Spelunking credit cards 🖶 with Ruby

Chang Sau Sheong 8 Jan 2013

Sunday, 7 July, 13

YAHOO!

YAHOO!

Sunday, 7 July, 13

YAHOO!

YAHOO!

YAHOO!

What computers are you carrying with you?

Smart card

A card with an embedded integrated circuit which has components for transmitting, storing and processing data

)))

• More expensive

• Cheaper

History of smart cards

- I968/69 2 German engineers Helmut Gröttrup and Jürgen Dethloff filed for patent for a chip on an ID card
- 1970 similar patent filed by Kunitaka Arimura in Japan
- 1974 Roland Moreno filed smart card patents in 11 countries
- I977 Michel Ugon from Honeywell Bull invented the first microprocessor smart card
- I983/84 First mass use of smart cards as telephone cards by French PTT
- 1991 First SIM cards created by German smart card manufacturer G&D
- 1992 smart cards used in Carte Bleue debit cards
- 1996 EMV specification first published, version 3.1.1
- As of Q2 2012, there were 1.55 billion EMV compliant cards in use worldwide
- As end of 2011, there are about 6 billion GSM subscribers in the world

Standards

- Development and functionality of smart cards strongly driven by international standards
 - Interchangeability and interoperability very important
 - No particular vendor has dominant position

ISO/IEC 7816

- 78|6-|
 - Physical characteristics of a card
 - For card manufacturers
- 7816-2
 - Dimension, location, functions of contacts
 - For card manufacturers
- 7816-3
 - Electronic signals, transmission protocols
 - For reader manufacturers

• 7816-4

- Commands, messages, responses, files and data
- For application developers

• 7816-5

- Registration for application identifiers (AID)
- 7816-6
 - Inter industry data elements

Smart card OS

- Stored in the ROM of the microcontroller in unalterable form
- Classified into:
 - Native operating systems
 - OS and applications execute in machine language
 - Interpreter-based operating systems
 - OS in machine language, applications can be written in another language
 - Most popular include Java Card, MultOS and BasicCard

Application types

- Memory-based applications
 - The terminal accesses the entire memory for read and write operations
 - Can require certain conditions such as a PIN verification
 - Limited in terms of their complexity, typical use include transit cards
- File-based applications
 - Require processor cards and a smart card OS
 - A set of data files (EFs) located in a directory file (DF)
 - The smart card OS provides a large number of commands for data access, authentication and other operations
- Code-based applications
 - Also use data files, but includes application-specific program code that can be executed in the smart card
 - Examples include Java Card, BasicCard, Multos

File management

- Smart card file structures based on a tree structure with a root directory called MF (master file)
- The directories of a smart card are called DFs (dedicated files)
- The actual application data and operating system data are stored in EFs (elementary file)

Identifying files

- Standard filename consists of a 2-byte data element called the FID (file identifier). The FID of the MF is '3F00'
- Each DF has a DF name in addition to its FID and includes an AID (application identifier)
 - The AID consists of an RID (registered application provider identifier) and a PIX (proprietary application identifier extension). RIDs can be registered officially to ensure that they are unique throughout the world.
- Each EF has has an SFI (short file identifier) which can be provided as a parameter of a read or write command to select the EF directly

Data Type	File Name	Size	Value Range
MF (master file)	FID (file identifier)	2 bytes	'3F00'
DF (dedicated file)	FID (file identifier) DF name (usually includes an AID) AID (RID PIX)	2 bytes 1–16 bytes 5–16 bytes	0 'FFFF' 0 'F F' According to AID definition
EF (elementary file)	FID (file identifier) SFI (short file identifier)	2 bytes 5 bits	0 'FFFF' 1 '30'

Interfacing with smart cards

- Communication with contact smart cards takes place via a half-duplex, bit-serial link
- This means that only one of the communicating parties can transmit at any given time
- To prevent collisions, it is necessary to fix which party initiates communication
- For smart cards, the terminal always initiates communications, which means it is the master and the smart card is the slave
- This means the smart card transmits data only in response to a request from the terminal.
- This master-slave principle pervades all communications with smart cards

Communicating with smart cards

• The T=0 transmission protocol

- The oldest and most widely used protocol for smart cards including SIM cards
- Byte-oriented transmission protocol with relatively poor layer separation so Case 4 commands are not possible
- Terminal must use the GET RESPONSE command to retrieve data to be provided

• The T=0 transmission protocol

- Block-oriented T=1 protocol has distinct layer separation, so all four cases of command APDUs can be used
- Has a significantly more complicated structure than T=0, but it is also more robust
- Often used with payment cards and ID cards

Message structure

- Applications protocol data units (APDUs) are used to exchange all data that passes between the smart card and the terminal
- Holds a complete command to the card or a complete response from the card
- APDU commands sent to card are called command APDUs
- APDU response sent to terminal are called response APDUs

Case4 command APDU

CLA	INS	P1	P2	L _c	Data	L _e
-----	-----	----	----	----------------	------	----------------

Case3 command APDU

CLA INS P1 P2 L_c Data

Case2 command APDU

CLA INS P1 P2 L_e

Case1 command APDU

Response APDU, variant 2

Data SW1 SW2

Response APDU, variant 1

Response Response body trailer

Command APDUs

- CLA class byte
- INS instruction byte
- PI, P2 parameter bytes
- Lc length of command data
- Le length of expected response data
- Example command APDUs
 - SELECT FILE
 - READ RECORD
 - GET RESPONSE

Response APDUs

- SWI, SW2 status word I and 2
- Example SW1, SW2:
- Normal response
 - ▶ 90 00 Ok
 - 61 xx Has more data, length of data is SW2
- Warning response
 - 62 81 return data corrupted
 - 63 00 authentication failed
- Error response
 - 68 00 request not supported
 - 6A 82 File not found

PC communications

- PC/SC (Personal Computer/Smart Card)
 - De facto specification for smart card integration with PCs
 - Default in Windows, ported to Linux with PC/SC Lite, forked version in OS X
- CT-API (Card Terminal API)
 - Alternative, older specification
 - Single application, single user
- OpenCT
 - Alternative open source driver
 - Not standard

EMV

- EMV (Europay, Mastercard, Visa) is a global standard for credit and debit payment cards based on chip card technology
- First published 1996 version 3.1.1
- Current version 4.3 November 2011
- JCB joined 2004, American Express joined 2009
- Controlled by EMVCo, with 25% shareholdings amongst Visa, Mastercard, American Express and JCB
- Defines interaction at physical, electrical, data and application layers between smart card and terminals for financial transactions

EMV

- Standards based on ISO/IEC 7816 for contact cards, ISO/IEC 14443 for contactless cards
- As of Q2 2012, there were 1.5 billion EMV compliant cards in use worldwide
- Main purposes for increased security (reducing fraud) and finer control of offline transactions
- Multiple implementations of EMV -
 - VSDC Visa
 - M/Chip Mastercard
 - AEIPS American Express
 - J Smart JCB
 - D-PAS Discover/Diners Club International

EMV Adoption

Region	EMV Cards	Adoption Rate	EMV Terminals	Adoption Rate
Canada, Latin America, and the Carribbean	318,779,062	41.1%	4,443,000	76.7%
Asia Pacific	366,229,237	28.2%	4,551,000	51.4%
Africa & the Middle East	31,573,578	20.6%	462,000	75.9%
Europe Zone 1	759,760,119	84.4%	11,920,000	94.4%
Europe Zone 2	37,104,467	14.5%	610,500	68.1%
United States [†]				
TOTALS	1,513,446,463	44.7%	21,986,500	76.4%

* Figures reported in Q4 2011 and represent the latest statistics from American Express, JCB, MasterCard and Visa, as reported by their member financial institutions globally.

⁺ Figures do not include data from the United States.

- Figures as of end 2011
- Does not include US (slow adoption cost, weak justification, large number of banks)
- Liability shift to acquirers over next 3 (Visa) 5 (Mastercard) years in US

(typical) EMV flow

TLV

- Tag-Length-Value
- Tag I or 2 bytes
- Length length of the value (in bytes)
- Value actual data
- Can be nested or in sequence

Let's dive in.

Detect card and reset

- Insert card
- Wait for ATR
- Show ATR

Payment System Environment

- PSE is a DDF with the name I.PAY.SYS.DDF01
- Contains one or more EMV applications
- Doesn't always exist

List applications

- SELECT the PSE
- If PSE doesn't exist, go through list of AIDs that the terminal supports to get the list of EMV applications
- If PSE exists, use GET_RESPONSE to get the PSE FCI
- PSE FCI has the SFI to the PSE record
- Use GET_RECORD with SFI to get the PSE record
- PSE record has ADFs of the EMV applications

b 8	b7	b6	b5	b4	b3	b2	b1	Meaning
x	X	X	X	x				SFI
					1	0	0	P1 is a record number

Select application

- ADF represents I EMV application
- SELECT the ADF to get the ADF FCI
- ADF FCI has information on application including the PDOL (Processing Options Data Object List)
 - PDOL tells the terminal what the card needs
 - PDOL doesn't always exist, if there is no PDOL use
 83 00
- use GET_PROCESSING_OPTIONS with the PDOL to initiate the EMV transaction

Get data from card

- GPO returns the AIP (Application Interchange Profile) and AFL (Application File Locator)
- AIP tells the terminal which features are supported
- AFL tells the terminal while files and records can be read

AIP

AIP tells the terminal:

- What features are supported by the application
- Whether terminal risk management should be performed

AIP Byte 1 (Leftmost)

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
0	х	х	х	х	х	х	х	RFU
х	1	х	х	х	х	х	х	SDA supported
х	х	1	х	х	х	х	х	DDA supported
х	х	х	1	х	Х	х	x	Cardholder verification is supported
х	х	х	х	1	х	х	х	Terminal risk management is to be performed
х	х	х	х	х	1	х	х	Issuer authentication is supported ¹⁸
х	х	х	х	х	х	0	х	RFU
Х	х	х	х	х	х	х	1	CDA supported

AIP Byte 2 (Rightmost)

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
0	х	х	х	х	x	х	х	RFU
x	0	х	х	х	х	х	х	RFU
x	х	0	х	х	х	х	х	RFU
x	х	х	0	х	х	х	х	RFU
x	х	х	х	0	х	х	х	RFU
x	х	х	х	х	0	х	х	RFU
x	х	х	х	х	х	0	х	RFU
x	x	х	х	х	x	х	0	RFU

That's it folks (for now)