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Abstract

We study simple few-qubit Hamiltonians in the context of reconstructing the trajectory
of their quantum thermal state’s local marginals. We find that a general set of ordinary
differential equations accurately model the evolution of local marginals as an initial value
problem. The first four sections cover original work, while the last two sections (Appendix A
and B) for the most part are reviews of the topics of Hamiltonian Learning from Gibbs states,
and Shadow Tomography respectively.

1 Introduction

The thermal state of a quantum many-body system, also known as the Gibbs state [1], plays
a fundamental role in our understanding of equilibrium statistical mechanics. In an engineered
quantum system (a quantum computer, equivalently), the ability to prepare Gibbs states of humanly
chosen Hamiltonians plays a crucial role both in benchmarking these devices, as well as in simulating
quantum statistical mechanics on them.

At a fixed temperature, we say two quantum Gibbs states are equivalent if they are generated by
Hamiltonians with the same matrix form.

Proposition 4 of ref. [2] points at an additional remarkable property of equivalent Gibbs states.
Besides fixing temperature, suppose we also fix the structure of local interactions, while allowing
freedom in the strengths of the interactions. If so, the authors can prove that two Gibbs states
are equivalent (hence have equal interaction strengths) if and only if they have the same set of
”local marginals”. Local marginals are the expectation values of canonical observables (that fix the
structure of local interactions) with respect to the Gibbs state.

The proposition motivates a powerful complementary idea. If both the structure and strengths of
local interactions are held fixed, then the trajectory of the vector of local marginals never intersects
or becomes periodic as temperature is swept. This is remarkable because it means that at least in
principle - it should be possible to reconstruct the entire trajectory of all local marginals across all
temperatures uniquely given a minimal set of boundary conditions 1

It is important to keep in mind that in the context of engineered quantum systems, local marginals
are not directly measurable. Estimating local marginals even at a single temperature requires

1We originally had this idea during early discussions of ref. [2] with Beni Yoshida. We were inspired to pursue it
recently when learning about differential equation solvers in a Computational Physics class
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rounds of randomized circuit sampling and post-processing, where a scheme like shadow tomography
comes in handy [3]. While shadow tomography is efficient in its own right, we cannot rely on it
alone if we require access to the marginals continuously across temperatures.

Since the Gibbs state is itself the solution of a Schrodinger-like equation, it is possible to write
down a simple set of first-order differential equations for the evolution of the local marginals across
temperature. Let us see how this works. Recall from Statistical Mechanics that Gibbs states of a
Hamiltonian H can be defined as :

ρβ(H) =
e−βH

tr(e−βH)
(1)

where β = 1/T is the inverse-temperature (kB = 1). By differentiating the above equation w.r.t. β,
we can show that :

dρ

dβ
= −Hρ + tr(Hρ)ρ (2)

The differential equation above satisfies one trivial boundary condition given by: ρβ=0 = 1/d. This
points to fact that infinite temperature Gibbs states are always maximally mixed. The remaining
evolution for β > 0 is dependent on the specific Hamiltonian H.

A local marginal of a Gibbs state at inverse temperature β is defined as :

⟨Ej⟩β = tr(Ejρβ) (3)

where {Ej ∶ j ∈ [m]} are the set of m canonical observables fixing the structure of local interactions.

Then, using (2) in (3), one can note :

d

dβ
⟨Ej⟩β = tr(Ej

dρ

dβ
) (4)

= −⟨EjH⟩β + ⟨H⟩β⟨Ej⟩β (5)

Now, it is crucial in this study that the canonical observables {Ej} fix the structure of local
interactions. This means that the Hamiltonian can be expanded in this set as :

H =
m

∑
j=1

µjEj (6)

where µj are essentially the interaction strengths of the model. It follows that :

d

dβ
⟨Ej⟩β = −

m

∑
k=1

µk(⟨EjEk⟩β − ⟨Ej⟩β⟨Ek⟩β) (7)

= −
m

∑
k=1

µk⟪Ej,Ek⟫β (8)

In general, a term like ⟪Ej,Ek⟫β represents a long-range thermal correlation function which is not
directly expressible in terms of local marginals ⟨Ej⟩β. The double angled bracket notation ⟪⋅, ⋅⟫
is commonly used for cumulants of a random variable (single or multivariate). In the previous
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equation in particular, it points to a covariance, albeit an ”asymmetric covariance” in general due
to the non-commutativity of quantum observables.

For simplicity, and as a proof-of-concept, we’d like to work in a setting where H as a matrix is
computable explicitly and given, so are the canonical observables {Ej ∶ j ∈ [m]}. We then try to
simulate the following system of coupled ODEs :

d

dβ
⟨Ej⟩β = −⟨EjH⟩β + ⟨H⟩β⟨Ej⟩β j ∈ 1,2 . . .m (9)

along with an extra set of ODEs for ⟨H⟩ and ⟨EjH⟩ which we will get to later.

The RHS in (9) is certainly not an efficient computation as the system-size scales up. Rather, what
we are really interested in is the following question: Is it possible to reconstruct the entire thermal
trajectory of [⟨E1⟩β ⟨E2⟩β . . . ⟨Em⟩β] from very few boundary conditions?

When we say ”very few boundary conditions”, we mean one of two situations: i)We have access to
all local marginals at few temperatures, or ii)We have access to few [perhaps even just a single]
local marginal(s) at many [at most m] temperatures. While the former resembles a typical initial
value problem (IVP), the latter is reminiscent of the more interesting boundary value problems
(BVP) in the study of ordinary differential equations. In this work, we are focused on the IVP
setting, while remarking about BVPs in the discussion section.

2 Model Hamiltonians

Let us start by considering a very simple two-qubit Hamiltonian

H = JX1X2 (10)

where X1 and X2 are Pauli X operators. It easily diagonalized in the {∣+⟩ , ∣−⟩} basis corresponding
to the eigenstates of X as :

H = J( ∣++⟩ ⟨++∣ + ∣−−⟩ ⟨−−∣ − ∣+−⟩ ⟨+−∣ − ∣−+⟩ ⟨−+∣ ) (11)

It follows that the partition function of the model is given by :

Z(β) = tr(e−βJX1X2) = 2(e−βJ + eβJ) = 4 cosh(βJ) (12)

In this simple case, the Gibbs state can be easily expressed as a diagonal matrix in the X basis as
follows :

ρβ(J) =
e−βJX1X2

tr(e−βJX1X2)
(13)

=
e−βJ

4 cosh(βJ)
(∣++⟩ ⟨++∣ + ∣−−⟩ ⟨−−∣) +

eβJ

4 cosh(βJ)
(∣+−⟩ ⟨+−∣ + ∣−+⟩ ⟨−+∣) (14)

The only local marginal in this case is simply ⟨X1X2⟩β, and is given by :

⟨X1X2⟩β = tr(ρβ(J)X1X2) (15)
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Since ⟨+∣X ∣+⟩ = 1 and ⟨−∣X ∣−⟩ = −1, we can easily note :

⟨X1X2⟩β =
2(e−βJ − eβJ)

4 cosh(βJ)
= − tanh(βJ) (16)

Indeed we have

d

dβ
⟨X1X2⟩ = −⟨X1X2H⟩ + ⟨H⟩⟨X1X2⟩ (17)

= −J + J⟨X1X2⟩
2 (18)

= −J + J tanh2
(βJ) = −Jsech2

(βJ) (19)

which is consistent with differentiating (16) directly.

So in this case, we would like to compare a numerical simulation of

d

dβ
⟨X1X2⟩ = −J + J⟨X1X2⟩

2 (20)

with the analytical solution in (16).

Let us now consider a three qubit Hamiltonian given by

H = JxX1X2 + JzZ1Z2 (21)

The two terms are non-commuting, and even if there exists an analytical partition function, it is
not likely to be simple. Nevertheless, we can say that any diagonalization of H should ultimately
effect the following computations :

⟨X1X2⟩ = ⟨X1X2e
−βH⟩/ tr(e−βH) (22)

⟨Z2Z3⟩ = ⟨Z2Z3e
−βH⟩/ tr(e−βH) (23)

On the other hand, the differential equations representing the marginal evolution as in (9), are
given by :

d

dβ
⟨X1X2⟩ = −⟨X1X2H⟩ + ⟨H⟩⟨X1X2⟩ (24)

d

dβ
⟨Z2Z3⟩ = −⟨Z2Z3H⟩ + ⟨H⟩⟨Z2Z3⟩ (25)

We will need additional equations for the evolution of ⟨H⟩, ⟨X1X2H⟩, ⟨Z2Z3H⟩ in order to bring
the system of ODEs to a form amenable to an algorithm like RK4.

Now, here is where a crucial property of Paulis turns out to be useful : while they certainly don’t
commute, they do anti-commute. In our case, it can be seen that {X1X2, Z2Z3} = 0 [ERROR FIX].
A consequence of anti-commutativity is that H2 = (J2

x +J
2
z )1, and therefore the thermal expectation

of the square of the Hamiltonian is explicitly known (and is a constant) :

⟨H2⟩ = ⟨(J2
x + J

2
z )1 + JxJz{X1X2, Z2Z3}⟩ = J

2
x + J

2
z (26)
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One can therefore write down the remaining three ODEs as follows:

d

dβ
⟨H⟩ = −J2

x − J
2
z + ⟨H⟩

2 (27)

d

dβ
⟨X1X2H⟩ = −(J

2
x + J

2
z )⟨X1X2⟩ + ⟨H⟩⟨X1X2H⟩ (28)

d

dβ
⟨Z2Z3H⟩ = −(J

2
x + J

2
z )⟨Z2Z3⟩ + ⟨H⟩⟨Z2Z3H⟩ (29)

So, what we essentially want to do is to simulate the system of five ODEs given by equations
(24),(25),(27)-(29) [theory], in order to compare with the simulated analytical solution of the
marginals given by equations (22),(23) [truth].

The objective of such a study would be to understand how many points are needed in an RK4
evolution of the ODEs, what initial conditions work well, and whether we can formulate a boundary
value problem to determine the optimal initial conditions. Within time constraints, we could only
investigate the initial value problem setting with hand-picked initial guesses based on analytical
expectations.

3 Numerical simulations

To recall, the single qubit case in the previous section corresponds to evolving :

d

dβ
⟨X1X2⟩ = −J + J⟨X1X2⟩

2 (30)

This is a single uncoupled ODE. The true solution we saw was ⟨X1X2⟩ = − tanh(βJ).

Without loss of generality, we take J = 10, and we use the RK4 algorithm (implementation due to
Alex Gezerlis [4]) with initial condition ⟨X1X2⟩β=0.1 = −0.76 from β = 0.1 to β = 0.9. We find good
agreement with just over 15 points in the chosen range (Figure 1).

What do we learn from this simple two-qubit example? Given the generality of our introductory
discussion, quite a bit actually. First, we learn that for any Hamiltonian defined by a single
local marginal, having experimental access to the marginal even at a single temperature allows
us to reconstruct the entire evolution of the marginal across temperatures by setting up an ODE
according to the general formalism of Equation (9). Second, for different values of J , the trajectory
of ⟨X1X2⟩ is characterized by its slope when ⟨X1X2⟩ = 0 : the slope is −J . This means even if we
didn’t know J , we can find J numerically by root-finding. And lastly, if we knew J but not the
right initial condition, we can find that too by root-finding.

Now, let us look at the three-qubit case. This time, we have a set of five coupled ODEs to simulate,
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Figure 1: The two-qubit example

which we re-print from the previous section :

d

dβ
⟨X1X2⟩ = −⟨X1X2H⟩ + ⟨H⟩⟨X1X2⟩ (31)

d

dβ
⟨Z2Z3⟩ = −⟨Z2Z3H⟩ + ⟨H⟩⟨Z2Z3⟩ (32)

d

dβ
⟨H⟩ = −J2

x − J
2
z + ⟨H⟩

2 (33)

d

dβ
⟨X1X2H⟩ = −(J

2
x + J

2
z )⟨X1X2⟩ + ⟨H⟩⟨X1X2H⟩ (34)

d

dβ
⟨Z2Z3H⟩ = −(J

2
x + J

2
z )⟨Z2Z3⟩ + ⟨H⟩⟨Z2Z3H⟩ (35)

Without loss of generality, we take Jx = 2 and Jz = 3. This time, we don’t have an explicit ground
truth. However, as we noted earlier, solving Equations (22), (23) with high numerical precision is
”like” ground truth. We do so using numpy functions and a fine discretization of 0.001 from β = 0.1
to β = 0.9.

On the other hand, solving the five coupled ODEs above requires an implementation of the
generalized RK4 algorithm (again due to Alex Gezerlis). We use the earlier solution to set the initial
conditions for RK4 as [⟨X1X2⟩, ⟨Z2Z3⟩, ⟨H⟩, ⟨X1X2H⟩, ⟨Z2Z3H⟩]β=0.1 = [0.0, −0.3, −0.9, 0.1, 3.0].
Since it gets cluttered to have five plots together, we separate out the plots for relevant marginals
⟨X1X2⟩ and ⟨Z2X3⟩ from the other ”irrelevant” marginals.

This time (Figure 2), RK4 gets the general dependence correctly, however deviates asymptotically
for two of the expectation values: ⟨Z2Z3⟩ and ⟨H⟩ (the total average energy), even though we
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(a) the relevant marginals (b) the ”irrelevant” marginals

Figure 2: The three-qubit example

supply accurate initial values. We needed just over 10 points in the chosen range. Supplying a lot
higher points did not change the asymptotic deviation of the RK4 solution.

It just so happens in this case that ⟨X1X2⟩ = 0 for all temperatures. That however does not
diminish the non-linearity of our coupled ODEs. Presumably, an example where the relevant local
marginals are never flat zero may circumvent the asymptotic deviation, but we leave this for future
exploration. We include a copy of the Python codes used at the end of this essay.

4 Discussion

Although our numerics are limited to simple two and three qubit Hamiltonians, we did so to
demonstrate the power of a general theory. The formalism developed in Equation (9) is quite
general, and we’ve managed to verify the fact that evolving that system of equations with a standard
intial-value based ODE algorithm like RK4 does reproduce the correct dependence of the local
marginals on temperature expected analytically. Besides, once we scale up system size, we may not
have easy access to diagonalizable models for verification.

It is worth remarking that the finiteness of the system of ODEs in (9) did depend on the anti-
commutativity of the canonical observables defining the local structure of interactions, as is normally
the case with Pauli operators. The anti-commutativity argument actually does not directly
generalize to n > 3 qubits, however, this is something we’d like to explore in the near future since
we expect tricks of a similar nature to help constrain the system of ODEs.

Finally, it would be very interesting to model the evolution of local marginals with temperature
as a boundary value problem in order to discover the optimal initial conditions that we used ”by
hand” in our numerical studies. This can be used for example to limit our data access to fewer
local marginals while allowing measurements at multiple temperatures.

Separately, in the past, we explored (incompletely) two related problems: a) Hamiltonian Learning
from Gibbs states: Suppose we had access to the marginals at a fixed temperature with the
interaction strengths unknown but the structure of local interactions known. Then is it possible to
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efficiently reconstruct the Hamiltonian parameters? b) Shadow Tomography : Given access to many
copies of an unknown many-qubit state (in general mixed), what is the best sample complexity of
determining the expectation values of a set of local observables? We include our notes on these
topics in the appendices, but remark that these not structured to directly supplement main content
until this section.
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6 Appendix A: Hamiltonian Learning from Gibbs states

In reference [2], AAKS rigorously proved that the coefficients of very general quantum local
Hamiltonians can be learnt to arbitrary precision given polynomially many copies of the system’s
Gibbs states on an experimental device. In subsequent work by Haah et. al. [5], optimal sample
and time complexity bounds were obtained in a high-temperature regime. More recently, Bakshi et.
al. [6] developed a sample and time efficient protocol for arbitrary temperatures. While being of
general interest to a broader scientific community, this avenue of research poses interesting problems
from complexity-theoretic and physics perspectives [7].

1.1 An important result in AAKS was the strong convexity of quantum log-partition functions.
Does the strong convexity (α) of log-partition function have a physical meaning? For commuting
Hamiltonians, a simple calculation yields that the largest lower bound on α attainable by any
strategy is the minimum variance of the Hamiltonian over a unit sphere in parameter space. The
generalization to non-commuting Hamiltonians is complicated, however we take preliminary steps
in the right direction.

1.2 In a lengthy derivation, AAKS obtained an O(1/n) lower bound on α at finite temperature
for non-commuting Hamiltonians. Unfortunately, this bound would vanish for sufficiently large
system-size, thereby badly affecting complexity guarantees as well as sensitivity to noise. Is there a
larger bound on α, ideally independent of system size (n)? Does this lead to a sample complexity
linear in n? How does it improve time complexity and sensitivity to noise?

Motivated by these questions, we explored the complexity of Hamiltonian Learning with some
generality. Our main technical contribution was a factor-of-2 improvement in the sensitivity to
noise bound in AAKS.

6.1 Setup and Notation

We are interested in learning from Gibbs states of local Hamiltonians prepared on synthetic many-
qubit devices. It is worth noting that although the Gibbs state is a matrix of the same dimension as
the Hamiltonian, it has qualitatively different tensor structure than the Hamiltonian itself. There
are quantum algorithms capable of preparing the Gibbs state on synthetic devices [8, 9]. Such
algorithms rely on the ability to approximate arbitrary smooth functions of a Hermitian matrix by
a linear combination of unitaries (LCU) amenable to circuit constructions [10, 11].
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Concretely, we are interested in probing copies of Gibbs states of κ-local lattice Hamiltonians H
on n-qubits, with m = O(n) local terms that are: mutually orthogonal, traceless, and in general
non-commuting (the last criterion being a key hurdle). For simplicity, we assume that local operators
have exactly κ-sized support, as opposed to usual studies that allow ≤ κ support. For convenience
of thinking in the energy basis, we assume that the spectrum of H and its local basis are gapped
and non-degenerate. Generalizations may be non-trivial, left for future work.

With the above mental picture, we begin our analysis with some basic definitions.

Definition 1 (qubit Hilbert space). The state space of a single-qubit is a two-dimensional complex
euclidean space [c.e.s aka Hilbert space] denoted X = C2.

The state space of n-qubits is X⊗n. A valid basis for X⊗n is {∣0⟩ , ∣1⟩ , ∣2⟩ ⋯ ∣2n − 1⟩} when we allow
complex linear combinations. We also call it the standard basis.

Definition 2 (graph). A graph denoted G = (V,E) is an indexed set of vertices V (G), and a set
of edges E(G). Each edge is a pair of vertices.

For n-qubits placed on the vertices of a graph, ∣V ∣ = n. The graph basically restricts the allowed
set of gates in a quantum computation. Detail: Our graph is finite, undirected, and loopless. Any
finite graph has an embedding in R3, and we restrict visualization to this basic embedding. Next
we define a special graph - the lattice

Definition 3 (lattice). A lattice denoted Λ = (V,E) is a sparse connected graph with constant
interior-degree. Each interior vertex has a constant neighborhood: ∣E(v)∣ = c ∀v ∈ int(V ). This
means ∣E∣ = O(n) for an n-qubit lattice. We interpret the neighborhood induced by any vertex as
being graphically local.

Detail: Degree can change at the boundary of Λ - denoted ∂Λ. Consequently, Λ = int(Λ) ∪ ∂Λ. All
constant-degree graphs are sparse, but not vice versa.

Observe that our notion of a lattice only requires graphical locality, going beyond its subset -
geometric locality. There is nothing ”unphysical” about graphical locality in the context of synthetic
devices (See for example [12] that realizes long-range-connectivity in a ring-resonator architecture
for superconducting qubits). Small changes in euclidean distances can change the interaction
strength but not the connectivity graph itself. In this lens, the locality of a QC is robust to
deformations that preserve the connectivity graph. 2-local or larger measurements are allowed with
graphically local qubits even when they are geometrically distant. As such, we will freely use the
phrase ”spatially contiguous qubits” in the sense of both graphical and geometric locality. We note
that Haah et. al.’s [5] intro comment about constant-degree expander graphs being low-intersection
(graphical) but non-local (geometric) is sensible, however our definition also counts these graphs
as lattices, since ”distance” is generally well understood purely in terms of number of edges [13].
Perhaps Lieb-Robinson bounds may not hold, but we aren’t worried about it at this point.

Definition 4 (κ-local operator (LO)). A Hermitian matrix O is called a κ-LO if it acts non-trivially
on κ spatially contiguous qubits. Its tensor structure is supposed to be understood via the operator
space: Herm(X⊗κ) ⊗ 1⊗(n−κ). Its support set has size κ: ∣Supp(O)∣ = κ

Each element of (Herm(X⊗κ) ⊗ 1⊗(n−κ)) is a κ-LO that acts non-trivially on a chosen subset

V0 ⊂ V (Λ) of κ spatially contiguous qubits. A note on our notation for Identity operators: when
we use 1 without a subscript, it is a single-qubit Identity operator (in C2×2). When we do use a
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subscript like in 1m, m is the matrix dimension of I. For example, 1 ≡ 12 and 1⊗2 ≡ 14. Notation
such as D(⋅), Pos(⋅), Herm(⋅) for operator spaces and X , Y, Z for Hilbert spaces are adapted
from Watrous [14]. Conv(⋅) denotes convex hull. Spec(⋅) denotes spectrum.

Worth refreshing some facts (good mental exercise, nothing more):

(i) D(X) ⊂ Pos(X) ⊂ Herm(X) ⊂ Normal(X). Other relevant subspaces of Normal(X) are U(X)
and Proj(X). Operator Ô ∈ Normal(X) iff it permits a unitary diagonalization.

(ii) If we choose f(θ) = eiθ for θ ∈ R, then f(Herm(X)) = U(X).

(iii) D(X⊗n) is the union of a continuum of standard (2n − 1)-simplices Conv({∣v⟩ ⟨v∣}) where
{∣v⟩} is a chosen ON basis in X . A continuum of ON bases in X are generated by unitary
transforms on {∣v⟩}.

(iv) An n-qubit ”quantum computation” U0 ∈ U(X⊗n) does two things as a map:

• It leaves the unit-sphere in X⊗n invariant while ”moving patches on its surface”. The
”fixed points” on the unit-sphere are eigenstates of U0.

• It leaves D(X⊗n) invariant while ”moving one simplex to another”. There is exactly one
”fixed simplex”, which is the one spanned by the eigenbasis of U0.

Definition 5 (κ-local Hamiltonian (LH)). Given an n-qubit lattice Λ = (V,E), a κ-LH on it is a
sum of fixed-size LOs supported on different neighborhoods -

H(x) =
m

∑
j=1

xjLj ∈ Herm(X⊗n) (36)

where m = O(n), parameters x = (x1 x2 . . . xm)
⊺ ∈ Rm, and {Lj} are basis LOs satisfying some

important constraints -

κ-local: ∣Supp(Lj)∣ = κ j ∈ [m]
mutually orthogonal: tr(LiLj) = 2nδij i, j ∈ [m]

non-commuting in general: [Li, Lj] ≠ 0 whenever Supp(Li) ∩ Supp(Lj) ≠ ∅ i, j ∈ [m]

Hermitian & traceless: L†
j = Lj & tr(Lj) = 0 j ∈ [m]

All the above properties are characteristic of many local Pauli bases, however in an generalized
view, the properties themselves matter more than a specific choice of Pauli basis.

Recall: Any complex Hermitian H is characterized by a spectral decomposition H = ∑
2n

j=1 λjΠj

where λj are real and Πj ∈ Proj(X⊗n) are complex valued. λj can be positive, negative or zero.

Definition 6 (Gibbs state of a LH). The Gibbs state (β > 0) of a κ-LH H(x) ∈ Herm(X⊗n) denoted
ρ(x) is defined as

ρ(x) =
e−βH(x)

tr(e−βH(x))
∈ D(X⊗n) (37)

Henceforth ρ(⋅) is used exclusively for Gibbs states. Interpretations:

• In the energy basis, the Gibbs state represents a Boltzmann distribution over the eigenstates
of H familiar from stat-mech. Z(x) = tr(e−βH(x)) is referred to as partition function.

• We have Z(x) > 0 always. If H(x) has even one λ ≤ 0, then Z(x) ≥ 1. Hence, low-energy
states ramp-up Z(x), while high-energy states ramp-down Z(x).
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• Gibbs states are not just positive semi-definite, but positive definite. Hence they have a full
Image and empty Kernel: Im(ρ(x)) = X⊗n while Ker(ρ(x)) = ∅.

However, note that e−βλH can be arbitrarily small under appropriate limits. Suppose we define an
”ϵ-approximate Kernel” of ρ ∈ D(X⊗n) as follows:

Kerϵ(ρ) = {∣v⟩ ∈ X
⊗n ∶ ∥ρ ∣v⟩∥2 ≤ ϵ} (38)

Then even for exponentially small ϵ, Kerϵ(ρ(x)) is non-empty for some choices of H(x). For
our problem, it is desirable that Gibbs states have empty approximate Kernels as well. Non-
empty approximate Kernels of ρ(x) are likely when λH ≫ kBT , that is when H(x) has high-
energy states that far surpass the thermal energy scale. Hence we desire that T > λ∗/kB [where
λ∗ =maxx∥H(x)∥∞] in an experiment for accurate Hamiltonian learning. Full-rank Gibbs states
ρ(x) with empty approximate Kernels favor lower sensitivity to noise in learning from their
marginals.

We propose a distinction between stable recovery and unique recovery in the learning problem.
One does not guarantee the other. Unique recovery is self-explanatory: the inverse map must be
injective. Stable recovery means: reconstructions are robust against small perturbations/noise in
their pre-image. In QHLP, this means noise in local marginals must not get amplified in what we
learn: LH parameters. It appears that very-low-temperature states (β → 0) forbid stable recovery,
while very-high-temperature states (β →∞) forbid unique recovery. We will see this heuristically
in the proof of Lemma 8 and rigorously in Lemma 14

Problem (Quantum Hamiltonian Learning Problem (QHLP)). Consider characters Alice and Bob.
Given an n-qubit lattice Λ = (V,E), Alice chooses a κ-LH (strictly obeying Definition 5)

H(µ) =
m

∑
j=1

µjLj µ ∈ Rm

with basis {Lj} known to Bob but coefficients {µj} unknown to him. She tells him: I can give you
polynomially many copies of H(µ)’s Gibbs state ρ(µ) on a QC, can you learn {µj} to ϵ-precision in
2-norm? What is your sample and time complexity? Formally, we require Bob to learn an estimate
µ̂ of µ such that ∥µ̂ − µ∥2 ≤ ϵ, for arbitrary ϵ > 0 provided by Alice.

Remarkably, AAKS provided a rigorous solution to QHLP with a polynomial sample complexity [2].
As we discussed earlier, they did not investigate time complexity, however, in a high-temperature
regime, sample and time optimal bounds utilizing cluster expansions are now known [5].

6.2 Existence of bijective map

The foundational principle underlying QHLP is the existence of a bijective map between the space
of LHs and the space of local marginals induced by their Gibbs states. We define local marginals in
Definition 7.

That such a map exists for quantum LHs should point to a fundamental info-theoretic property,
a possible manifestation of short-range-entanglement (SRE). We believe SRE of quantum Gibbs
states is in direct analogy to conditional-independence (CI) of classical Gibbs distributions on
graphs. CI in any multivariate probability distribution manifests as a simple yet fundamental
info-theoretic property: I(A ∶ C ∣B) = 0 (zero CMI) for all tri-partitions (A,B,C) of Λ that have no
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direct edges from A to C. However, we are not aware of an equivalent info-theoretic manifestation
of SRE, since I(A ∶ C ∣B) ≠ 0 (non-zero QCMI) in general for similar tri-partitions of Λ for quantum
Gibbs states. Intuitively, zero QCMI means that for every pair of vertices {v1, v2} with no direct
edge, the reduced density matrix ρv1v2 is separable. Even without zero QCMI, quantum Gibbs
states are locally reconstructible.

Definition 7 (κ-Local Marginal (LM)). For each local basis operator Lj, there is an associated
LM lj(µ) ∈ R, given by

lj(µ) = tr(ρ(µ)Lj) ≡ ⟨Lj⟩µ (39)

These LMs can be stacked into a column vector like: l(µ) = (l1(µ) l2(µ) . . . lm(µ))T ∈ Rm.

Lemma 8 (Bijective map from LH to LMs). The non-linear mapping T ∶ Rm → Rm that takes LH
parameters µ to LMs l(µ) is bijective. Notation: T [µ] = l(µ), and T −1[l(µ)] = µ

Proof. Since the domain and co-domain of T are the same set, if T is injective, it is also surjective.
Hence, it suffices to prove that T is injective. Injectivity requires us to prove: For µ,λ ∈ Rm,
µ ≠ λ⇒ l(µ) ≠ l(λ). Equivalently, we require: l(µ) = l(λ) ⇒ µ = λ (”consistent marginals implies
identical LHs”)

Claim 8.1: The von-Neumann entropy of a Gibbs state ρ(λ) is given by

S(ρ(λ)) = β⟨H(λ)⟩λ + logZ(λ) (40)

Notice how it is consistent with the thermodynamic relation F = E − TS if logZ = −βF .

Claim 8.2: The relative entropy of ρ(µ) w.r.t. ρ(λ) is given by

S(ρ(µ)∥ρ(λ)) = β[⟨H(λ)⟩µ − ⟨H(µ)⟩µ] + [logZ(λ) − logZ(µ)] (41)

Both the above claims follow straightforwardly from the definition of quantum entropies applied to
the Gibbs state. Now consider the following chain of thought

l(µ) = l(λ) Ô⇒ ⟨Lj⟩µ = ⟨Lj⟩λ ∀j ∈ [m] (elementwise comparison)

Ô⇒ ⟨H(x)⟩µ = ⟨H(x)⟩λ ∀x ∈ Rm (linearity of expectation)

Ô⇒ ⟨H(λ)⟩µ = ⟨H(λ)⟩λ (choosing x = λ)

Ô⇒ S(ρ(µ)∥ρ(λ)) = S(ρ(λ)) − S(ρ(µ)) (substituting into eq 41)

Ô⇒ S(ρ(λ)) ≥ S(ρ(µ)) (non-negativity of relative entropy)

Recall that the relative entropy is an asymmetric yet non-negative function. Had we swapped
the arguments of S(⋅∥⋅) in the same chain of thought, we would get S(ρ(µ)) ≥ S(ρ(λ)). Hence
S(ρ(µ)) = S(ρ(λ)), implies the relative entropy of two Gibbs states with consistent marginals is
exactly zero, implies the Gibbs states would have to be identical to begin with:

l(µ) = l(λ) ⇒ S(ρ(µ)) = S(ρ(λ)) ⇒ S(ρ(µ)∥ρ(λ)) = 0⇒ ρ(µ) = ρ(λ) (42)

The subtlety in this argument is that S(ρ∥σ) = tr(ρ log ρ − ρ logσ) holds only when Im(ρ) ⊆ Im(σ)
by definition. Our ability to swap ρ and σ and still use the same formula is strictly contingent on
Im(ρ) = Im(σ). Hence, ρ(µ) and ρ(λ) must have identical Kernel and Image spaces for
equation 42 to be considered valid.
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Lucky for us, the exact Kernel of all finite-temp Gibbs states are empty: Ker(ρ(x)) = ∅ ∀x ∈ Rm.
But we have also seen in the last section that approximate Kernels may be non-empty if H(x) has
high-energy states that surpass the thermal energy scale kBT . We can preclude this possibility by
assuming a sufficiently large temperature T > λ∗/kB where λ∗ =maxx λmax(H(x))

Aside: We expect sensitivity ∥ρ(µ)−ρ(λ)∥2
∥l(µ)−l(λ)∥2

to be an increasing function of the constant βλ∗.

Given that, we now have to prove: ρ(µ) = ρ(λ) ⇒ µ = λ.

ρ(µ) = ρ(λ) Ô⇒ log ρ(µ) = log ρ(λ)

Ô⇒ βH(µ) + logZ(µ)1⊗n = βH(λ) + logZ(λ)1⊗n

Ô⇒ log(
Z(µ)

Z(λ)
)1⊗n = β

m

∑
j=1

(µj − λj)Lj

Ô⇒ log(
Z(µ)

Z(λ)
) tr(Lk) = β(µk − λk)2

n ∀k ∈ [m] (Ortho: tr(LjLk) = 2nδjk)

Ô⇒ µ = λ for β > 0 (Traceless: tr(Lk) = 0)

Hence, fixing basis {Lj}, each finite-temperature Gibbs state is generated by a unique LH

• When β → 0 (T →∞), µ ≠ λ is allowed ⇒ unique recovery forbidden. This conforms to the
statement: nothing is learnable from a maximally mixed state.

• When β → ∞ (T → 0), µ = λ if basis {Lj} is traceless and log(Z(µ)/Z(λ)) scales as O(β).
Since λmax

kBT →∞, the ground state is extremely sensitive to noise in local marginals, and so are
the LH parameters ⇒ stable recovery forbidden. This conforms to the statement: learning
from ground states is highly sensitive to noise

We see that T is certainly injective at finite-temperature. As explained in the start, this also means
T is bijective. This concludes our proof.

PS: The existence of a bijective map is solely concerned with uniqueness. As discussed, it does not
by itself account for the lack of stability at low temperatures.

6.3 Explicit form of inverse map & sensitivity to noise

Thus far, we have shown the existence of a bijective non-linear map T from κ-LHs to the κ-LMs
induced by their Gibbs states. We also have an explicit form for the forward map as computing
local expectation values. We would now like to present an explicit form for the inverse map T −1(⋅)
going from κ-LMs back to κ-LH parameters, as well as understand the sensitivity of T −1 to noise
in the marginals, which is understood via a bound on the condition number of T . We present a
small factor-of-2 improvement over the condition number obtained by AAKS.

Let us recall what we know. We have a synthetic many-qubit device on which we prepare copies of
the Gibbs states ρ(µ) of a chosen local Hamiltonian H(µ). We then make local measurements on
a certain number of copies (sample complexity) of ρ(µ) to obtain the full set of local marginals
denoted l(µ) = (l1(µ) l2(µ) . . . lm(µ))⊺ . The ”inputs” to the inverse map are the local marginals
l(µ) ∈ Rm, and the ”outputs” of the inverse map are the LH parameters µ ∈ Rm. Without loss of
generality, we can assume that µ lies in a 2-norm ball ∥x∥2 ≤ 1 to reduce our search space.
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Lemma 9 (Entropy-Free Energy duality). Consider a primal optimization task as follows:

p∗ = max
σ∈Pos(X⊗n)

S(σ) = − tr(σ logσ)

s.t. tr(σLj) = lj(µ) ∀j ∈ [m]

tr(σ) = 1

Its Lagrange dual is the following minimization

d∗ = min
x∈Rm

g(x) = logZ(x) + βx⊺l(µ)

s.t. ∥x∥2 ≤ 1

For fixed temperature β > 0, the unique solution to the above problem is: (σ∗, x∗) = (ρ(µ), µ).
Additionally, strong duality holds: p∗ = d∗ = S(ρ(µ))

Proof. For clarity, view the primal objective as minimizing negative-entropy tr(σ logσ), which is
convex. We then construct a Lagrangian and find its pointwise infimum to be −g(x), which should
be concave [pointwise infimum of affine functions]. Maximizing −g(x) then is same as minimizing
g(x), a convex function. Also note that the primal form only has equality constraints, so dual
variables are unconstrained (except the artificial ∥x∥2 ≤ 1)

One example of a state that qualifies the marginal constraints tr(σLj) = lj(µ) ∀j ∈ [m] while
maximizing entropy is the Gibbs state ρ(µ) = e−βH(µ)/Z(µ). This makes the primal form strictly
feasible, hence strong duality holds [Slater condition].

The primal feasible set has many states, however the only Gibbs state in the primal feasible set is
ρ(µ). This follows from Lemma 8, where we proved a bijection between Gibbs states and their
LMs. Since maximum-entropy states with linear constraints are Gibbs, we expect that ρ(µ) is in
fact the unique primal solution. This intuition will be made rigorous.

Use dual variables βxj ∈ R for marginal constraints and ν ∈ R for the trace constraint to construct
the following Lagrangian

L(σ,x, ν) = tr(σ logσ) + β [tr(σH(x)) − x⊺l(µ)] + ν [tr(σ) − 1] (43)

The domain of L is: σ ∈ Pos(X⊗n), x ∈ Rm
+ , ν ∈ R+. By the KKT theorem, σ∗ is the primal solution

iff (σ∗, x∗, ν∗) is a saddle point of L(⋅). The necessary (and often sufficient) conditions for the same
are:

(i) Stationarity w.r.t. σ: ∇σL(σ∗, x∗, ν∗) = 0

(ii) Primal feasibility: tr(σ∗Lj) = lj(µ) ∀j ∈ [m], and tr(σ∗) = 1

(iii) Dual feasibility: x∗ ∈ Rm and ν∗ ∈ R

(iv) Complementary slackness: Void for all-equality-constraint primal form

Dual feasibility and complementary slackness are trivial in our problem.

The stationarity condition yields the following

∇σL(σ
∗, x∗, ν∗) = 0Ô⇒ logσ∗ + βH(x∗) + (ν∗ + 1)12n = 0 (44)

Ô⇒ σ∗ =
e−βH(x

∗)

e(ν∗+1)
= ρ(x∗) (45)
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We see that σ∗ is indeed a Gibbs state. We have seen that ρ(µ) is the unique Gibbs state in the
primal feasible set. Hence

(σ∗, x∗, ν∗) = (ρ(µ), µ, logZ(µ) − 1) (46)

Hence σ∗ is primal feasible. The more general stationarity condition away from the saddle point:
∇σL(σ∗, x, ν) = 0 yields the solution

σ∗(x, ν) =
e−βH(x)

e(ν+1)
= ρ(x) (47)

Hence the dual objective for minimization is given by

g(x) = − inf
σ
L(σ,x, ν) = −L(σ∗(x, ν), x, ν)

= S(ρ(x)) − β [⟨H(x)⟩x − x
⊺l(µ)]

=������
β⟨H(x)⟩x + logZ(x) −������

β⟨H(x)⟩x + βx
⊺l(µ)

= logZ(x) + βx⊺l(µ)

To verify strong duality, note that

d∗ = g(µ) = logZ(µ) + βµ⊺l(µ)

= logZ(µ) + β⟨H(µ)⟩µ (⟨H(µ)⟩µ = µ⊺l(µ) using Definition 7)

= S(ρ(µ)) = p∗ (using Claim 8.1)

This concludes our proof

Corollary 10 (Inverse map). As a result of Lemma 9, we have

µ = T −1(l(µ)) = argmin
x∈Rm

[logZ(x) + βx⊺l(µ)]

s.t. ∥x∥2 ≤ 1

Provided we choose a µ inside the Unit 2-norm Ball (U2B): ∥x∥2 ≤ 1 in Rm, the above inverse map
gives a clear prescription for learning µ: Measure LMs l(µ), and minimize [logZ(x) + βx⊺l(µ)]
numerically inside U2B.

So far, we proved the existence of a bijection between LHs and LMs in Lemma 8. The forward
map T was trivially known by Definition 7. The inverse map T −1 is now known due to Lemma 9
and Corollary 10. Before worrying about sample/time complexity, the last piece in this analysis is
understanding the sensitivity of T −1 to noise in LMs.

We will see that the sensitivity of T −1 to noise in LMs depends exactly on two factors:

− Temperature: We observed heuristically in Lemma 8 that lower the temperature, larger the
sensitivity to noise in learning. We will confirm this rigorously.

− Curvature in logZ(x): The curvature in logZ(x) is a positive constant α that depends only
on temperature and the local basis {Lj} chosen in Definition 5. The lower this curvature,
larger the sensitivity to noise in learning.
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Fix inverse temperature β. Then for commuting LHs, we will see that the curvature in logZ(x)
is proportional to a Minimum-Energy-Variance (MEV) over U2B Gibbs states. Also recall from
our discussion about empty-approximate-Kernels the quantity λ∗ =maxx∈U2B∥H(x)∥∞. It would
be an interesting exercise to study the relationships between α, MEV, and λ∗ numerically. At an
intuitive level, for commuting LHs, we expect

α ∝MEV ∝
1

λ∗
(48)

The sensitivity to noise of T −1 is defined by a bound on its condition number. Central to bounding
the condition number of T −1 is a sharp understanding of strongly convex multivariate functions, in
our case applied to logZ(x). For this reason, it is worth taking a small interlude into some general
results from convex optimization to guide our thinking

Definition 11 (Convexity characterizations). A twice-differentiable function f ∶ Rm → R is convex
in D ⊂ Rm under the following equivalent criteria -

(i) f(y) ≥ f(x) + ∇f(x)⊺(y − x) ∀x, y ∈ D (linear lower bound)

(ii) (∇f(x) − ∇f(y))⊺(x − y) ≥ 0 ∀x, y ∈ D (gradient monotone)

(iii) ∇2f(x) ⪰ 0 ∀x ∈ D (positive semidefinite Hessian)

Definition 12 (Strong convexity characterizations). A twice-differentiable function f ∶ Rm → R is
said to be α-strongly convex (α > 0) in D ⊂ Rm under the following equivalence -

(i) g(x) = f(x) − α
2 ∥x∥

2
2 is convex in D

(ii) f(y) ≥ f(x) + ∇f(x)⊺(y − x) + α
2 ∥x − y∥

2
2 ∀x, y ∈ D (quadratic lower bound)

(iii) (∇f(x) − ∇f(y))⊺(x − y) ≥ α∥x − y∥22 ∀x, y ∈ D (strong gradient monotone)

(iv) ∇2f(x) ⪰ α1m ∀x ∈ D (positive definite Hessian)

To a reader familiar with convex optimization, these are fairly standard results [15, 16]. A somewhat
non-trivial characterization is the gradient monotone. It follows by simply swapping x and y in the
linear lower bound and adding the two inequalities. A rough geometric interpretation is - if the
input to f is changed along some direction, the gradient of f should also change in the same/similar
direction. The strong gradient monotone in Definition 12 is understood similarly.

Lemma 13 (Variant of strong gradient monotone). Let f ∶ Rm → R be an α-strongly convex
function (α > 0). Then the following is true -

∥x − y∥2 ≤
1

α
∥∇f(x) − ∇f(y)∥2 ∀x, y ∈ D (49)

Proof. Write the strong gradient monotone condition in reverse

0 ≤ α∥x − y∥22 ≤ (∇f(x) − ∇f(y))
⊺(x − y)

Notice that the RHS is a non-negative inner product, can be upper bounded by Cauchy-Schwarz

(∇f(x) − ∇f(y))⊺(x − y) ≤ ∥∇f(x) − ∇f(y)∥2∥x − y∥2
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Hence the result follows

α∥x − y∥22 ≤ ∥∇f(x) − ∇f(y)∥2∥x − y∥2

Ô⇒ ∥x − y∥2 ≤
1

α
∥∇f(x) − ∇f(y)∥2 ∀x, y ∈ D

We are now prepared to present the sensitivity to noise bound for QHLP. Recall that the inverse
map T −1 takes LMs l(µ) ∈ Rm back to LH parameters µ ∈ Rm

Lemma 14 (Bound on condition number of T −1). Let D ⊂ Rm and ∇2 logZ(x) ≥ α1m ∀x ∈ D.
For any pair of LH parameters µ,λ ∈ D, let l(µ), l(λ) ∈ Rm be the corresponding local marginals.
Then we have -

∥µ − λ∥2 ≤
β

α
∥l(µ) − l(λ)∥2 (50)

Proof. The proof follows by applying Lemma 13 to f(x) = logZ(x) evaluated at µ,λ.

We first note that since µ,λ minimize inverse problem objectives as described by Corollary 10, they
obey first derivative conditions -

∇ logZ(µ) = −βl(µ) ∇ logZ(λ) = −βl(λ) (51)

We then have

∥µ − λ∥2 ≤
1

α
∥logZ(µ) − logZ(λ)∥2 =

β

α
∥l(µ) − l(λ)∥2

Denote the absolute condition number of T −1 as CoNum(T −1). For each l(µ) ∈ Rm, consider a
small variation δl(µ) about l(µ), which results in a variation δµ about µ. It follows that

CoNum(T −1) = lim
∆→0

sup
∥δl(µ)∥2≤∆

∥δµ∥2
∥δl(µ)∥2

≤
β

α
(52)

AAKS [2] obtained a sensitivity bound of 2β
α . In the above simpler proof, we see that the sensitivity

bound can be improved by a factor-of-2 to β
α

The above improvement - while technically interesting, only leads to a constant factor-of-4 improve-
ment in sample complexity, which is asymptotically inconsequential. However, we can now rigorously
understand the conditioning of the learning problem as a function of temperature. Specifically,
when β → 0, the bound guarantees that the learning problem is well-conditioned (allows stable
recovery), while when β →∞, the learning problem is ill-conditioned (forbids stable recovery).

7 Appendix B: Shadow Tomography

In this appendix, we collect notes on Shadow Tomography [3] : a prominent modern tool for
quantum state tomography, and Unitary Designs [17] : a crucial element in the success of Shadow
Tomography.

Consider N qudits, local dimension q ≥ 2, Hilbert space dimension d = qN . They are arranged as
lattice in space of spatial dimension D ≥ 1.
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Definition 15 (standard basis). In Cq, the standard basis is denoted {∣0⟩ , . . . , ∣q − 1⟩} representing
{(10 . . .0)T , (010 . . .0)T , . . . , (0 . . .01)T}

Let ω = exp( i2πq ). We have ωq = 1, ω ≠ 1⇔ 1 + ω + ω2 + ⋅ ⋅ ⋅ + ωq−1 = 0

Definition 16 (shift, clock, hadamard). Shift, Clock, and Hadamard are unitaries X,Z,W ∈ U(q)
defined by

Shift: X = [∣1⟩ ∣2⟩ . . . ∣q − 1⟩ ∣0⟩] =
q−1

∑
j=0
∣(j + 1) mod q⟩ ⟨j∣

Clock: Z = diag{1, ω, ω2, . . . ωq−1} =
q−1

∑
j=0

ωj ∣j⟩ ⟨j∣

Hadamard: W = 1
√
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1
1 ωq−1 . . . ω(q−1)

2

⋮ ⋮ ⋱ ⋮

1 ω . . . ωq−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1
√
q

q−1

∑
j,k=0

1
ωjk ∣j⟩ ⟨k∣

Properties

i) Unitary but not Hermitian in general: X ≠X†, Z ≠ Z†,W ≠W † for q > 2

ii) Xq = Zq = 1q, tr(X) = tr(Z) = 0

iii) ZX = ωXZ. More generally ZnXm = ωmnXmZn

iv) Z =WXW †

v) Complete set of q2 Paulis: P (m,n) =XmZn =
q−1

∑
j=0

ωnj ∣(j +m) mod q⟩ ⟨j∣ where m,n ∈ Zq.

vi) (ZX)q = (XZ)q = (−1)q+11q. If odd q it is 1q, if even q it is −1q. Here, (−1)q+1 appears as
the product of q-th roots of unity.

Intuitively P (m,n) can be thought of as ”shift with phase” on basis states.

Paulis form a group P1(q) for a single qudit. It is a discrete group of size q2 (quotient-ing out
phase). For q = 2, it is the familiar single-qubit Pauli group {12,X,Z,Y }. For N > 1 number of
q-state qudits (”qu-q-its”), the Pauli group is PN(q) ≡ P(q)⊗N .

Exercise: Show that PN(q) and P1(qN) are different in general, even with same size q2N . For
example, a ququart [18] Pauli is not a tensor product of two qubit-Paulis generally.

Let Zn = {0,1, . . . n − 1}. For simplicity, we denote P(2) ≡ P , and PN(2) ≡ PN . As such, whenever
we skip the argument, it is to be understood as a single/many qubit group. The N -qubit Pauli
group has size ∣PN ∣ = 4N = d2.

Suppose local dimension is q. Define ω = exp(i2πq ), and

ω̃ =

⎧⎪⎪
⎨
⎪⎪⎩

ω odd q
√
ω even q

(53)

Then the general hierarchy for qu-q-its followed in Ref. [17] is:
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i) Pauli group: P̃N(q) = ⟨ω̃1,X,Z⟩⊗N = {ω̃αX(a)Z(b) ∶ a, b ∈ ZN
q }.

Size q2N+1 for odd q, and 2q2N+1 for even q. It may be noted that for odd q, ⟨X,Z⟩ are
sufficient generators since they naturally generate {1, ω1 . . . ωq−11}

ii) Paulis modulo phase:
PN(q) = P̃N(q)/⟨ω̃1⟩ = {X(a)Z(b)} = {⊗j∈[N]XajZbj} = {⊗j∈[N]P (aj, bj)}. Size q2N regard-

less of parity

iii) Paulis modulo phase and identity: P̂N(q) = PN(q)∖{1} = {X(a)Z(b)}∖{1}. Size = (q2N −1).

iv) Non-identity Paulis with order2 dividing q: PN(q) = {ωlp ∶ p ∈ P̂N(q), l ∈ Zq}

Size = q(q2N − 1)

We have P̂N ⊂ PN ⊂ P̃N . A powerful fact is that PN(q) forms a basis for L(qN) with complex
coefficients, and for Herm(qN) with real coefficients.

Theorem 17 (commutation classes). Each non-identity Pauli P partitions PN(q) into q subsets
by commutation relation: P(l) = {Q ∈ PN(q) ∶ PQ = ωlQP, l ∈ Zq}. We have PN(q) = P(1) ∪ P(2) ∪
⋅ ⋅ ⋅ ∪ P(q)

A proof follows straightforwardly from Definition 2. This has an important corollary for qubits -

Corollary 18. Every non-Identity Pauli commutes with exactly half the elements in a qubit Pauli
group, and necessarily anti-commutes with the other half.

The notion of commuting and anti-commuting Paulis has a nice equivalence in terms of operator
size, specifically the non-commuting overlap.

Theorem 19 (non-commuting overlap). Let P,Q ∈ PN(2), n ≥ 1. And P ≠ 1⊗N ,Q ≠ 1⊗N . Then it
is the case that -

• [P,Q] = 0⇔ ∣supp(PQ∣P∩Q)∣ is even

• {P,Q} = 0⇔ ∣supp(PQ∣P∩Q)∣ is odd

P ∩Q indicates the overlapping support of P and Q. PQ∣P∩Q conveys the idea of focusing the
product PQ on the overlapping support P ∩ Q. Finally, supp(PQ∣P∩Q) measures the size of
non-commuting overlap.

In other words, two Paulis commute if and only if their non-commuting overlap has even parity.
Likewise, two Paulis anti-commute if and only if their non-commuting overlap has odd parity.

However, theorem 19 does not generalize straightforwardly for local dimension q > 2 in terms of
remainder classes. We are not aware of a simple generalization.

The Clifford group is defined as the unitary normalizer of the extended Pauli group. It is made
finite by quotient-ing out continuous phase ⟨eiθ1⟩. In particular,

C̃lN = {c ∈ U(2
N) ∶ cPc† ∈ P̃N ∀P ∈ P̃N} (54)

ClN = C̃lN/⟨e
iθ1⟩ (55)

We have PN ⊂ ClN , and PN ⊂ P̃N . However, P̃N /⊂ ClN since ClN is modulo global phase. the
smallest group that ClN

2smallest integer k for P k = 1
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In fact, PN = P̃N ∩ClN . The generators of ClN are known to be the familiar gates ⟨H,S,CX⟩. It
is the case that

(X,Y,Z)
H
Ð→ (Z,−Y,X) (X,Y,Z)

S
Ð→ (Y,−X,Z) (X1,X2, Z1, Z2)

CX
ÐÐ→ (X1X2,X2, Z1, Z1Z2)

(56)

For a single qubit (N = 1), we have ∣P1∣ = 4 while ∣Cl1∣ = 6 ⋅ 4 = 24 [19]. Ozols also gives a simple
argument for the recursion

∣ClN ∣ = 2(4
N − 1)4N ∣ClN−1∣ (57)

Solving the recursion, it follows that

∣ClN ∣ = 2
N2+2N

N

∏
j=1

(22j − 1) (58)

The symplectic structure dictates that ClN/PN ≃ Sp2N(F2), which are 2N ×2N symplectic matrices
over F2 [20]. We have ∣Sp2N(F2)∣ = 2N

2

∏
N
j=1(2

2j − 1).

Given an integer 1 ≤ i ≤ ∣ClN ∣, consider the task of outputting a unique representation of an element
in ClN on a classical computer. Paulis are uniquely specified by mapping i to pairs of N -bit-strings,
an O(1) task3. However, mapping the remaining bits of i to unique 2N × 2N Symplectic matrices
is non-trivial, requiring an O(N3) time recursive algorithm [21].

Even if we have efficient binary representations of elements in PN and Sp2N , there is the open-ended
challenge of optimal Clifford circuit synthesis. Only recently the N = 6 qubits case was solved [22].
Prior understanding was limited to N ≤ 4 qubits [23, 24, 25]. It is worth stressing that the phrase
”optimal synthesis” by itself is most strongly captured by minimum CNOT/2-qubit gate count. A
separate body of work studies ”depth-optimal synthesis” based on circuit-depth, better understood
for general N [26].

We now define unitary twirls as a starting point to understand unitary designs. Recall d = qN .
We’ll use Wπ to denote permutation operators for π ∈ Sk.

Definition 20 (k-fold Haar twirl). For an N qu-q-it system, the k-fold4 Haar twirl is a channel

Φ
(k)
Haar ∶ L(d

k) → L(dk) such that

Φ
(k)
Haar(O) = ∫

U(d)
dU U⊗kOU †⊗k for ∀O ∈ L(dk) (59)

where the integral is over the Haar measure on U(d)
Properties

1. Linearity: Φ
(k)
Haar(λO) = λΦ

(k)
Haar(O) ∀λ ∈ C

2. Unitary invariance: Φ
(k)
Haar(O) = V

†⊗kΦ
(k)
Haar(O)V

⊗k = Φ
(k)
Haar(V

†⊗kOV ⊗k) ∀V ∈ U(dk)

3. Schur-Weyl duality: Φ
(k)
Haar(O) = ∑π∈Sk

Wπuπ(O) for some scalars {uπ(O) ∈ C ∶ π ∈ Sk}

3simply focus on any 2N bits in the binary representation of 1 ≤ i ≤ ∣ClN ∣, an O(N2) bit integer
4integer k ≥ 1
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Further constraining Property 3 above using linearity and unitary invariance gives the following
canonical form [27] -

Φ
(k)
Haar(O) = ∑

π,σ∈Sk

Wπ (Q
−1)πσ tr(WσO) where Qπσ = d

#cycles(πσ) (60)

The inverse of Q-matrix is known as Weingarten matrix, and is guaranteed to exist if k ≤ d (?).

One simple example of the Q-matrix is

Q = (
d2 d
d d2

) for k = 2 (61)

Inverting one ultimately gets

Φ
(2)
Haar(O) =

1

d2 − 1
[1d2 (tr(O) −

tr(WO)

d
) +W (tr(WO) −

tr(O)

d
)] (62)

Above W = SWAP. One other case that is simple even for the general k-fold twirl is when the
image of O lies in the symmetric subspace of its k tensor factors.

Im(O) ⊆ sym(dk) ⇒ Φ
(k)
Haar(O) =

tr(O)

(
d+k−1

k
)
Πsym(dk) (63)

e.g. let d = k = 2, and O = 2∣00⟩⟨00∣ + 3∣11⟩⟨11∣, then Φ
(2)
Haar(O) =

5
6(14 +W ). What if O = ∣01⟩⟨01∣?

O = (∣01⟩ + ∣10⟩)(⟨01∣ + ⟨10∣)?

Besides Haar measure, the notion of ”twirling” extends to arbitrary (discrete or continuous)
ensembles of unitaries. Of particular interest is the k-fold uniform Clifford twirl defined as

Φ
(k)
Cliff(O) =

1

∣ClN ∣
∑

U∈ClN

U⊗kOU †⊗k (64)

Definition 21 (unitary k-design). A finite ensemble ξ = (pj, Uj), where {pj} is a probability
distribution over {Uj}, forms a unitary k-design if the k-fold Ensemble and Haar twirls match -

Φ
(k)
ξ (O) = Φ

(k)
Haar(O) ∀O ∈ L(d

k) (65)

A k-design continues to be k′-design for 1 ≤ k′ ≤ k, as seen by choosing an operator that is identity
in (k − k′) sites.

It is not hard to see that uniform PN(2) forms a unitary 1-design. It was proven in 2015 that
uniform ClN(2) forms an exact unitary 3-design, and fails to be a 4-design [17, 28]. We review a
proof here.

First note that both Φ
(3)
Cliff(.) and Φ

(3)
Haar(.) are linear maps, hence completely specified by their

action on Pauli operators.

The Paulis in this case take the form P ⊗Q⊗R for arbitrary P,Q,R ∈ PN(2). We would like to know

how Φ
(3)
Haar(P ⊗Q⊗R) and Φ

(3)
Cliff(P ⊗Q⊗R) compare for every possible choice of P,Q,R ∈ PN .

However, it suffices to only compute the Clifford twirl explicitly, while checking a special condition.
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Specifically, if we can show that the Clifford twirl lies in the span of three-fold permutation
operators span{Wπ} for π ∈ S3, we are effectively done. Why? It is easy to see that permutation

operators are fixed by the Haar twirl: Φ
(k)
Haar(Wπ) = Wπ for π ∈ Sk. So any operator that lives

in span{Wπ} is fixed by the Haar twirl. Hence, if Φ
(3)
Cliff(O) ∈ span{Wπ} ∀O ∈ L(d3), then

Φ
(3)
Haar(Φ

(3)
Cliff(O)) = Φ

(3)
Cliff(O). But Φ

(3)
Haar(Φ

(3)
Cliff(O)) = Φ

(3)
Haar(O) simply by unitary invariance of

Haar measure. It follows that Φ
(3)
Cliff(O) = Φ

(3)
Haar(O) whenever Φ

(3)
Cliff(O) ∈ span{Wπ}. If the latter

holds ∀O ∈ L(d3), we have a unitary 3-design.5. More generally,

ε = (pj, Uj) is an exact unitary k-design iff Φ
(k)
ε (O) ∈ span{Wπ} ∀O ∈ L(d

k), π ∈ Sk (66)

Now, for any choice of P,Q,R ∈ PN(2), we have two relevant cases -
i) PQR ≠ iα1d. Choose S ∈ PN so that {S,PQR} = 0. Then it is easy to see that

• [S,P ] = 0⇒ {S,QR} = 0⇒ [S,Q] = 0 & {S,R} = 0 (or) [S,R] = 0 & {S,Q} = 0. Exactly
one of P,Q,R anti-commutes with S

• {S,P} = 0⇒ [S,QR] = 0⇒ [S,Q] = [S,R] = 0 (or) {S,Q} = {S,R} = 0.
Either one or all three of P,Q,R anti-commute with S

Basically, any S ∈ PN(2) that anti-commutes with PQR also anti-commutes with an odd number

of Paulis out of P,Q,R. This implies Φ
(3)
Cliff(P ⊗ Q ⊗ R) = Φ

(3)
Cliff(SPS† ⊗ SQS† ⊗ SRS†) =

−Φ
(3)
Cliff(P ⊗Q⊗R). The first equality is by ClN(2) ⋅S ≡ ClN(2) [upto global phase that cancels in

twirl], second due to odd number of anti-commutes. It follows that Φ
(3)
Cliff(P ⊗Q⊗R) = 0

ii) PQR = iα1d. There are three sub cases -

• P = Q = R = 1d. In this case, Φ
(3)
Cliff(1d3) = 1d3

• P = Q ≠ 1d and R = 1d. In this case (and two similar combinations), Φ
(2)
Cliff(P ⊗ P ⊗ 1d) =

1
d2−1(d ⋅W213 − 1d3)

• P ≠ Q ≠ R ≠ 1d. In this case, we have Paulis of the form iα ⋅ P ⊗ PR ⊗R. Additionally, it
can be that {P,R} = 0 or [P,R] = 0. Clifford evolution would preserve these commutation
relations. Insight into these twirls comes from how the order-3 permutations W231 and W312

decompose in the Pauli basis.

W231 = ∑
P,Q,R∈PN

δQ,RP

d2
P ⊗Q⊗R ≡ Ω +Θ − µ (67)

W312 = ∑
P,Q,R∈PN

δQ,PR

d2
P ⊗Q⊗R ≡ Ω +Θ + µ (68)

where

Ω =
1

d2
(1⊗ 1⊗ 1 + ∑

P≠1

(P ⊗ P ⊗ 1 + 1⊗ P ⊗ P + P ⊗ 1⊗ P )) =
W123

d2
+
1

d
(W213+W132+W321)

(69)

5the argument by itself gives a sufficient condition, but necessity also follows directly from Schur-Weyl duality.

So we can also invalidate certain ensembles ε as not designs if Φ
(k)
ε (O) ∉ span{Wπ} for some O ∈ L(dk)
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and for P ≠ R ≠ 1 we have

Θ =
1

d2
∑

[P,R]=0

P ⊗ PR⊗R µ =
1

d2
∑

{P,R}=0

P ⊗ PR⊗R (70)

It follows from that (67) and (68) that

Θ =
1

2
(W312 +W231) −Ω µ =

1

2
(W312 −W231) (71)

where Ω has already been expressed in terms of permutations in equation (69). Now observe
that for Paulis P ≠ R ≠ 1, the triplet (P,PR,R) under Clifford evolution maps to either
(A,AB,B) or (−A,−AB,B) or (A,−AB,−B) or (−A,AB,−B) for some Paulis A ≠ B ≠ 1.
But nicely enough, the signs cancel in a tensor product, so it effectively reduces to one case
and not four.

In P̄N = {±P ∶ P ∈ PN , P ≠ 1}, the number of pairs of anti-commuting Paulis is (2d2 − 2)d2,
while the number of pairs of commuting Paulis (non-identity and non-equal) is (2d2−2)(d2−4)

It follows that for Paulis P ≠ R ≠ 1

{P,R} = 0 ∶ Φ
(3)
Cliff(i

α ⋅ P ⊗ PR⊗R) =
iα

2d2(d2 − 1)
∑

{A,B}=0

A⊗AB ⊗B (72)

=
iα

4(d2 − 1)
(W312 −W231) (73)

[P,R] = 0 ∶ Φ
(3)
Cliff(i

α ⋅ P ⊗ PR⊗R) =
iα

2(d2 − 1)(d2 − 4)
∑

[A,B]=0

A⊗AB ⊗B (74)

=
iαd2

4(d2 − 1)(d2 − 4)
(W312 +W231 − 2Ω) (75)

=
iαd2

4(d2 − 1)(d2 − 4)
(W312 +W231 −

2

d
(W213 +W132 +W321) −

2

d2
W123)

(76)

It follows that Φ
(3)
Cliff(P ⊗Q⊗R) ∈ span{Wπ} for all P,Q,R ∈ PN(2), π ∈ S3. Hence the Clifford

group forms a unitary 3-design.

We are now well equipped to understand Shadow Tomography.

Consider a setting where ρ ∈ Pos(2N) is an unknown N -qubit state known to Alice but unknown to
Bob. Alice prepares copies of ρ in an experimental quantum device presented to Bob. She then
asks Bob to estimate the expectation values of a set of observables {O1,O2, . . .OM} drawn from
PN(2) on the unknown state ρ to ϵ-precision each.

Bob is only allowed to measure each copy of ρ once in a basis drawn from an N -qubit Unitary
Ensemble ξ. Bob is asked to provide an analytical upper bound on the number of copies needed for
his protocol (Sample complexity Ns)

Substitute Huang, Kueng and Preskill (HKP) in place of Bob. HKP find that

Ns = O (
logM

ϵ2
max

j
∥Oj∥

2
ξ) (77)
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where ∥⋅∥ξ is called the Shadow Norm of ensemble ξ. The Shadow Norm is defined in terms of the

ensemble 3-twirl Φ
(3)
ξ (⋅) as follows -

∥O∥2ξ = max
ρ∈Pos(2N )

tr [(ρ⊗M−1
ξ (O) ⊗M

−1
ξ (O)) ⋅Φ

(3)
ξ (∑

b

∣bbb⟩⟨bbb∣)] (78)

HereMξ(⋅) is the Measurement Channel for ensemble ξ, and is defined in terms of the ensemble

2-twirl Φ
(2)
ξ (⋅) as follows -

Mξ(O) = tr1 [(O ⊗ 1)Φ
(2)
ξ (∑

b

∣bb⟩⟨bb∣)] (79)

The interested reader should go through reference [3] for greater detail on the protocol. What is
important to us is that whenever the ensemble ξ is Haar-random or a composition of Haar-random
gates, the k-twirls Φ

(k)
ξ (⋅) are in-principle tractable analytically.

HKP found that if ξ = Cl(2)⊗N , then 2N ≤ ∥OA∥
2
ξ ≤ 3 ⋅ 2

N , while if ξ = Cl(2N) then ∥OA∥
2
ξ = 3

∣OA∣,
where ∣OA∣ is the locality of OA for all OA ∈ PN(2)

In other words, a ”global Clifford” ensemble is efficient for local observable estimation, whereas
both ”local Clifford” and ”global Clifford” ensembles are bad for global observable estimation

Since we learnt earlier that the Clifford group on qubits is an exact unitary 3-design, bothMξ(⋅)

and ∥⋅∥ξ for Clifford based ensembles are exactly equivalent to that of Haar-gate based ensembles.

These notes on Shadow Tomography are not complete by any means. There are several interesting
directions pertaining to Shadow Tomography we would like to explore in the future.
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