Obsidian: A Safer Blockchain Programming
Language

Michael Coblenz
Computer Science Department, Carnegie Mellon University
Pittsburgh, PA USA
mcoblenz@cs.cmu.edu

Abstract—Blockchain platforms, such as Ethereum, promise
to facilitate transactions on a decentralized computing platform
among parties that have not established trust. Recognition of
the unique challenges of blockchain programming has inspired
developers to create domain-specific languages, such as Solidity,
for programming blockchain systems. Unfortunately, bugs in
Solidity programs have recently been exploited to steal money.
We are taking a user-centered approach in the design of a
new programming language, Obsidian, to make it easier for
programmers to write correct programs while leveraging a type
system to provide strong safety guarantees. This paper describes
how experiments with programmers have informed the design of
the language.
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I. INTRODUCTION

Ethereum [1] and Hyperledger Fabric [2] are blockchain-
based programming platforms that share the goal of enabling
parties that have not established trust to conduct transactions
in a distributed computing environment. Blockchain platforms
maintain consistent distributed global state and enable par-
ticipants to run programs that update the shared state. Un-
like some other distributed computing platforms, blockchains
assure correct state even when some of the servers execute
the code maliciously. For example, a distributed autonomous
organization (DAO) could sell shares to parties in exchange
for virtual currency. The DAO’s shareholders may then vote
on proposals to pursue with the organization’s resources.
The organization exists as a contract, which is a program
that can maintain its own state and execute transactions that
transform that state according to messages sent by participants.
Blockchains allow shareholders to host the organization in a
distributed fashion and still trust the platform to execute the
agreed-upon contract faithfully. However, contracts with bugs
are vulnerable to attack. Such vulnerabilities resulted in the
loss of over $70M in the DAO and Parity attacks [3], [4].

Existing approaches aim to make blockchain development
safer by layering checks on top of existing languages, such
as Solidity [5]. For example, Luu et al. identified common
sources of security bugs in Ethereum contracts and designed
an analysis that identified 8,833 of 19,366 existing contracts
as being vulnerable to one of these bugs [6]. Atzei et al.
presented a taxonomy of vulnerabilities that are common
among Ethereum programs [7]. In contrast, we aim to make
blockchain programs less bug-prone by designing a new

programming language that encourages writing programs that
avoid classes of those known vulnerabilities. Some safety
properties will be guaranteed by the compiler, but it would
not suffice to offer guarantees in a language that programmers
cannot use effectively. Instead, we emphasize usability: can
real programmers write correct code in our language, and is
their code less likely to be buggy than the code they would
have written in Solidity or Java?

Several characteristics of blockchains motivate a new lan-
guage design. First, correctness is critical: many of the pro-
posed applications of blockchains involve financial transac-
tions, so any bugs may result in lost or stolen money. Second,
bugs in programs cannot be fixed easily because the programs
are immutable. Once money is committed to an agreement
(as implemented in a contract), the money can only be
removed according to the existing contract implementation.
Third, blockchain programs are commonly state-based [8]:
finite-state machines provide a simple abstraction for high-
level aspects of program behavior. We exploit this in a novel
language design using typestate, based on evidence that state-
based reasoning facilitates faster, less buggy development [9].

Typestate [10] is the practice of making state informa-
tion a first-class part of types [15] to facilitate static rea-
soning about states of objects. For example, the Obsidian
type RockPaperScissors@AcceptingBets is a reference to
a RockPaperScissors object that is statically known to be
in state AcceptingBets. When typechecking a method in-
vocation, the compiler ensures that the invoked method is
statically known to be available all of the possible current
states of the referenced object. This introduces a problem of
alias analysis: if the referenced object is mutable, then the
compiler must be able to prove that there are no other aliases
of the same object through which the object’s state may be
mutated. Otherwise, the state specification in one alias may be
violated by a mutation via another alias. The usual solution
involves complicated systems of permissions, which annotate
references with specifications regarding which operations can
be performed via those references. Our design challenge in
Obsidian is to create an approach that is expressive, safe, and
also easy to use effectively.

In addition to addressing serious problems that blockchain
software developers face, Obsidian also serves as a testbed for
research on language design methodology. Language designers
create languages in order to obtain particular guarantees,



assuming that programmers will learn to use their tools if they
have been shown to have useful properties. However, we and
others argue that it is better to take users into account directly
during the design phase for programming languages [11], [12].
In particular, Obsidian integrates several sophisticated type
system-based approaches to improve safety, but the usability of
these techniques has never been studied formally. The evidence
that users will be able to use language designs effectively
when writing code is typically based on the experiences of
researchers using their own systems, which may not generalize
to users who are not programming language researchers.

Our view of programming languages as user interfaces
motivates us to make Obsidian as usable as possible by
programmers. We conducted formative user studies to inform
language design changes that improve usability. When Obsid-
ian implementation is complete, we will conduct summative
studies to compare Obsidian with Solidity directly. In this
paper, we describe how qualitative user studies to date have
driven significant changes in the design of Obsidian. Due to
space constraints, we will limit our discussion to a study
of typestate, permissions, and ownership, though we have
investigated other aspects as well.

We will next introduce some sources of bugs in existing
blockchain applications that we address in Obsidian. Then,
we show by example how Obsidian addresses those vulnera-
bilities. Finally, we explain how we have used user studies to
improve the Obsidian language design.

II. BUGS AND SOLUTIONS

We focus here on three serious sources of bugs that we will
mitigate or prevent with our language design.

1) Our analysis of proposed blockchain applications
showed many applications are structured around high-
level states, on which the available operations depend.
For example, a Bond contract might initially be in
Offered state, but once purchased, it is in Purchased
state and no longer available for sale. Traditional lan-
guages require dynamic checks to ensure that operations
are only executed in appropriate states, but this only
allows bugs to be detected an runtime, not compile time.
Obsidian uses typestate to lift dynamic state information
into types to facilitate static reasoning about state.

2) Money is owned by contracts. Any bugs in code manip-
ulating money or other resources could result in loss or
misappropriation of resources. Delmollino et al. showed
that it is common for blockchain contracts written by
beginners to accidentally leak money [14]. Obsidian
uses a linear type system [13] for quantities of money
so that the compiler can guarantee lossless tracking of
financial information. Unlike traditional types, linear
types represent valuable resources that must not be
accidentally lost.

3) Re-entrancy attacks occur when a contract allows
inconsistent state to be exposed to an external caller.
Obsidian detects reentrancy dynamically to avoid a
large class of security vulnerabilities. Due to space

constraints, this paper does not focus on re-entrancy
attacks.

III. OBSIDIAN LANGUAGE EXAMPLE

As is traditional in typestate-oriented languages, the meth-
ods that can be invoked on an object depend on the object’s
current state. As an example, consider a naive, abbreviated
Solidity implementation of a Rock, Paper, Scissors application,
shown in Figure la (inspired by Delmollino et al. [14], who
studied errors that beginners make implementing a similar
application in Solidity). The creator of the contract offers to
place bets with each of capacity players. After placing bets,
players make their choices. Eventually, finalize() is called
to distribute payouts. In line 20 of Fig. 1a, the winner is sent
the reward. However, when the call() function is invoked to
send the money, the winner may execute arbitrary code. This
code may call back into finalize(), which does not detect
the reentrant call, and attempts to pay the winners again.

In Solidity, accounting for money occurs through
potentially-inconsistent mechanisms. Each contract holds
virtual currency, but in addition, contracts may need to track
finer-grained information. For example, a bank records the
balance of each account rather than only tracking the total
amount of deposits. Thus, bugs may result in the bank losing
track of who owns money.

Fig. 1b shows how the same application might look in
Obsidian. By lifting high-level contract state into first-class
states, we encourage programmers to write programs safely.
By treating money as a linear resource, we can statically
detect a class of errors involving money and other linear
resources. For example, the implementation of payCreator
(Fig. 1b, line 4) acquires ownership of the input money, and
the compiler will give an error if the money reference goes out
of scope. By sending money in parameters of methods, rather
than in generic call or transfer methods, the contract can
handle received money and other resources in a disciplined,
application-appropriate way.

IV. SUPPORT FOR TYPESTATE, PERMISSIONS, AND
OWNERSHIP IN OBSIDIAN

A. Design and initial user experiments

We initially took a traditional type declarations approach
to the language design, similar to that used in Plaid [15] and
Plural [17], as well as in session type approaches [18]. For
example, suppose a LightSwitch class is defined with states On
and 0ff. Consider a method body that includes the following:

LightSwitch@0ff s = new LightSwitch();
s.turnOn();

LightSwitch@Off is the type of a reference to a LightSwitch
object that is in Off state. After the above code executes, the
type of s is inconsistent with its declaration: the new type
is LightSwitch@on. Typestate specifications can also occur
in method parameters, in which case the typestate at the
beginning and end of the method can be specified:



1 contract RockPaperScissors {

2 enum State {AcceptingBets, MakingChoices, PayingOut, Complete}
3 State state;

4 address[] otherPlayers;

5

6  function RockPaperScissors() {
7 state = State.AcceptingBets
8 1}

function bet() payable {

if (state != State.AcceptingBets) {

revert;

13 }
... // Record the money if it is the right amount, otherwise abort.
if (allBetsPlaced()) {

state = State.MakingChoices
17 }
18}

function makeChoice(int c) {
.. // Body omitted; similar in structure to bet()
22}

function finalize() {
if (state != State.PayingOut) {
revert; // abort the transaction
27 }

for (int i = 0; i < otherPlayers.length; i++) {
address winningAddress = computeWinner(i);
// Bug 1: call executes external code, which may cause a re-entrant call.
// Bug 2: failed to check return value of call().

33 winningAddress.call.value(wonAmount()); // transfer money '31
4 )
35 state = State.Complete; 32
36} 33
37y 34
35
(a) Naive Rock-Paper-Scissors in Solidity, showing bugs

Fig. 1.

transaction turnSwitchOff(LightSwitch @ On >> Off s)

{
s.turn0ff();

}

The body of turnSwitchOff can assume that the object
referenced by s is in state On at the beginning and must ensure
that it is in state Off at the end. Obsidian also supports the state
specification ?, which means that the typestate is statically
unknown. For example:

\texttt{randomizeSwitch(LightSwitch @ On >> ? s)}

takes a LightSwitch in On state and provides no postcondition
regarding its state. When typestates are specified on field
declarations, every method must end with the field referencing
an object in corresponding state so that methods can assume
that fields are in appropriate state on entry.

In typical typestate-oriented languages, each reference can
include a permission, which specifies what operations that
reference supports. In the model by Garcia et al. [16], there
are three possible permissions: full, shared, and pure. full
provides exclusive write access (ownership); shared provides
non-exclusive write access; pure provides read-only access.

In Obsidian, the user may define certain contracts to be
resources. Obsidian facilitates reasoning about resources: al-
though there may be many references to an instance of a
resource, one of them is treated linearly: it represents the
owner of the resource. The compiler ensures that the owning
reference cannot go out of scope, which is the only way to
lose an object; instead, ownership must be transferred to a new
owner, such as by assigning it to a field of appropriate type.
Note that this notion of resource ownership coincides with the
concept of a full permission in that they both designate a
“unique” reference to an object. Does this necessitate repli-
cating the entire permissions system, despite its complexity?

contract RockPaperScissors {
type PayoutFunction = Money -> unit;

PayoutFunction payCreator;
Money@Owned pool; // stores funds from bets
PayoutFunction otherPlayerPayouts[];

state AcceptingBets;
state MakingChoices;
state PayingOut;

transaction bet(Money m, PayoutFunction payout) available in AcceptingBets {
.. // store payout function for later use
if (allBetsPlaced()) {
->MakingChoices; // transition to MakingChoices state
}
}

transaction makeChoice(Choice c) available in MakingChoices {
.. // Body omitted; similar in structure to bet()

}

transaction finalize() available in PayingOut {
// This shows how resource ownership is transferred in transaction calls.
for (i = 0; i < otherPlayers.length; i++) {
Money@Owned bet = pool.split(wonAmount());
if (creatorWon(i)) {
payCreator(bet);
}
else {
otherPlayers[i].payout(bet);

(b) Rock-Paper-Scissors in the final version of Obsidian

A comparison of Rock Paper Scissors implementations (abbreviated)

Integrating the overlapping concepts of typestate and resources
into the same language, then, presents a novel design problem,
especially given the design goal of making the language easy
to use.

Any reference that bears a typestate specification must also
be an owning reference — otherwise there could be fwo
typestate-bearing aliases to a potentially-mutable object, which
is unsound because using one to mutate the object’s state could
make the object inconsistent with the specification on the other
reference. We used the owned keyword only for non-typestate-
bearing references, leaving ownership of typestate-bearing
references implicit. This notation is concise but inconsistent
because not every owned object is explicitly annotated owned.

After a sequence of operations involving an object with
typestate, it may be unclear to a reader of the code what
the compiler knew about the state, since the state may be
inconsistent with the one in the variable’s declaration. A
reader would have to trace an object through each usage
to see what its typestate was at any given program point.
The fact that the compiler’s knowledge of types is not fixed
at type declaration is a significant departure from traditional
languages. We are interested in designing a language whose
semantics and syntax would help users reason both about
their programs and about the compiler’s knowledge of object
state. If users have difficulty reasoning about the compiler’s
knowledge of object state, they will receive compiler error
messages that they may find surprising and difficult to fix when
they do not understand why the compiler cannot reason about
states and mutation as effectively as they can.

We conducted User Study [ to evaluate our approach to
ownership transfer [19]. Among other findings, we observed
that participants had difficulty understanding when ownership
was transferred in assignment and in method invocation. We



had specified that ownership transfer occurred when an owned
reference was passed as a parameter to a method that took an
owned reference. For example:

owned Money m = ...

spend(m); // transfer ownership to parameter of spend()
spend(m); // COMPILE ERROR: n is no longer owned

Unfortunately, participants found this approach confusing,
in part because the semantics of invocation depended on the
signature of the method.

B. User Study 2

We conducted user experiments to gather empirical data
on the usability of these different approaches to typestate,
permissions, and ownership. In the experiments, we asked par-
ticipants to do programming tasks. However, there is a difficult
practical problem running lab studies on a new programming
language: if the language is very different from those with
which a participant is familiar, there is a learning stage where
the participant must learn the new language. A corresponding
problem is one of conflation. If one teaches participants a new
language, the participants are likely to have difficulty with
many different aspects of the language, not just the one of
interest. Furthermore, when a participant is confused, it may
not be clear whether the cause is the design decision itself or
some unrelated point of confusion or aspect of the language.
The effects of the design decisions become overwhelmed by
the noise from unrelated parts of the language.

We observe, however, that languages are designed so that
features are as orthogonal as possible [20]. Therefore, our
approach is to study the design decisions in isolation by
back-porting them to a language with which participants
are already familiar. This approach introduces its own kind
of noise: perhaps the aspects do not behave in the second
language as they would in the first, and the outcome might
not be applicable to the first language. We plan to address this
limitation of the external validity in the future by conducting
a summative usability study of the complete Obsidian system.
However, we limit the impact of any differences by choosing
Java, which is structurally similar to Obsidian. For example,
both Java and Obsidian are statically-typed object-oriented
languages, and both languages share similar difficulties with
aliases to mutable state. Rather than implementing a permis-
sion system in Java, we conducted a Wizard-of-Oz study [21]
where participants received documentation on an extension to
Java and the experimenter provided simulated compiler error
messages. Importantly, in usability studies such as this one,
the goal is to efficiently find as many usability problems
as possible; the assumption is that problems faced by one
participant would likely be faced by many others.

User Study 2 began by giving participants a prescription-
tracking system implemented in Java. The system was seeded
with a bug: it was possible for a patient to fill a prescription
more times than allowed by depositing it in multiple pharma-
cies. To justify that this bug is worth detecting with a type
system, we first confirmed that detecting this bug was difficult
for at least some participants. We gave the first two participants

30 minutes to find the bug; one participant found it just as the
30 minutes elapsed, and the other did not find it at all. Then we
asked all five participants (all experienced Java programmers)
to fix the bug with an annotation we added to Java, @0wned.
We gave a tutorial explaining @0wned but we were interested in
seeing what assumptions participants made about the behavior,
so we did not give exhaustive explanations.

Participants found this task very difficult in our initial,
traditional ownership design. Some participants had difficulty
reasoning about ownership in a static way rather than a
dynamic way. For example, one participant wrote if (@Owned
prescription), attempting to indicate a dynamic check of
ownership. Several participants had difficulty figuring out
which variables should be owned, perhaps related to their
confusion about the static nature of ownership.

In a second part of User Study 2, we provided a tutorial
on a proposed Java extension that supports resources and
typestate, and asked participants to add typestate specifications
where possible in a small program that manipulated bonds. But
because using typestate requires using ownership effectively,
many participants had difficulty with these tasks. However, we
observed a common expectation that the compiler would do
typestate inference. For example:

1 LightSwitch s = new LightSwitch();
2 s.turnOn(); // ERROR: turnOn() may not be available

In this initial language, typestate must be specified in
declarations to cause the compiler to reason about typestate.
In contrast, participants expected code akin to the above code
to not give an error because they expected the compiler to
infer on line 1 that s refers to an object in state 0ff.

One participant was confused about the relationship be-
tween ownership and typestate, expecting that all owned
references had to include a state specification. Another felt that
state postconditions were redundant with a body that ended in
a state transition, suggesting a dynamic view of the semantics
rather than a static view.

C. Language revisions

To address the difficulties we observed understanding when
ownership transfer occurred and resolving the inconsistency
between type declarations and static typestate knowledge, we
designed an alternative notation that uses static assertions to
denote state knowledge. For example:

LightSwitch s = new LightSwitch(); [s @ Off]
s.turnOn(); [s @ On]

The static assertions, shown in square brackets, indicate
assertions that the compiler checks. Note that the declaration
does not include a typestate specification; this way, typestate
of local variables is consistently only shown with assertions.
This approach gives the expected property that the declared
type of a variable never changes.

Since every typestate-bearing reference also carries own-
ership, the revised version of Obsidian considers ownership
to be a special case of typestate: one in which the state
is not specified. This allows use of the same notation for



both ownership and typestate. We added keywords Owned
and Unowned to denote these types, as in Money@Owned. This
notation allows us to avoid exposing permissions as a separate
concept; operations on objects are permitted or refused accord-
ing to a consistent way of specifying properties of references.

D. User Study 3

User Study 3 is an experiment that compares the original
approach (which had separate notions of ownership and type-
state; lacked static typestate assertions; and required typestate
specifications in local variable declarations) with the new
approach. In contrast with Experiment 2, this experiment con-
sists of both qualitative and quantitative phase. We developed
a Web-based experiment, which asks participants to answer
questions about programs and also write some code. As with
User Study 2, we adapted the concepts of Obsidian to a
Java context so that we need not demand that they learn a
fresh language. The experiment first introduces participants to
typestate, and then describes ownership and its implications
on typestate. In Part 1, we compare typestate inference to
declarations, and we evaluate the effect of static assertions. In
Part 2, we compare explicit, separate ownership and typestate
to implicit ownership merged with typestate.

The qualitative phase took place in a laboratory setting,
allowing us to use a think-aloud protocol so that we could
understand in detail which aspects of the design were con-
fusing. After each participant, we refined the questions and
instructions and changes to the language itself. For example,
the language originally only required type specifications on
some references to objects that maintain state; we found that
people found it confusing to keep track of which behaviors
were the default, so we now include typestate specifications
except when the typestate is read-only. Participants in the
final version of User Study 3 were generally able to reason
successfully about typestate and ownership.

The quantitative phase is planned to begin soon, after we
complete a formal analysis of the revised type system. We plan
to recruit Java programmers via Facebook ads in order to get
a broader sample of programmers than we would likely find
at a university. In this phase, programmers will be randomly
assigned to one of the experimental conditions, and we will
compare completion times for the tasks and correctness of the
participants’ answers to the programming questions across the
two experimental conditions.

V. FUTURE WORK

We will formally prove appropriate safety properties, such
as conservation of money. We will also conduct case studies to
evaluate how suitable the language is for expressing real-world
applications that are in use on current blockchains. Finally, we
will conduct summative user studies to evaluate whether (a)
programmers can use Obsidian effectively to write programs
with little training; (b) programmers are more likely to write
correct, safe code with Obsidian than they are with Solidity.
This approach leverages our past experience evaluating and
improving usability of programming languages [22].

VI. CONCLUSION

Obsidian is a promising direction in the design of languages
for blockchain platforms. We expect to show formally that it
guarantees the absence of some common bugs and show by
user studies that programmers are more likely to write correct
programs with Obsidian than with competing approaches. Our
design methodology demonstrates how language designers can
take users into account directly when designing programming
languages in order to make them more effective for program-
mers.
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