasting it to in-toto’s design which
stipulates that the supply chain layout and link metadata are
signed, we can assert the following:

— An attacker cannot interpose between two consecutive
steps of the supply chain because, during verification, the
hash on the products field of the link for the first step will
not match the hash on the materials field of the link for the
subsequent step. Further, a completely counterfeit version
of the delivered product will fail validation because its
hash will not match the one contained in the correspond-
ing link metadata. Thus, artifact flow integrity holds.

— An attacker cannot provide a product that is missing
steps or has its steps reordered because the corresponding
links will be missing or will not be in the correct order.
The user knows exactly which steps and in what order
they need to be performed to receive the delivered
product. As such, supply chain layout integrity holds.

— Finally, an attacker cannot provide link metadata for
which he does not have permission to provide (i.e., their
key is not listed as one that can sign link metadata for
a certain step). Thus, step authentication holds.

However, it is important to underline that this threat
model requires that the developer’s host systems are not
compromised. Likewise, it assumes that there are no rogue
developers wishing to subvert the supply chain. For practical
purposes, we consider a rogue functionary to be equivalent

1400 28th USENIX Security Symposium

USENIX Association

to a functionary key compromise. Hence this section frames
attacks from the standpoint of a key compromise, even when
the issue may be executed as a confused deputy problem or
a similar issue with equivalent impact.

5.2 Security properties if there is a key compromise

in-toto is not a “lose-one, lose-all” solution, in that its secu-
rity properties only partially degrade with a key compromise.
Depending on which key the attacker has accessed, in-toto’s
security properties will vary. To further explore the conse-
quences of key compromise, we outline the following types
of attacks in the supply chain:

— Fake-check: a malicious party can provide evidence of
a step taking place, but that step generates no products
(it can still, however, generate byproducts). For example,
an attacker could forge the results of a test suite being
executed in order to trick other functionaries into
releasing a delivered product with failing tests.

— Product Modification: a malicious party is able to
provide a tampered artifact in a step to be used as
material in subsequent steps. For example, an attacker
could take over a buildfarm and create a backdoored
binary that will be packaged into the delivered product.

— Unintended Retention: a malicious party does not destroy
artifacts that were intended to be destroyed in a step. For
example, an attacker that compromises a cleanup step
before packaging can retain exploitable libraries that
will be shipped along with the delivered product.

— Arbitrary Supply Chain Control: a malicious party is
able to provide a tampered or counterfeit delivered
product, effectively creating an alternate supply chain.

5.2.1 Functionary compromise

A compromise on a threshold of keys held for any functionary
role will only affect a specific step in the supply chain to
which that functionary is assigned to. When this happens,
the artifact flow integrity and step authentication security
properties may be violated. In this case, the attacker can
arbitrarily forge link metadata that corresponds to that step.
The impact of this may vary depending on the specific
link compromised. For example, an attacker can fabricate an
attestation for a step that does not produce artifacts (i.e., a
fake-check), or create malicious products (i.e., a product mod-
ification), or pass along artifacts that should have been deleted
(i.e., an unintended retention). When an attacker creates
malicious products or fails to remove artifacts, the impact is
limited by the usage of such products in subsequent steps of
the chain. Table 1 describes the impact of these in detail from
rows 2 to 5 (row 1 captures the case when the attacker does
not compromise enough keys to meet the threshold defined
for a step). As a recommended best practice, we assume there
isa “DISALLOW *” rule at the end of the rule list for each step.
It is of note from Table 1 that an attacker who is able
to compromise crucial steps (e.g., a build step) will have a
greater impact on the client than one which, for example,
can only alter localization files. Further, a compromise in
functionary keys that do not create a product is restricted

Type of Key

Compromised Step

Subsequent Step

Compromise | Rule Rule Impact

Under

threshold Regardless of rule Regardless of rule | None

Step None Regardless of rule | Fake-check
ALLOW patternl , | Unintended

Step DELETE patternz | DTCH PAtLern™ |p iention

Ste [ALLOW | CREATE | MATCH pattern Product

P MODIFY] pattern P Modification
Arbitrary Supply
Layout N/A N/A Chain Control

Table 1: Key compromise and impact based on the layout characteristics.

to a fake check attack (row two). To trigger an unintended
retention, the first step must also have rules that allow for
some artifacts before the DELETE rule (e.g., the ALLOW rule
with a similar artifact pattern). This is because rules behave
like artifact rules, and the attacker can leverage the ambiguity
of the wildcard patterns to register an artifact that was
meant to be deleted. Lastly, note that the effect of product
modification and unintended retention is limited by the
namespace on such rules (i.e., the artifact_pattern).

Mitigating risk. As discussed earlier, the bar can be raised
against an attacker if a role is required to have a higher
threshold. For example, two parties could be in charge of
signing the tag for a release, which would require the attacker
to compromise two keys to successfully subvert the step.

Finally, further steps and inspections can be added to
the supply chain with the intention of limiting the possible
transformations on any step. For example, as shown in
Section 6, an inspection can be used to dive into a Python’s
wheel and ensure that only Python sources in the tag release
are contained in the package.

5.2.2 Project owner compromise

A compromise of a threshold of keys belonging to the project
owner role allows the attacker to redefine the layout, and
thereby subvert the supply chain completely. However, like
with step-level compromises, an increased threshold setting
can be used to ensure an attacker needs to compromise many
keys at once. Further, given the way in-toto is designed,
the layout key is designed to be used rarely, and thus it should
be kept offline.

5.3 User actions in response to in-toto failures

Detecting a failure to validate in-toto metadata involves
making a decision about whether verification succeeded or
whether it failed and, if so, why. The user’s device and the
reason for failure are likely to be paramount in the user’s
decision about how to respond. If the user is installing in an
ephemeral environment on a testing VM, they may choose
to ignore the warning and install the package regardless. If
the user is installing in a production environment processing
PCI data, the failure to validate in-toto metadata will be
a serious concern. So, we expect users of in-toto will
respond in much the same way as administrators do today
for a package that is not properly signed.

USENIX Association

28th USENIX Security Symposium 1401

@) Debian packages _‘g

. ., || Buildinfo /=
debian *ggregator / client
Packaging I

Infrastructure /in-toto

! 7 links
EI flink

Rebuilder organizations

Figure 2: The rebuilder setup.

6 Deployment

in-toto has about a dozen different integrations that protect
software supply chains for millions of end users. This section
uses three such integrations to examine how threshold signing,
metadata generation, and end-to-end verification function in
practical deployments of in-toto.

6.1 Debian rebuilder constellation

Debian is one of the biggest stakeholders in the reproducible
builds project [26], an initiative to ensure bit-by-bit determin-
istic builds of a source package. One of the main motivations
behind reproducible builds is to avoid backdooring compil-
ers [136] or compromised toolchains in the Debian build
infrastructure. in-toto helps Debian achieve this goal via
its step-thresholding mechanism.

The apt-transport [16] for in-toto verifies the trusted
rebuilder metadata upon installing any Debian package.
Meanwhile, various institutions (that range from private to
non-profit and educational) run rebuilder infrastructure to re-
build Debian packages independently and produce attestations
of the resulting builds using in-toto link metadata. This way,
it is possible to cryptographically assert that a Debian package
has been reproducibly built by a set of k out of n rebuilders.
Figure 2 shows a graphical description of this setup.

By using the in-toto verifiable transport, users can make
sure that no package was tampered with unless an attacker is
also able to compromise at least & rebuilders and the Debian
buildfarm. Throughout this deployment, we were able to
test the thresholding mechanism, as well as practical ways
to bootstrap project owner signatures through the existing
package manager trust infrastructure [32,34].

Deployment insight. Through our interaction with repro-
ducible builds, we were able to better understand how the
thresholding mechanism can be used to represent concepts
such as a build’s reproducibility and how to build in-toto
into operating-system tools to facilitate adoption.

6.2 Cloud native builds with Jenkins and Kubernetes

“Cloud native” is used to refer to container-based environ-
ments [3]. Cloud native ecosystems are characterized by
rapid changes and constant re-deployment of the internal
components. They are generally distributed systems, and
often managed by container orchestration systems such as
Kubernetes [23] or Docker Swarm [6]. Thus, their pipelines
are mostly automated using pipeline managers such as

=

(¢]

Jenkins Master Metadata in-toto
(with in-toto plugin) Server admission controller
> — ——— 1 -+ - mmme-- >
Artifact Flow Scheduling Link metadata Kubernetes
query ission AP

Figure 3: The kubesec supply chain.

Jenkins [18] or Travis [137]. In this type of ecosystems, a
host- and infrastructure-agnostic, automated way to collect
supply-chain metadata is necessary not only for security,
but also for auditing and analyzing the execution of build
processes that led to the creation of the delivered product.

In the context of cloud native applications, in-toto is
used by Control Plane to track the build and quality-assurance
steps on kubesec [19], a Kubernetes resource and configu-
ration static analyzer. In order to secure the kubesec supply
chain, we developed two in-toto components: a Jenkins
plugin [11] and a Kubernetes admission controller [7,17].
These two components allow us to track all operations
within a distributed system, both of containers and aggregate
in-toto link metadata, to verify any container image before
it is provisioned. Figure 3 shows a (simplified) graphical
depiction of their supply chain.

This deployment exemplifies an architecture for the supply
chains of cloud native applications, in which new container
images, serverless functions and many types of deployments
are quickly updated using highly-automated pipelines. In this
case, a pipeline serves as a coordinator, scheduling steps to
worker nodes that serve as functionaries. These functionaries
then submit their metadata to an in-toto metadata store.
Once a new artifact is ready to be promoted to a cloud
environment, a container orchestration system queries an
in-toto admission controller. This admission controller en-
sures that every operation on this delivered product has been
performed by allowed nodes and that all the artifacts were
acted on according to the specification in the in-toto layout.

Deployment insight. Our interaction with kubesec forced
us to investigate other artifact identifiers such as container
images (in addition to files). While in-toto can be used
today to track container images, the ability to point to an
OCIv2 [21] image manifest can provide a more succinct link
metadata representation and will be part of future work.

6.3 Datadog: E2E verification of Python packages

Datadog is a monitoring service for cloud-scale applications,
providing monitoring of servers, databases, tools, and
services, through a software-as-a-service-based data analytics
platform [5]. It supports multiple cloud service providers,
including Amazon Web Services (AWS), Microsoft Azure,

1402 28th USENIX Security Symposium

USENIX Association

Users

Developers Cl/ICD (via Agent)
‘ - }»% wheels- wheels- }»% i ‘
builder signer
tag.link wheels- ‘ wheels- unzip.link
builder.link signer.link | :
dd-check/ 1. dd-check/ dd_check.whl: dd_check.whl: i i dd_check.whl: gdd-checkl
setup.py: OxA i setup.py: OxA : OxB 0xB 0xB i setup.py: OxA
=4 N~ AN— Vv 7

Figure 4: The simplified Datadog agent integrations supply chain. There
are three steps (tag step, wheels-builder step, wheels-signer step), and
one inspection. Arrows denote MATCH rules, the tag step is signed using a
hardware dongle whereas the CI system uses online keys.

Google Cloud Platform, and Red Hat OpenShift. At the time
of writing, it has over 8,000 customers, and collects trillions
of monitoring record points per day.

The Datadog agent is software that runs on hosts. It
collects events and metrics from hosts and sends them to
Datadog, where customers can analyze their monitoring and
performance data. The agent infegrations are plug-ins that
collect metrics from services running on customer infrastruc-
ture. Presently, there are more than one hundred integrations
that come installed out-of-the-box with the Agent.

Datadog developers wanted an ability to automatically
build and publish new or updated integrations independently
of agent releases. This is so interested users can try new
or updated integrations as they become available, and test
whether they are applicable to their needs.

This section will cover how Datadog built the first
tamper-evident pipeline using in-toto and how it leveraged
TUF to safely bootstrap key distribution and provide replay-
protection and freshness guarantees to in-toto metadata.

End-to-end verification with in-toto. The Datadog agent
integrations supply chain, shown in Figure 4, has three steps:

1. The first tag step outputs Python source code as products.
Every integration consists of Python source code and
several YAML [133] configuration files. The link for this
step is signed using a Yubikey hardware dongle [29]

2. In the second wheels-builder step, the pipeline must
receive the same source code from the tag step and
produce a Python wheel [24], as well as its updated
Python metadata. Each wheel is a ZIP file and its
metadata is an HTML file that points to all the available
versions of an integration.

3. In the third wheels-signer step, the pipeline must
receive, as materials, the same products as the
wheels-builder step. This steps signs for all wheels
using the system described in the next subsection. It can
be dangerous packaging Python source code, because
arbitrary code can be executed during the packaging
process, which can be inserted by compromising the
GitHub repository. Therefore, this step is separate from
the wheels-builder step, so that a compromise of the
former does not yield the signing keys of this step.

Finally, there is one inspection, which first ensures that a
given wheel matches the materials of the wheels-signer

step. It then extracts files from the wheel and checks that
they correspond to exactly the same Python source code and
YAML configuration files as the products of the tag step.
Thus, this layout provides end-to-end verification: it prevents a
compromised pipeline from causing users to trust wheels with
source code that was never released by Datadog developers.

Transport with The Update Framework (TUF). Whereas
in-toto provides end-to-end verification of the Datadog
pipeline, it does not solve a crucial problem that arises in prac-
tice: How to securely distribute, revoke, and replace the public
keys used to verify the in-toto layout. This mechanism must
be compromise-resilient [100-102, 121], and resistant to a
compromise of the software repository or server used to serve
files. While SSL / TLS protects users from man-in-the-middle
(MitM) attacks, it is not compromise-resilient, because
attackers who compromise the repository can simply switch
the public keys used to verify in-toto layout undetected,
and thus defeat end-to-end verification. Likewise, other
solutions, such as X509 certificates do not support necessary
features such as in-band key revocation and key rotation.

The Update Framework (TUF) [100-102, 121] provides
precisely this type of compromise-resilient mechanism, as
well as in-band key revocation and key rotation. To do so,
TUF adds a higher layer of signed metadata to the repository
following two design principles that inspired the in-toto
design. The first is the use of roles in a similar fashion to
in-toto, so that a key compromise does not necessarily
affect all rargets (i.e., any Python wheels, or even in-toto
metadata). The second principle is minimizing the risk of
a key compromise using offfine keys, or signing keys that
are kept off the repository and pipeline in a cold storage
mechanism, such as safe deposit boxes, so that attackers who
compromise the infrastructure are unable to find these keys.

TUF is used within the Datadog integrations downloader
to distribute, in a compromise-resilient manner, the: (1)
root of trust for all wheels, TUF and in-toto metadata, (2)
in-toto layout, and (3) public keys used to verify this layout.
TUF also guarantees that MitM attackers cannot tamper
with the consistency, authenticity, and integrity of these
files, nor rollback or indefinitely replay in-toto metadata.
This security model is simplified because it ignores some
considerations that are out of the scope of this paper.

In summary, the Datadog pipeline uses TUF to appropri-
ately bootstrap the root of the trust for the entire system, and
in-toto to guarantee that the pipeline packaged exactly the
source code signed by one of the Datadog developers inside
universal Python wheels. By tightly integrating TUF and
in-toto, Datadog’s users obtain the compromise resilience
of both systems combined.

Deployment insight. Through the Datadog deployment,
we learned how to use other last-mile systems like TUF
to provide not only compromise-resilience, but also
replay-protection, freshness guarantees, and mix-and-match
protection for in-toto metadata.

USENIX Association

28th USENIX Security Symposium 1403

7 Evaluation

We evaluated in-toto’s ability to guarantee software supply
chain integrity on two fronts: efficiency and security. We set
off to answer the following questions:

— Does in-toto incur reasonable overheads in terms of
bandwidth, storage overhead and verification time?

— Can in-toto be used to protect systems against real-life
supply chain compromises?

In order to answer the first question, we explored in-toto
as used in the context of Datadog for two reasons: Datadog
offers more than 111 integration packages to verify with
in-toto, and its data and source code is publicly available.
Furthermore, it is a production-ready integration that can be
used by Datadog’s more than 8,000 clients today [31]. Their
clients include major companies like Twitter, NASDAQ and
The Washington Post [4].

Then, we surveyed historical supply chain compromises
and catalogued them. We evaluated these compromises
against the in-toto deployments described in Section 6,
accounting for their supply chain configuration, and including
the actors involved and their possible key assignments. By
studying the nature of each compromise, we were able to
estimate what degree of key compromise could hypothetically
happen and, with it, the consequences of such a compromise
on these supply chains when in-toto is in place.

7.1 in-toto’soverhead in the Datadog deployment

In the three major costs that in-toto presents are the storage,
transfer and verification cost. In order to explore these costs,
we set out to use the publicly available Datadog agent integra-
tion client and software repository. From this data, we can de-
rive the cost of storing in-toto metadata in the repository, the
cost of transferring the in-toto metadata for any given pack-
age and the verification times when installing any package.

Storage overhead. In order to understand the storage
overhead, we mirrored the existing agent integrations Python
package repository. Then, we inspected the package payloads
and the repository metadata to show the cost breakdown of
the repository as a whole. Table 2 depicts the cost breakdown
of the Datadog repository, as mirrored on February 8 of 2019.

Type total Python TUF in-toto | in-toto
package | metadata links Layout
RSA 4096 74.02% 0.83% 5.51% 16.75% 2.89%
DSA 1024 & | 74.48% 0.84% 5.54% 16.35% 2.79%
ed25519
optimized 79.56% 0.90% 5.92% 10.65% 2.97%

Table 2: Storage overhead breakdown for a in-toto enabled package
repository. All metadata is compressed using zlib.

Table 2 shows that in-toto takes up about 19% of the
total repository size, and thus makes it a feasible solution
in terms of storage overhead. In addition, compared to its
co-located security system TUF, the cost of using in-toto
is higher, with almost four times the metadata storage cost.
Further, the breakdown also indicates that the governing
factor for this storage overhead are the in-toto links, rather

than the layout file, with a layout being approximately 6 to
3 times smaller than the links (42 KB in comparison of the
148KB for all the link metadata).

There are two main reasons that drive this cost. First and
foremost, is the engineering decision to track all the files
within the pipeline (including Python metadata). Although
these are not required to be tracked with in-toto, for the
sake of security (as this type of metadata is being protected
by TUF), it eases the implementation at a manageable cost.
The second is that of signatures: the signatures used within
the Datadog deployment come from either 4096-bit openpgp
keys on a Yubikey, or 4096-bit PEM keys. These alone
account for almost half of the in-toto metadata size.

For this reason, it is possible to further reduce the size of
the metadata to 13% of the total repository size. Rows two
and three of Table 2 represent the repository overhead when
limiting the amount of files tracked to only Python sources
and packages and using a DSA1024 as the signing algorithm.

Network overhead. Similar to storage overhead, the network
overhead incurred by clients when installing any integration
is of utmost importance. To explore this cost, we investigate
the raw package sizes and contrast it with the size of the
package-specific metadata size. It is of note though, that
the size of in-toto metadata does not scale with the size
of the package, but rather the number of files inside of it.
This is because most of the metadata cost is taken by pieces
of link metadata, of which the biggest three fields are the
signature, expected_materials and expected_products.
Figure 5 shows both the distribution of package sizes and the
distribution of metadata sizes in increasing order.

25
filetype
s in-toto metadata
2 python wheel
)
e
_5“15
o
5:‘,
@ 101
N |
* il

o

1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 41 49 62316
Number of Files in package

Figure 5: Package and metadata size distribution. Error bars show packages

with the same number of files but different sizes.

In Figure 5 we can see that, for most packages, the
metadata size cost is below 44% of the package size. In fact
for the 90th percentile, the metadata cost approaches a costly
64%, to a worst case of 103%. However, upon inspecting
these cases, we found that the issue is that these are cases
in which link metadata is tracking files not contained in the
delivered product. Indeed, in-toto is tracking files, such as
test suites, fixtures and even iconography that does not get
packaged on the integrations Python wheel. The worst case
scenario is in fact cisco_aci, which only packages 12 files
out of 316 contained in the tag step metadata.

1404 28th USENIX Security Symposium

USENIX Association

Verification overhead. Finally, to draw insight from the
computation time required to verify each package, we ran
a series of micro-benchmarks on a laptop with an Intel
17-6500U processor and 8GB of RAM. In this case, we ran an
iterated verification routine with the packages already fetched
and instrumented the Datadog agent installer to measure the
installation time with and without in-toto verification.

From this experiment, we conclude that in-toto verifi-
cation adds less than 0.6 seconds on all cases. This is mostly
dominated by the signature verification, and is thus bounded
by the number of links to verify (i.e., the number of steps
times the threshold).

7.2 Supply chain data breaches

We surveyed 30 major different supply chain breaches and
incidents occurring from January 2010 to January 2019 (this
list of historical attacks is included in Appendix B). These
historical incidents cover a variety of software products and
platforms, such as Apple’s Xcode [113], Android GTK [8],
MeDoc financial software [35], Adobe updater [95], PHP
PEAR repository [33], and South Korean organizations [138].

Studying these historical attacks identified the type of
access that the attacker had (or was speculated to have)
and identified three categories: the attacker had control
of infrastructure (but not functionary keys), the attacker
had control over part of the infrastructure or keys of a
specific functionary, and the attacker was able to control
the entire supply chain by compromising a project owner’s
infrastructure (including their signing key).

For the historical attacks in Appendix B, we determined
whether an attack used a compromised key, and then labeled
those attacks with “Key Compromise”. We also determined
the degree of access in the attack (all the way to the possible
step) and labeled each attack with an “Access Level” that
indicates the step in the chain where the attack took place.

We now analyze how these compromises could affect
the three supply chains where in-toto was deployed (as
described in Section 6). Our analysis indicates that the
majority of attacks (23 out of 30) took place without any
key compromise. In those cases, none of the three in-toto
deployments would have been affected since the client
inspection (as described in Sec. 4.3) could detect extraneous
artifacts or malicious delivered products.

Out of the 30 studied incidents, 7 involved a key compro-
mise. We summarize our analysis of these attacks in Table 3.
One attack, Keydnap [71], used a stolen Apple developer
certificate to sign the malicious software package. Therefore,
this attack would not have affected any in-toto deploy-
ments, because in-toto would detect that an unauthorized
functionary signed the link metadata. Another attack used the
developer’s ssh key to upload a malicious Python package
on PyPI [52]. All in-toto deployments could have detected
this attack since files extracted from the malicious package
would not exactly match the source code as the products of
the first step in the supply chain.

The remaining five attacks involving a key compromise
were recent sophisticated incidents that affected many clients

Attack Name DD | RB CN
Keydnap [71] v v v
backdoored-pypi [52] v v v
CCleaner Atatck [126] v v X
RedHat breach [125] v v X
*NotPetya [35] v X X
Operation Red [138] v X X
KingSlayer [118] v X X

Table 3: The impact of the historical attacks on the three in-toto
deployments: Datadog (DD), Reproducible Builds (RB), Cloud Native (CN).
Out of the 30 historical attacks, 23 did not involve a key compromise, so none
of the deployments would have been affected. This table shows the remaining
attacks which involved a key compromise. In one attack, marked with a star
(¥), itis unknown if a key compromise took place. We assumed that was the
case. A v'indicates that the deployment could have detected the attack.

and companies. The CCleaner [126] and RedHat [125]
attacks are not effective against the Reproducible Builds
deployment (RB) and Datadog (DD), as the former imple-
ments a threshold mechanism in the build step and the latter
does not build binaries in their infrastructure. In a similar
flavor, three attacks (Operation Red [138], NotPetya [35], and
KingSlayer [118]) would not affect the Datadog deployment,
as it implements a threshold mechanism in the packaging
step. The Cloud Native deployment, on the other hand,
would detect none of these five attacks, as it does not employ
thresholds. To conclude, the in-toto deployments would
detect most of the historical attacks based on the general
in-toto design principles. For those attacks that involve
key compromises, our analysis shows that in-toto’s use of
thresholds is an effective mechanism.

Key Takeaway. Cloud Native (83%) and reproducible
builds (90%) integrations of in-toto would prevent most
historical supply chain attacks. However, integration into a se-
cure update system as was done by Datadog (100%) provides
further protection.

8 Related Work

To the best of our knowledge, work that attempts to use an
automated tool to secure the supply chain is scarce. However,
there has been a general push to increase the security of
different aspects within the supply chain, as well as to tighten
the binding between neighboring processes within that chain.
In this section, we mention work relevant to supply chain
security, as some of it is crucial for the success of in-toto
as a framework. We also list work that can further increase
the security guarantees offered by in-toto.

Automated supply chain administration systems. Config-
uring and automating processes of the supply chain has been
widely studied. Works by Bégin et al. [45], Banzai et al., [43]
and Andreetto et al. [36] focus on designing supply chains
that automatically assign resources and designate parties
to take part in different processes to create a product. This
work is similar to in-toto in that it requires a supply chain
topology to carry out the work. However, none of these
projects were focused on security. Instead, they deal with
adaptability of resources and supply chain automation.

USENIX Association

28th USENIX Security Symposium 1405

Perhaps most closely related to in-toto is the Grafeas
API [9] released by Google. However, Grafeas’s focus is
on tracking and storing supply chain metadata rather than
security. Grafeas provides a centralized store for supply chain
metadata, which can be later queried by verification tools such
as Google’s Binary Authorization [84]. Grafeas does not pro-
vide a mechanism to describe what steps should be performed,
validate performed steps, or even support cryptographic sig-
natures [1]. Finally, in-toto is architecture agnostic, while
Grafeas is mostly cloud-native; in-toto was geared to repre-
sent supply chains whether they are cloud-native, off-cloud or
hybrid-cloud. We are collaborating with the Grafeas team to
natively support in-toto link metadata within Grafeas [10].

Software supply chain security. In addition, many soft-
ware engineering practices have been introduced to
increase the security of the software development lifecycle
[42, 104, 105, 111, 116]. Additional work by Devanbu et
al. [67] has explored different techniques to “construct safe
software that inspires trust in hosts.” These techniques are
similar to in-toto in that they suggest releasing supply
chain information to the end users for verification.

Though none of these proposals suggest an automated tool
to ensure the integrity of the supply chain, they do serve as
a helpful first step in designing in-toto. As such, their prac-
tices could be used as templates for safe supply chain layouts.

Finally, there have been hints by the industry to support
features that could be provided by in-toto [90, 114, 145].
This includes providing certificates noting the presence of a
process within the supply chain and providing software trans-
parency through mechanisms such as reproducible builds.

Source control security. The source code repository is
usually the first link in the supply chain. Early work in
this field has explored the different security properties that
must be included in software configuration management
tools [63]. Version control systems, such as Git, incorporate
protection mechanisms to ensure the integrity of the source
code repository, which include commit hash chaining and
signed commits [77,78].

Buildsystem and verification security. The field of auto-
mated testing and continuous integration has also received
attention from researchers. Recently, self-hosted and public
automated testing and continuous integration systems have
become popular [54,72,137]. Work by Gruhn et al. [85] has
explored the security implications of malicious code running
on CI systems, showing that it is possible for attackers to
affect other projects being tested in the same server, or the
server itself. This work, and others [69] serve as a motivation
for in-toto’s threat model.

Further work by Hanawa et al. [87] explores different
techniques for automated testing in distributed systems. The
work is similar to in-toto in that it allocates hosts in the
cloud to automatically run tests for different environments
and platforms. However, in-toto requires such systems to
provide certification (in the form of link metadata) that the
tests were run and the system was successful.

Subverting the development environment, including
subverting the compiler, can have a serious impact on the
software supply chain [135]. Techniques such as Wheeler’s
diverse double-compiling (DDC) [144] can be used to
mitigate such “trusting trust” attacks. In the context of
reproducible builds project, DDC can also be used for
multi-party verification of compiler executables.

Verifying compilers, applications and kernels. Ongoing
work on verifying compilers, applications and kernels will
provide a robust framework for applications that fully comply
with their specification [88, 98]. Such work is similar to
in-toto in that a specification is provided for the compiler to
ensure that their products meet stated requirements. However,
in contrast to our work, most of this work is not intended
to secure the origin of such specification, or to provide any
proof of the compilation’s results to steps further down the
supply chain. Needless to say, verifying compilers could be
part of a supply chain protected with in-toto.

Furthermore, work by Necula et al. introduces proof-
carrying code [109, 110], a concept that relies on the compiler
to accompany machine code with proof for verification at
runtime. Adding to this, industry standards have included
machine code signing [40] to be verified at runtime. This
work is similar to in-toto in that compilers generate
information that will be verified by the end user upon runtime.
Although these techniques are more granular than in-toto’s
(runtime verification vs verification upon installation), they
do not aim to secure the totality of the supply chain.

Package management and software distribution security.
Work by Cappos et al. has been foundational to the design
of in-toto’s security mechanisms [46, 102, 121]. The
mechanisms used to secure package managers are similar to
in-toto in that they rely on key distribution and role sepa-
ration to provide security guarantees that degrade with partial
key compromise. However, unlike in-toto, these systems
are restricted to software updates, which limit their scope.
Concepts from this line of work could be overlaid on in-toto
to provide additional “last mile” guarantees for the resulting
product, such as package freshness or protection against de-
pendencies that are not packaged with the delivered product.

9 Conclusions and future work

In this paper, we have described many aspects of in-toto,
including its security properties, workflow and metadata.
We also explored and described several extensions and
implications of using in-toto in a number of real-world
applications. With this we have shown that protecting the
entirety of the supply chain is possible, and that it can be
done automatically by in-toto. Further, we showed that,
in a number of practical applications, in-toto is a practical
solution to many contemporary supply chain compromises.
Although plenty of work needs to be done in the context
of the in-toto framework (e.g., decreasing its storage cost),
tackling the first major limitations of supply chain security
will increase the quality of software products. We expect
that, through continued interaction with the industry and

1406 28th USENIX Security Symposium

USENIX Association

elaborating on the framework, we can provide strong security
guarantees for future software users.

Acknowledgments

We would like to thank the USENIX reviewers and Luke
Valenta for reviewing this paper. We would also like to thank
Lukas Piihringer and Lois DeL.ong from the in-toto team;
Holger Levsen, Chris Lamb, kpcyrd, and Morten Linderud
from Reproducible Builds; the Datadog Agent Integrations
(especially Ofek Lev) and Product Security teams; as well
as Andrew Martin and Luke Bond from Control Plane for
their valuable work towards integrating in-toto in all these
communities. This research was supported by the NSF under
Grants No. CNS 1801430 and DGE 1565478.

References

(1]
(2]
(3]
(4]
[5]
(6]

(7]

(8]

(9]
(10]

(11]
[12]
[13]
(14]
[15]
[16]
[17]
(18]
(19]
[20]
(21]
(22]
(23]

[24]

Add Signature message to v1beta common.proto. #253. https:
//github.com/grafeas/grafeas/pull/253.

Apt. https://wiki.debian.org/Apt.

Cloud native computing foundation. https://www.cncf.io/.
Customers | Datadog. https://www.datadoghg.com/
customers/.

Datadog: Modern monitoring & analytics.
/ /www.datadoghqg.com/.
Docker Swarm overview.
swarm/overview/.
Dynamic admission control. https://kubernetes.io/
docs/reference/access-authn-authz/extensible-
admission-controllers/.

ExpensiveWall: A Dangerous Packed Malware On Google
Play. https://blog.checkpoint.com/2017/09/14/
expensivewall-dangerous-packed-malware-google-
play-will-hit-wallet/.

Grafeas. https://grafeas.io/.

Grafeas + in-toto. https://github.com/in-toto/
totoify-grafeas.

in-toto Jenkins plugin. https://plugins.jenkins.io/in-
toto.

in-toto layout creation
toto.engineering.nyu.edu.
in-toto Metadata Examples. https://in-toto.github.io/
metadata-examples.html.

in-toto Specification: Version 0.9. https://github.com/in-
toto/docs/blob/v0.9/in-toto-spec.md.

in-toto Specifications. https://in-toto.github.io/
specs.html.

in-toto transport for apt. https://github.com/in-toto/
apt-transport-in-toto.

in-toto-webhook. https://github.com/SantiagoTorres/
in-toto-webhook.

https:

https://docs.docker.com/

tool. https://in-

Jenkins: Build great things at any scale. https:
//jenkins.io/.
Kubesec.io: Quantify risk for kubernetes resources.

https://kubesec.io/.

Notary. https://docs.docker.com/samples/library/
notary/.

Oci image format specification.
opencontainers/image-spec.

Operation Aurora. https://en.wikipedia.org/wiki/
Operation_Aurora.

Production-Grade Container Orchestration.

//kubernetes.io/.

Python Wheels. https://pythonwheels.com/.

https://github.com/

https:

[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Reproducible builds.
builds.org/.
Reproducible builds: Who 1is involved?
//reproducible-builds.org/who/.

Some Debian Project machines compromised.
https://www.debian.org/News/2003/20031121.

The Update Framework (TUF). https://
theupdateframework.github.io/.

The YubiKey. https://www.yubico.com/products/
yubikey-hardware/.

Twistlock: Cloud Native Security for Docker, Kubernetes and
Beyond. https://www.twistlock.com/.

Forbes Cloud 100: #19 Datadog, 2018.
//www.forbes.com/companies/datadog/?1list=
cloud100#3cad45279e03.

in-toto at the reproducible builds summit-paris 2018, 2019.
https://ssl.engineering.nyu.edu/blog/2019-01-18-
in-toto-paris.

PHP PEAR Software Supply Chain Attack, 2019.
https://blog.dcso.de/php-pear-software-supply-
chain-attack/.

Reproducible builds: Weekly report #196, 2019.
https://reproducible-builds.org/blog/posts/196/.
A. Cherepanov. Analysis of TeleBots’ cunning back-
door. https://www.welivesecurity.com/2017/07/04/
analysis-of-telebots-cunning-backdoor.

P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini,
M. Cecchi, V. Ciaschini, A. Dorise, F. Giacomini, A. Gianelle,
et al. The glite workload management system. In J. of Physics:
Conf. Series, volume 119, page 062007. IOP Publishing, 2008.
Andy Greenberg. MacOS Update Accidentally Undoes Apple’s

“Root” Bug Patch. https://www.wired.com/story/macos-
update-undoes-apple-root-bug-patch/.

Apache Infrastructure Team. apache.org incident report for
8/28/2009. https://blogs.apache.org/infra/entry/
apache_org_downtime_report, 2009.

Apache Infrastructure Team. apache.org incident report for
04/09/2010. https://blogs.apache.org/infra/entry/
apache_org_04_09_2010, 2010.

Apple Computers. iOS Security Guide, 2016.
https://www.apple.com/business/docs/i0S_
Security_Guide.pdf.

B. Arkin. Adobe to Revoke Code Signing Certificate. https:
//blogs.adobe.com/conversations/2012/09/adobe-
to-revoke-code-signing-certificate.html, 2012.

R. Bachmann and A. D. Brucker. Developing secure software.

Datenschutz und Datensicherheit, 38(4):257-261, 2014.

T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato. D-cloud: Design of a software testing environ-
ment for reliable distributed systems using cloud computing
technology. In Proc. of the 10th IEEE/ACM CCGrid, 2010.
Barb Darrow. Adobe source code breach; it’s bad, real bad.
https://gigaom.com/2013/10/04/adobe-source-code-
breech-its-bad-real-bad.

M.-E. Bégin, G. D.-A. Sancho, A. Di Meglio, E. Ferro,
E. Ronchieri, M. Selmi, and M. Zurek. Build, configuration,
integration and testing tools for large software projects: Etics.
In Rapid Integration of Software Engineering Techniques,

pages 81-97. Springer, 2006.

J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. A look in
the mirror: Attacks on package managers. In Proc. of the 15th

ACM CCS, pages 565-574, 2008.

S. Checkoway, S. Cohney, C. Garman, M. Green, N. Heninger,

J. Maskiewicz, E. Rescorla, H. Shacham, and R.-P. Wein-
mann. A systematic analysis of the juniper dual ec
incident. Cryptology ePrint Archive, Report 2016/376, 2016.
http://eprint.iacr.org/.

https://reproducible-

https:

https:

USENIX Association

28th USENIX Security Symposium 1407

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R. P. Weinmann, E. Rescorla, and
H. Shacham. A Systematic Analysis of the Juniper Dual EC
Incident. In Proc. of ACM CCS ’16,2016.

R. Chirgwin. Microsoft deletes deleterious file deletion bug

from Windows 10. https://www.theregister.co.uk/2018/

10/10/microsoft_windows_deletion_bug/.

A. Chitu. The Android Bug 8219321. https:
//googlesystem.blogspot.com/2013/07/the-8219321-
android-bug.html#gsc.tab=0,2013.

Christian Nutt. Cloud source host Code Spaces hacked, devel-
opers lose code. http://www.gamasutra.com/view/news/
219462 /Cloud_source_host_Code_Spaces_hacked_
developers_lose_code.php.

C. Cimpanu. Backdoored Python Library Caught Stealing SSH
Credentials, 2018. https://www.bleepingcomputer.com/
news/security/backdoored-python-library-caught-
stealing-ssh-credentials/.

C. Cimpanu. Microsoft Discovers Supply Chain At-
tack at Unnamed Maker of PDF Software, 2018.
https://www.bleepingcomputer.com/news/security/
microsoft-discovers-supply-chain-attack-at-
unnamed-maker—-of-pdf-software/.

Codeship. Continuous Delivery with Codeship: Fast, Secure,
and fully customizable. https://codeship.com/.

Context Threat Intelligence. Threat Advisory: The Monju
Incident, 2014. https://paper.seebug.org/papers/
APT/APT_CyberCriminal_Campagin/2014/The_Monju_
Incident.pdf.

M. Coppock. Windows Update not working af-
ter October 2018 patch? Here’s how to fix it
https://www.digitaltrends.com/computing/windows—
update-not-working/.

J. Corbet. An attempt to backdoor the kernel.
http://lwn.net/Articles/57135/,2003.

J. Corbet. The cracking of kernel.org.
//www.linuxfoundation.org/news-media/blogs/
browse/2011/08/cracking-kernelorg, 2011.

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-
scale analysis of the security of embedded firmwares. In Proc.
of the 23rd USENIX Security Symposium, pages 95-110, 2014.
CrowdStrike. Securing the supply chain. https:
//www.crowdstrike.com/resources/wp-content/
brochures/pr/CrowdStrike-Security-Supply-
Chain.pdf.

A. Cui, M. Costello, and S. J. Stolfo. When firmware
modifications attack: A case study of embedded exploitation.
In NDSS, 2013.

Dan Goodin. Kernel.org Linux repository rooted in hack
attack. http://www.theregister.co.uk/2011/08/31/
linux_kernel_security_breach/.

David A. Wheeler. Software Configuration Manage-
ment Security. http://www.dwheeler.com/essays/scm—
security.html.

Debian. Debian Investigation Report after Server Compro-
mises. https://www.debian.org/News/2003/20031202.
Debian. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012,2012.

Dennis Fisher. Researcher Finds Tor Exit Node Adding Mal-
ware to Binaries. https://threatpost.com/researcher—
finds-tor-exit-node-adding-malware-to-binaries/
109008/.

P. T. Devanbu, P. W. Fong, and S. G. Stubblebine. Techniques
for trusted software engineering. In Proceedings of the 20th
international conference on Software engineering, pages
126-135. IEEE Computer Society, 1998.

http:

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Dona Sarkar. A note about the unintentional release of builds to-
day. https://blogs.windows.com/windowsexperience/
2017/06/01/note-unintentional-release-builds-
today/.

P. M. Duvall, S. Matyas, and A. Glover. Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

Edward Iskra. Vulnerable Wallets and the Suspicious File,2017.
https://bitcoingold.org/vulnerable-wallets/.
ESET Research. OSX/Keydnap spreads via signed Transmis-
sion application. https://www.welivesecurity.com/
2016/08/30/0osxkeydnap-spreads-via-signed-
transmission-application/.

B. Fitzgerald and K.-J. Stol. Continuous software engineering
and beyond: trends and challenges. In Proceedings of the
1st International Workshop on Rapid Continuous Software
Engineering, pages 1-9. ACM, 2014.

A. Forums. Numix gnome 3.20. https://
bbs.archlinux.org/viewtopic.php?id=211164.

J. Freeman. Yet Another Android Master Key Bug.
http://www.saurik.com/id/19,2014.

P. W. Frields. Infrastructure report, 2008-08-22 UTC 1200.
https://www.redhat.com/archives/fedora-announce-
1ist/2008-August/msg00012.html, 2008.

Gentoo Linux. Incident Reports/2018-06-28 Github. https:
//wiki.gentoo.org/wiki/Project:Infrastructure/
Incident_Reports/2018-06-28_Github.

M. Gerwitz. A Git Horror Story: Repository Integrity With
Signed Commiits. http://mikegerwitz.com/papers/git-
horror-story.

Git SCM. Signing your work. https://git-scm.com/book/
en/v2/Git-Tools-Signing-Your-Work.

GitHub, Inc. Public Key Security Vulnerability and Miti-
gation. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation, 2012.

GNU Savannah. Compromise2010. https:
//savannah.gnu.org/maintenance/Compromise2010/.

D. Goodin. Fedora servers breached after external compromise.
http://www.theregister.co.uk/2011/01/25/fedora_
server_compromised/.

D. Goodin. Meet “Great Cannon”, the man-in-the-middle
weapon China used on GitHub. https://arstechnica.com/
security/2015/04/meet-great-cannon-the-man-in-
the-middle-weapon-china-used-on-github/.

D. Goodin. Attackers sign malware using crypto certificate
stolen from Opera Software. http://arstechnica.com/
security/2013/06/attackers-sign-malware-using-
crypto-certificate-stolen-from-opera-software/,
2013.

Google. Binary Authorization. https://cloud.google.com/
binary-authorization/.

V. Gruhn, C. Hannebauer, and C. John. Security of public
continuous integration services. In Proc. of the 9th ACM Inter-
national Symposium on Open Collaboration, page 15,2013.
Hackread. Proton malware. https://www.hackread.com/
hackers-infect-mac-users-proton-malware-using-
elmedia-player.

T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,
and M. Sato. Large-scale software testing environment using
cloud computing technology for dependable parallel and
distributed systems. In Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International
Conference on, pages 428—433. IEEE, 2010.

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad apps: End-to-end security
via automated full-system verification. In Proc. of the 11th
USENIX OSDI, pages 165-181,2014.

1408 28th USENIX Security Symposium

USENIX Association

[89] Idrees Patel. Janus Vulnerability. https://www.xda-
developers.com/janus-vulnerability-android-apps.

[90] ISO/IEC JTC 1/SC 27 IT Security techniques.
ISO/IEC 27034:2011 Information technology - Se-
curity techniques — Application security. https:
//www.iso.org/standard/44378.html?browse=tc.

[91] Jane Silber. Notice of Ubuntu Forums breach.
https://blog.ubuntu.com/2016/07/15/notice-of-
security-breach-on-ubuntu-forums.

[92] Jared Newman. Gauss Malware: What You Need to Know.
https://www.pcworld.com/article/260735/gauss_
malware_what_you_need_to_know.html.

[93] Jeft Erickson. Inside OilRig - Tracking Iran’s
Busiest Hacker Crew On Its Global Rampage.
https://www.forbes.com/sites/thomasbrewster/
2017/02/15/0ilrig-iran-hackers-cyberespionage-
us-turkey-saudi-arabia/#5415a493468a.

[94] Jensen Beeler. Millions of Motorcyclists Hacked in Verti-
calScope Breach. https://www.asphaltandrubber.com/
news/verticalscope-hack/.

[95] Jeremy Kirk. New malware overwrites software updaters,
2010. https://www.itworld.com/article/2755831/
security/new-malware-overwrites-software-
updaters.html.

[96] Juniper. 2015-12 Out of Cycle Security Bulletin: ScreenOS:
Multiple Security issues with ScreenOS (CVE-2015-7755,
CVE-2015-7756). https://kb.juniper.net/InfoCenter/
index?page=content&id=JSA10713, Dec. 15.

[97] G.Kelly. AppleiOS 12.1.4 Fails To Fix Cellular, WiFi Problems.
https://www.forbes.com/sites/gordonkelly/2019/
02/10/apple-ios-12-1-4-problem-iphone-cellular-
data-wifi-upgrade-ipad/.

[98] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
et al. sel4: Formal verification of an os kernel. In Proc. of the
22nd ACM SOSP, pages 207-220, 2009.

[99] B.Kuhn. News: IMPORTANT: Information Regarding Savan-
nah Restoration for All Users. https://savannah.gnu.org/
forum/forum.php?forum_id=2752,2003.

[100] T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy,
R. Bielawski, C. Mott, S. Lauzon, A. Weimerskirch, and
J. Cappos. Uptane: Securing software updates for automobiles.
14th ESCAR Europe, 2016.

[101] T. K. Kuppusamy, V. Diaz, and J. Cappos. Mercury:
Bandwidth-effective prevention of rollback attacks against
community repositories. In Proc. of the 2017 USENIX Annual
Technical Conference, 2017.

[102] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos.
Diplomat: using delegations to protect community repositories.
In proc. of the 13th USENIX NSDI, pages 567-581, 2016.

[103] Martin Brinkmann. Attention: Some Fosshub downloads
compromised. https://www.ghacks.net/2016/08/03/
attention-fosshub-downloads-compromised/.

[104] M.S.Merkow and L. Raghavan. Secure and resilient software:
Requirements, test cases, and testing methods. 2011.

[105] Microsoft. Microsoft secure development lifecycle.
https://www.microsoft.com/en-us/sdl/default.aspx.

[106] Microsoft. Microsoft Trusted Publishers Certificate
Store. https://msdn.microsoft.com/en-us/library/
windows/hardware/f£553504 (v=vs.85).aspx.

[107] M. Mullenweg. Passwords Reset. https://wordpress.org/
news/2011/06/passwords-reset/, 2011.

[108] Naked Security. Flame malware used man-in-the-
middle attack against Windows Update. https:
//nakedsecurity.sophos.com/2012/06/04/flame-
malware-used-man-in-the-middle-attack-against-
windows-update/.

[109] G. C. Necula. Proof-carrying code. In Proceedings of the
ACM SIGPLAN, 1997.

[110] G.C. Necula. Proof-carrying code. design and implementa-
tion. Springer, 2002.

[111] I. S. Organization. Information technology — security
techniques — application security — part 1: Overview
and concepts. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=44378.

[112] Patrick Gray. Gentoo Linux server compromised.
https://www.zdnet.com/article/gentoo-linux—
server-compromised/, 2003.

[113] D. Pauli. icloud phishing attack hooks 39 ios apps and wechat.
theregister, 2015. https://www.theregister.co.uk/2015/
09/21/icloud_phishing_attack_hooks_39_ios_apps_
most_popular_message_client/.

[114] S. Quirolgico, J. Voas, T. Karygiannis, C. Michael,
and K. Scarfone. Vetting the Security of Mobile Ap-
plications. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-163.pdf.

[115] Red Hat, Inc. Infrastructure report, 2008-08-22 UTC
1200. https://rhn.redhat.com/errata/RASA-2008-
0855.html1, 2008.

[116] J. Robbins. Adopting open source software engineering
(OSSE) practices by adopting OSSE tools. Perspectives on
[free and open source software, pages 245-264, 2005.

[117] RODRIGO ARANGUA. The security flaws at the heart of
the Panama Papers. https://www.wired.co.uk/article/
panama-papers-mossack-fonseca-website-security-
problems.

[118] RSA Research. Kingslayer-A Supply Chain Attack. https:
//www.rsa.com/content/dam/premium/en/white-
paper/kingslayer-a-supply-chain-attack.pdf.

[119] RubyGems.org. Data Verification. http:
//blog.rubygems.org/2013/01/31/data-
verification.html, 2013.

[120] Ryan Naraine. Open-source ProFTPD hacked, backdoor
planted in source code. http://www.zdnet.com/article/
open-source-proftpd-hacked-backdoor-planted-in-
source-code.

[121] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine.
Survivable key compromise in software update systems. In
Proc. of the 17th ACM CCS, pages 61-72. ACM, 2010.

[122] Slashdot Media. phpMyAdmin corrupted copy on Korean mir-
ror server. https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[123] J. K. Smith. Security incident on Fedora infrastructure
on 23 Jan 2011. https://lists.fedoraproject.org/
pipermail/announce/2011-January/002911.html,
2011.

[124] Steve Klabnik. Security advisory for crates.io, 2017-09-19.
https://users.rust-lang.org/t/security-advisory-
for-crates-10-2017-09-19/12960.

[125] Steven J. Vaughan-Nichols. Red Hat’s Ceph and
Inktank code repositories were cracked. http:
//www.zdnet.com/article/red-hats-ceph-and-
inktank-code-repositories-were-cracked.

[126] Swati Khandelwal. CCleaner Attack Timeline—
Here’s How Hackers Infected 2.3 Million PCs.
https://thehackernews.com/2018/04/ccleaner-
malware-attack.html, 2018.

[127] Symantec. W32.Duqu: The precursor to the next
Stuxnet. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_duqu_the_precursor_to_the_next_stuxnet.pdf.

[128] Symantec. W32.Stuxnet Dossier. https://
www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_

USENIX Association

28th USENIX Security Symposium 1409

dossier.pdf.

[129] Symantec Corporation. Internet threat security report, 2018.
https://www.symantec.com/content/dam/symantec/
docs/reports/istr-23-2018-en.pdf.

[130] The FreeBSD Project. FreeBSD.org intrusion announced
November 17th 2012. http://www.freebsd.org/news/
2012-compromise.html, 2012.

[131] The PHP Group. php.net security notice. http://
www.php.net/archive/2011.php#1d2011-03-19-1,2011.

[132] The PHP Group. A further update on php.net. http:
//php.net/archive/2013.php#1d2013-10-24-2,2013.

[133] The YAML Project. The Official YAML Web Site.
https://yaml.org/,2019.

[134] Thomas Reed. HandBrake hacked to drop new variant of Pro-
ton malware. https://blog.malwarebytes.com/threat-
analysis/mac-threat-analysis/2017/05/handbrake-
hacked-to-drop-new-variant-of-proton-malware/.

[135] Thomas Reed. XcodeGhost malware infiltrates App Store.
https://blog.malwarebytes.com/cybercrime/2015/
09/xcodeghost-malware-infiltrates-app-store/.

[136] K. Thompson. Reflections on Trusting Trust.
http://cmbell-labs.com/who/ken/trust.html.

[137] Travis CI. Travis CI — test and deploy your code with
confidence. https://travis-ci.org/.

[138] Trend Micro Cyber Safety Solutions Team. Supply Chain
Attack Operation Red Signature Targets South Korean
Organizations, 2018. https://blog.trendmicro.com/
trendlabs-security-intelligence/supply-chain-
attack-operation-red-signature-targets-south-
korean-organizations/.

[139] Trend Micro Cyber Safety Solutions Team. New Magecart
Attack Delivered Through Compromised Advertising Supply
Chain, 2019. https://blog.trendmicro.com/trendlabs—
security-intelligence/new-magecart-attack-
delivered-through-compromised-advertising-
supply-chain/.

[140] W. Verduzu. Xposed Patch for Master Key and Bug 9695860
Vulnerabilities. https://www.xda-developers.com/
xposed-patch-for-master-key-and-bug-9695860-
vulnerabilities/, 2013.

[141] L. Voss. Newly Paranoid Maintainers. http:
//blog.npmjs.org/post /80277229932 /newly-
paranoid-maintainers,2014.

[142] T. Warren. Major new iOS bug can crash iPhones.
https://www.theverge.com/2018/2/15/17015654/
apple-iphone-crash-ios-11-bug-imessage.

[143] F. Weimer. CVE-2013-6435. https://access.redhat.com/
security/cve/CVE-2013-6435,2013.

[144] D. A. Wheeler. Fully countering trusting trust through diverse
double-compiling. arXiv preprint arXiv:1004.5534,2010.

[145] Yan/Berypt. Software transparency: Part 1. https://
zyan.scripts.mit.edu/blog/software-transparency/.

[146] Zack Whittaker. Hacker explains how he put ‘back-
door’ in hundreds of linux mint downloads. http:
//www.zdnet.com/article/hacker-hundreds-were-
tricked-into-installing-linux-mint-backdoor.

[147] K. Zetter. 'Google’ Hackers had ability to alter source code’.
https://www.wired.com/2010/03/source-code-hacks.

A in-toto artifact rule definition

The following artifact rule definition is taken from the

in-toto specification v0.9 [14].

— ALLOW: indicates that artifacts matched by the pattern are
allowed as materials or products of this step.

— DISALLOW: indicates that artifacts matched by the pattern
are not allowed as materials or products of this step.

— REQUIRE: indicates that a pattern must appear as a
material or product of this step.

— CREATE: indicates that products matched by the pattern
must not appear as materials of this step.

— DELETE: indicates that materials matched by the pattern
must not appear as products of this step.

— MODIFY: indicates that products matched by the pattern
must appear as materials of this step, and their hashes
must not by the same.

— MATCH: indicates that the artifacts filtered in using
source-path-prefix/pattern must be matched to a
"MATERIAL" or "PRODUCT" from a destination step
with the "destination-path-prefix/pattern".

B Surveyed Attacks

Attack Name Key Access
Compromise Level
*NotPetya [35] v PI
CCleaner Attack [126] v BS, PI
Operation Red [138] v PI
KingSlayer [118] v PI
RedHat breach [125] v BS
keydnap [71] v PI
backdoored-pypi [52] v PI
PEAR breach [33] X PI
Monju Incident [55] X PI
Janus Vulnerability [89] X PI
Rust flaw [124] X PI
XcodeGhost [113] X BS
Expensive Wall [8] X BS
‘WordPress breach [107] X CR
HandBrake breach [134] X PI
Proton malware [86] X PI
FOSSHub breach [103] X PI
BadExit Tor [66] X PI
Fake updater [95] X PI
Bitcoin Gold breach [70] X PI
Adobe breach [44] X CR
Google Breach [147] X CR
ProFTPD breach [120] X CR
Kernel.org breach [62] X CR
Hacked Linux Mint [146] X P1
Code Spaces breach [51] X CR
Unnamed Maker [53] X PI
Gentoo backdoor [76] X CR
Buggy Windows [68] X PI
Buggy Mac [37] X PI

Table 4: Summary of surveyed supply chain attacks. CR,
BS and PI stand for Code Repository, Build System and
Publishing Infrastructure, respectively. A v'indicates that
the attack involved a key compromise. In one attack, marked
with a star (*), it was unknown if a compromised key was
involved. We assumed that was the case.

1410 28th USENIX Security Symposium

USENIX Association

