
From Out of Memory to Remote
Code Execution

Yuki Chen (@guhe120)

Qihoo 360Vulcan Team

CVE-2014-0290,CVE-2014-0321,CVE-2014-1753,CVE-2014-1769,CVE-2014-1782,CVE-2014-1804,

CVE-2014-2768,CVE-2014-2802,CVE-2014-2803,CVE-2014-2824,CVE-2014-4057,CVE-2014-4092,

CVE-2014-4091,CVE-2014-4095,CVE-2014-4096,CVE-2014-4097,CVE-2014-4082,CVE-2014-4105,

CVE-2014-4129,CVE-2014-6369,CVE-2015-0029,CVE-2015-1745,CVE-2015-1743,CVE-2015-3134,

CVE-2015-3135,CVE-2015-4431,CVE-2015-5552,CVE-2015-5553,CVE-2015-5559,CVE-2015-6682,

CVE-2015-7635,CVE-2015-7636,CVE-2015-7637,CVE-2015-7638,CVE-2015-7639,CVE-2015-7640,

CVE-2015-7641,CVE-2015-7642,CVE-2015-7643,CVE-2015-8454,CVE-2015-8059,CVE-2015-8058,

CVE-2015-8055,CVE-2015-8057,CVE-2015-8056,CVE-2015-8061,CVE-2015-8067,CVE-2015-8066,

CVE-2015-8062,CVE-2015-8068,CVE-2015-8064,CVE-2015-8065,CVE-2015-8063,CVE-2015-8405,

CVE-2015-8404,CVE-2015-8402,CVE-2015-8403,CVE-2015-8071,CVE-2015-8401,CVE-2015-8406,

CVE-2015-8069,CVE-2015-8070,CVE-2015-8440,CVE-2015-8409,CVE-2015-8047,CVE-2015-8455,

CVE-2015-8045,CVE-2015-8441,CVE-2016-0980,CVE-2016-1015,CVE-2016-1016,CVE-2016-1017,

CVE-2016-4120,CVE-2016-4160,CVE-2016-4161,CVE-2016-4162,CVE-2016-4163,CVE-2016-4185

CVE-2016-4249,CVE-2016-4180,CVE-2016-4181,CVE-2016-4183,CVE-2016-4184,CVE-2016-4185,

CVE-2016-4186,CVE-2016-4187,CVE-2016-4233,CVE-2016-4234,CVE-2016-4235,CVE-2016-4236,

CVE-2016-4237,CVE-2016-4238,CVE-2016-4239,CVE-2016-4240,CVE-2016-4241,CVE-2016-4242,

CVE-2016-4243,CVE-2016-4244,CVE-2016-4245,CVE-2016-4246,CVE-2016-4182,CVE-2016-3375,

CVE-2017-3001,CVE-2017-3002,CVE-2017-3003,CVE-2017-0238,CVE-2017-0236,CVE-2017-8549,

CVE-2017-8619

Who am I
Bug Hunter @ 360 Vulcan Team

Who am I

Hardcore ACG Otaku

About 360Vulcan Team

 Security Researches from Qihu
360

 Pwn2Own Winners:

 Pwn2Own 2015 IE11

 Pwn2Own 2016 Google
Chrome, Adobe Flash

 Pwn2Own 2017 Edge, Safari,
Adobe Flash, Win10, Mac OSX

 “Master of Pwn” Pwn2Own
2017

Agenda

• Out-of-Memory Exception in Browser

• From Out-of-Memory to RCE

• From Out-of-Memory to ASLR bypass

• Conclusion

Out of Memory Exception
in Web Brower

Out of Memory Exception
“Runtime exception when
there is no sufficient memory.”

Browser OOM Example 1
• IE 8 CAttrArray Use After Free (cve-2014-1753)
• Found by fuzzing

function f() {
var size = 0x8000000;
var s = "AAAA";
while (s.length < (size - 2)/2)

s += s;

var x = document.createElement("frame");
x.setAttribute("prop2", s.substring(0, (size - 2)/2));

var node = document.body.appendChild(x);

for (var y = 0; y < 20; ++ y) {
var z = node.cloneNode();
document.body.appendChild(z);

}
}

CloneNode

Clone
attributes
One by one

Create a new
Attributes
Array

Copy
Attribute
Fail ?

Free
Attributes
Array

Access
Attributes
Array
(UAF)

If the attribute to copy is a very large string,
it can cause an Out-of-Memory when clone
The attribute. Finally trig the use after free.

Browser OOM Example 2
• IE Jscirpt JSON.parse OOM Memory Corruption

var chunksize = 0x2000000;
var json = '['
for (var i = 0; i < chunksize/0x10; ++ i)
json += '1,'

json += '1]';
var arr = new Array();
try {

for (var i = 0; i < 0x1000; ++ i)
arr.push(json.substr(0, (chunksize-2)/2));

} catch (e) {} // Force IE into low-memory state by
allocating large amount of memory

while (true) {
JSON.parse(json);

}

jscript!JSONParser::ParseObject+0x3fb:
65b4e9da mov eax,dword ptr [esi+14h] // length of the json array
65b4e9dd mov dword ptr [esp+14h],eax
65b4e9e1 shl eax,4 // alloc size = arr_length * 0x10

65b4e9e4 push eax
65b4e9e5 mov dword ptr [esp+20h],eax
65b4e9e9 call dword ptr [jscript!_imp__malloc (65b740fc)]

// malloc can fail if there is no sufficient memory
// malloc fail is not checked and will directly copy content

to address [NULL + arr_size]

65b4ea2f a5 movs dword ptr es:[edi],dword ptr [esi] es:002b:00777fc0=????????
ds:002b:03eb8398=00000003

OOM Bugs – Different Types

• Handled/Not Handled

• Controllable/Uncontrollable

• 32-bits/64-bits

• Continuable/Not Continuable

Handled/Not Handled

• Handled OOM
– Developer is aware of potential OOM in the code
– But failed to handle it correctly (e.g. the IE CAttrArray

UAF case)

• Not handled OOM
– Developer has no idea about the potential OOM in the

code (e.g. the JSON case)
– Can cause unexpected execution path change (early

return, exception), which can cause exploitable
condition

Controllable/Uncontrollable

• Controllable
– We can trig the OOM exception reliably, at any

time we want
• Controllable large allocation

• Controllable low-memory state

• Uncontrollable
– Occurs randomly, not controlled by us

• Small allocations

• Uncontrollable low-memory state

32-bits/64-bits

• Usually, it’s easier to find reliable OOM in 32-
bits targets than 64-bits

• Because it’s easier to force the process into a
low-memory state in 32-bits target

– By brute force allocations

Continuable/Not Continuable

• Continuable
– Program can continue to execute after the OOM
– Exploit possible

• Not Continuable
– Program can not continue to execute after OOM

• Crash immediately due to non-exploitable memory corruption (e.g.
null pointer deference)

• Crash actively for allocations that can not fail
• Browser has a memory limitation, and will crash if memory

exceeds the limitation

– Not exploitable, only DDOS 

Find/Focus on controllable
and continuable OOM
exceptions only

For bug hunters:

Find OOM Bugs

• Normal Fuzz

– Fuzz with random values some times trigs OOM

• Fuzz in low memory state

– Tools such as Application Verifier

– Hook allocation APIs

– Some browsers has test interface for out-of-m
memory simulation (e.g. FireFox)

• Code auditing

From Out-of-Memory to
Remote Code Execution

A Journey With OOM Bugs in
Microsoft Edge

• Find controllable OOM in Edge

• Break the transaction operations to make
inconsistent array state

• Achieve memory corruption

• Win

Find controllable OOM in Edge

• We need to find OOM exceptions which could
be trigged reliably

• JavaScript array segment allocation is a nice
vector

Array Segment

• JavaScript array in IE/Edge

– A link list of array segments

length

head

Array

Head Segment

left

length

size

next

element[0]

element[N]

…

Segment 1

left

length

size

next

element[0]

element[N]

…

Segment N
…

var arr = new Array();

arr[0] = 1;

arr[1] = 2;

arr[2000] = 3;

arr[5000] = 4;

Head
segment

arr

left = 0
length = 2
element[0] = 1
element[1] = 2

Segment
1

Segment
2

left = 2000
length = 1
element[0] = 3

left = 5000
length = 1
element[0] = 4

Array Segment (.cont)

• JavaScript array elements are stored in
segments

– When allocating an array segment, it also allocates
the memory space for elements in it

• When add a new element into array, if there is
no existing space for it, it either allocates new
segment or enlarges existing segment

Array Segment Allocation OOM in
32-bits Edge

• When allocating array segment, if there’s no sufficient
memory, an OOM exception will be thrown

try {
for (var i = 0x10000000; i < 0x18000000; ++ i)

a[i] = 0x0d0d0d0d;
} catch (e) {}

try {
while (true) {
arr_ab.push(new ArrayBuffer(0x02c9dbec * 4)); // Step 1: Make

browser into a low-memory state by allocating large memoy
}

} catch (e){}

try {
a.reverse(); // Step 2: Trig array segment allocation

to throw OOM exception
} catch (e) {alert(e);}

Trig OOM in 32-bits Edge - Example

Trig OOM in 32-bits Edge
– Example (.cont)

Array Segment Allocation OOM in
64-bits Edge

• We are not able to force 64-bits Edge into
insufficient memory state

– Because 64-bits process’s memory space is large

• There is still a chance to trig OOM exception
in 64-bits Edge

– If there is an overflow in allocation size

OOM When Allocate Size Overflow

var aaa = new Array();
for (var i = 0; i < arrSize.length; ++ i) {

aaa.unshift.apply(aaa, args); // Step 1: Grow array segment size
until nearly overflow

aaa[arrSize[i] - 1] = 1;
}

try {
aaa.unshift.apply(aaa, args); // Step 2: Trig another segment size

grow where the size will overflow

} catch (e) { // Error: Out of Memory }

Trig OOM in 64-bits Edge - Example

Trig OOM in 64-bits Edge –
Example (.cont)

Now we have controllable OOM in
both 32/64-bits Edge, what’s Next?

Array Transaction Operation

• Array contains some import fields
– Array: array type, length, head, cached last-used

segment

– Segment: left, length, size, elements

• When you change one of the fields, you must also
change some others to keep the array valid
– E.g. When you convert an Int array to Float array, the

int elements in the segments need also be changed to
floats

Array Transaction Operation (.cont)

• Many JavaScript array APIs will make change
to the array

– shift, unshift, splice, …

– The core part of such code requires atomicity and
consistency

– Just like transaction in database, so we call them
array transaction operations

– Break array transaction operations can cause
trouble

Array Transaction Operation - Example

• Convert a NativeInt array to NativeFloat array

Foreach segment in array:
segment->ChangeElementsToFloat()

SetArrayType(NativeFloatArray)

If the code returns unexpectedly in the middle of the iteration,
you will get a NativeIntArray with some Float segments

Break Array Transaction Operation

• Callback in the transaction operation

– Common pattern of Edge bugs

• Exception that breaks code flow

– Out of Memory Exceptions 

Let’s Party!

RCE Case: Array.unshift

nElemntsToUnshift = Number of Elements to Unshift
Foreach segment in array:

segment->left += nElemntsToUnshift (1)

SetUnshiftElementsToHeadSegment(); (2)

Array->length += nElemntsToUnshift; (3)

Transaction Operation of Array.unshift

nElemntsToUnshift = Number of Elements to Unshift
Foreach segment in array:

segment->left += nElemntsToUnshift (1)

SetUnshiftElementsToHeadSegment(); (2)

Array->length += nElemntsToUnshift; (3)

Break

Set elements to the head segment can cause
reallocation of the head segment,
which can throw Out-of-Memory exception

RCE Case: Array.unshift

• By breaking the Array.unshift transaction
operation
– We have an inconsistent array that:

array->lastSegment->left + array->lastSegment->length

> array->length

– While the array manipulating code assumes that:
array->lastSegment->left + array->lastSegment->length

<= array->length

RCE Case: Array.unshift

• Call Array.unshift again on the inconsistent
array, we can get an array that:
arr->lastSegment->length > arr->lastSegment->size

• An array segment whose length is larger than
size can cause heap overflow in many places

– Such as JavaScriptArray::DirectSetElementAt

RCE Case: Array.unshift

• A heap overflow in array segment is quite
simple to exploit

• Just allocate another array segment after the
overflowed segment, then we can overwrite
the length and size filed of next segment

left length size

Overflow

0xffffffff 0xffffffff

Overflowed
Segment

Next
Segment

RCE Case: Array.unshift

• Used to exploit Edge at Pwn2Own 2017

• Fixed as CVE-2017-0238

Demo

RCE Case:
JavascriptNativeIntArray::ToNativeFloatArray

• This function converts an int array to float array

Foreach segment in array:
seg->size >>= 1 (1)

if (seg->length > (seg->size >>= 1))
seg = AllocateNewSegment (2)

Seg->ChangeElementToFloat() (3)
Adjust(seg->length) (4)

Transaction Operation of JavascriptNativeIntArray::ToNativeFloatArray

Foreach segment in array:
seg->size >>= 1 (1)

if (seg->length > (seg->size >>= 1))
seg = AllocateNewSegment (2)

Seg->ChangeElementToFloat() (3)
Adjust(seg->length) (4)

Break

Allocate a new array segment
can throw Out-of-Memory exception.
At this point, seg->size has been diveded by 2, while
seg->length remains unchanged.

• By breaking the ToNativeFloatArray transaction
operation
– We can have an array segment that

Seg->length > Seg->size

• Get RCE exactly the same way as Array.unshift
– One of the backup bugs for Pwn2Own 2017

– We prepared several similar bugs as backups (e.g.
Array.splice)

RCE Case:
JavascriptNativeIntArray::ToNativeFloatArray

Patch Time – April Fix

• Microsoft fixed our Pwn2Own bug in April

• The fix is a little surprise

– It does not fix the OOM exceptions

– Instead it tries to break the exploit tech we used

• Added a new function “CheckLengthVsSize”

• To avoid heap overflows caused by “segment->length >
segment->size”

CheckLengthVsSize
If detected “segment->length > segment->size”,
crash the process immediately

Problem of The April Fix

• It breaks some OOM exploits in our hand

• But the root cause still not fixed

– Root cause: OOM exception breaks array
transaction operation

• And there are other OOM vulnerabilities that
do not require “seg->length > seg->size” to
exploit

Let’s Continue Party

OOM bugs can still fight in the next 10 months

OOMバグはあと１０ヶ月は戦える！

RCE Case: Array.reverse
Segment Use After Free

Reverse the whole segment list (1)

If head is leaf segment:
head = ReallocateNonLeafSegment (2)

Transaction Operation of Array.reverse

Leaf Segment

• Leaf segment

– Pure data segment

– Next Segment will NOT be scanned when GC

• Non leaf segment

– Next Segment will be scanned when GC

Non Leaf Non Leaf Leaf

Leaf Non Leaf Non Leaf



X
The last 2 segments will not be
scanned by GC and will be freed
unexpectedly, causing use after free

RCE Case: Array.reverse
Segment Use After Free

Non Leaf

Step 1: Reverse the segment list

Step 2: Reallocate head if it’s
leaf segment

Non Leaf Leaf

Leaf Non Leaf Non Leaf

Non Leaf Non Leaf Non Leaf

Break

Reallocate non leaf segment may cause out-of-memory
exception

RCE Case: Array.reverse
Segment Use After Free

• By breaking the Array.reverse transaction
operation, we can access an array segment
that has already be freed

• Easy to get full remote code execution

– Reuse the freed memory of the array segment

– Get a fake array segment (achieve OOM access,
type confusion, …)

RCE Case: Array.reverse
Segment Use After Free

• Fixed as CVE-2017-8549 in June CPU

• Got $15,000 from edge bug bounty

– Many thanks to Microsoft 

RCE Case: ConvertToVarArray
Buffer Overflow

• JavascriptNativeFloatArray::ConvertToVarArray
buffer overflow

Foreach segment in array:
if seg is leaf segment:

seg = ReallocateNonLeafSegment() (1)

seg->size *= 2 (2)
seg>ChangeIntElementsToVar() (3)

Array->ChangeTypeToVarArray() (4)

Seg->size *= 2 ?

• In 32-bits edge, sizeof(Var) = 4, sizeof(Float) = 8

• So when converting float segment to var segment,
we can double the capacity (size) of the segment

Float Float

var var var var

Foreach segment in array:
if seg is leaf segment:

seg = ReallocateNonLeafSegment() (1)

seg->size *= 2 (2)
seg>ChangeIntElementsToVar() (3)

Array->ChangeTypeToVarArray() (4)

Break

Reallocate non leaf segment may cause out-of-memory
Exception. If we break at (1) in the middle of the iteration,
some segments’ size will already be doubled, and the doubled
size will not be restored.

RCE Case: ConvertToVarArray Type
Confusion

• By breaking the transaction operation in
JavascriptNativeFloatArray::ConvertToVarArray

– We get a float array, with some double-sized
segments

• We can directly read/write out of the bounds
of the segments

– Find a monkey to finish the exploit

Patch Time (Again)

• Finally Microsoft starts to fix the root cause

– Probably because we continues to report OOM
bugs after Pwn2Own

• The fix

– Crash the process when detected OOM exception
in certain functions

AutoDisableInterrupt

• A class for protecting a region of code

• Crashes the process if the protected code
region throws any exception

• Solved the root cause

– Added to many import functions such as unshift,
splice, array conversions, …

– Maybe forget some function?

RCE Case: Array.reverse (Again)

• After the AutoDisableInterrupt patch

– Array.reverse is not protected by it

• CVE-2017-8619 fixed the OOM segment UAF
issue we reported

• Then we found another OOM issue in the
same function

– CVE-2017-8753

– Type confusion caused by invalid lastUsedSegment

lastUsedSegment

• JavaScript array will cache the last used array
segment, to speed up array access

• So when a segment is removed from the array,
the lastUsedSegment must also get updated,
otherwise it will cause trouble

RCE Case: Array.reverse (Again)

lastUsedSegment = head; (1)

head = AllocateNewHead(); (2)

If the last segment is leaf:
ReallocateLastSegmentToNonLeaf(); (3)

lastUsedSegment = head; (4)

Break

Reallocate non leaf segment may cause out-of-memory
Exception. If we break at (3), the array will have
a lastUsedSegment points to an invalidated segment

Exploit an Invalidated
lastUsedSegment

• Special thanks to our team member @LiuLong
for the method to exploit such bugs

• Exploit method

– Change the type of the array (e.g. Int Array ->
Float Array)

– The lastUsedSegment will not get updated when
changing array type

– Then we access elment in lastUsedSegment, we
get type confusion

And It Continuous …

• CVE-2017-8753 fixed in September

• End of OOM exploit in edge ?

• Let’s check it out 

• Demo time, maybe

From Out-of-Memory to
ASLR Bypass

Exhaust Memory in
64-bits Edge Browser?

• Usually you are not able to do this

– The browser (and the whole system) will get slow
or freeze before you using up the memory

– Because you committed too much memory

• Until we find an interesting feature in 64-bits
browser

The Fast Array Buffer

• In 64-bits edge, when you allocate an array
buffer whose size is larger than 0x10000 (64
KB), it will be a “fast array buffer”

– ab = new ArrayBuffer(0x10000); // create a virtual
array buffer

• Edge reserves 0x100000000 (4GB) bytes for
each fast array buffer

4GB for each buffer?

What Does That Mean

• When we allocate a 64 KB fast array buffer,
the real committed memory is 64 KB

• But edge will reserve 4GB virtual memory
space for it

• So we can occupy 4GB memory by just
committing 64 KB memory

Commit 64 KB, reserve 4GB

User Mode Memory Space
in 64-bits Edge

• Windows 10 uses 48-bits for user mode
memory

• User heap address will be always less than
0x800000000000

• So we only need to spray less than 0x8000
array buffers to exhaust user mode memory
space

5 Lines to Exhaust Memory
in 64-bits Edge

var arr = new Array(0x10000 / 2);
try {

for (i = 0; i < arr.length; i ++)
arr[i] = new ArrayBuffer(0x10000);

} catch (e) { // out of memory exception}

At the End of Spray

rcx=0000000800000000
rcx=0000000700000000
rcx=0000000600000000
rcx=0000000500000000
rcx=0000000400000000
rcx=0000000300000000
rcx=0000000200000000
rcx=0000000100000000

To our surprise, when we finished spraying most of the
array buffers, it begins to allocate memory at very
predictable addresses

Get Fixed Content at Fixed Address

• After we finished the spray, we know one of
the fast array buffers will be allocated at a
fixed address (e.g. 0x200000000)

• If we free that array buffer, and spray some
interesting objects (e.g. JavaScript array), we
know these objects will be allocated at that
fixed address, thus we bypassed ASLR

0x10000000

0x20000000

0x30000000

…

Fast Array Buffer

Fast Array Buffer

Fast Array Buffer

Fast Array Buffer

Fast Array Buffer

0

spray objects

Demo

Effect

• We can put controlled content at controlled
address in 64-bits edge

• Makes exploitation of certain bugs easier

– Write-to-any once

– Use after free

– Type confusion

Limitation

• It takes too long to finish the spray

– ~300 seconds on my laptop

• Not suitable for real attack

• Nice option to be used in contests such as
Pwn2Own

Beyond ASLR Bypass

• After we exhausted the 64-bits memory space,
we can make controllable OOM just like in 32-
bits process

• OOM vulnerabilities that are only exploitable
in 32-bits process can be exploited in 64-bits
now if combined with this issue

Conclusion

• Out-of-Memory exceptions in browsers are
often ignored by developers/bug hunters

• It is still possible to find exploitable if we focus
on controllable ones in modern browser

• We still need to take OOM issues seriously

Thank you!

