PipeDream: Generalized Pipeline
Parallelism for DNN Training

Deepak Narayanan$, Aaron Harlap™, Amar Phanishayee*, Vivek Seshadri*,
Nikhil R. Devanur*, Gregory R. Ganger™, Phillip B. Gibbons™, Matei Zaharia$

* Microsoft Research *Carnegie Mellon University $ Stanford University

Deep Neural Networks have empowered state of
the art results across a range of applications...

6L 6T0T & & LD 6T60T QLW SIS

|

Hello, my name is Deepak

Machine Translation

amazonalexa
N’

Speech-to-Text Game Playing ’

..hut first need to be trained!

activations

—

]

7

ﬂ

prediction
y; = lion
Viv

Weight parameters W R
- |oss(y;, ¥;)

gradients

W optimized using standard iterative optimization procedures
W=W-—-n-VW

Background: DNN Training

Model training time- and compute- intensive!

Parallelizing DNN Training: Data Parallelism

Despite many performance optimizations,
communication overhead high!

ncopiesof the B s
same model

—— VGG-16 —o— ResNet-50

LA : —=— GNMT-16
l : | l =Ry
; ' 0 &£ 100
' .=
:ooo: n : B: 801 —
N VA A . B ggj .
I ' | . =
€]
" | Workern | gg 28 ——¢ | |
ML ’ S 124 8 16 32

) 2] Number of GPUs
VW = VW + VW2 + - + YW 8xV100s with NVLink (AWS)

Gradient aggregation using AllReduce PyTorch + NCCL 2.4

Parallelizing DNN training: Model Parallelism

om0 \
(- I
| } \
| ﬂ] e Low hardware efficiency
| |
= Nt nnea
: Worker 1 : Worker 1 §§2\ :§§§§ % 1
| | | Worker 2 \§§§§ % % &
Allinputs : worker3 N\ I
¥ | ¢ l Worker 4 1|1 \\\\\\\\\\ \\\\
|’ % I AMMRANARNNNY RN N
l__‘____/' Time >
Forward Backward S
Single version of weights split over workers B pass Pass ldle

Activations and gradients sent between
workers using peer-to-peer communication

PipeDream: Pipeline-Parallel Training

We propose pipeline parallelism, a combination of data and model parallelism with pipelining

1138

Worker 1 A %

N NN
D
Worker 2 A \§§1 1 \\\
N o000
Worker 3 &\& N 1 1%2 2
Worker 4 k\& 11 2 |2 3

Startup State Steady State _

Time
I Forward Pass [| Backward Pass XYY Idle

Pipeline-parallel training up to 5.3x faster than data parallelism
without sacrificing on final accuracy of the model 7

Pipelining in DNN Training != Traditional Pipelining

« How should the operators in a DNN model be partitioned into pipeline stages?
 Each operator has a different computation time
 Activations and gradients need to be communicated across stages

« How should forward and backward passes of different inputs be scheduled?
 Training is bidirectional
 Forward pass followed by backward pass to compute gradients

« How should weight and activation versions be managed?
« Backward pass operators depend on internal state (W, activations)

Outline

 Challenges for effective pipeline-parallel training
* Partitioning and load balancing operators across workers
 Scheduling of forward and backward passes of different inputs
« Managing weights and activation versions for effective learning

e Evaluation

How do we assign operators to pipeline stages?

=il =

Stage 2 Stage 3

comm comm
tl t1—>2 t2 t2—>3 t3

 Desiderata #1: t4, t,, t3 as close to each other as possible
« Compute resources seldom idle — better hardware efficiency

» Desiderata #2: t{OINMM gnd ¢ S9N minimized
* Less communication — better hardware efficiency 10

How do we assign operators to pipeline stages?

. : Throughput = a.
Compute time = 2] (1/2)x2=1 int

[Compute time = 1]Throughput:1 zw

For some OperatOrS,
2 Wi < 2ajpt

Better load balancing across stages Data-parallel communication small

Replication of stages helps load balance computation
and reduce communication between workers .

Example PipeDream configuration

Pipelined model parallelism
1

0 o —

O o|l=1%el®|=]02 =00

Ol ol |9 e @ |09 |00

S 10) L
parallelism

Stage 1 Stage 2 Stage 3 Stage 4
Configuration: 2-3-2-1

Stages can have different replication factors

12

PipeDream Profiler and Optimizer

‘ Computational
Input DNN graph with profile

Profiler

Optimizer

1

Deployment constraints such as
number of accelerators, memory and
interconnect characteristics

Determines a partitioning of operators
amongst workers, while also deciding
replication factors

Generalizes along many axes

« Hardware topologies

« Model structures

« Memory capacities of workers

See paper for details of
algorithm!

Outline

 Challenges for effective pipeline-parallel training

 Scheduling of forward and backward passes of different inputs
« Managing weights and activation versions for effective learning

e Evaluation

1F1B Scheduling

Workers alternate between forward and backward passes
« Workers always utilized
 Gradients used to update model immediately

\

Worker 1 A \

Worker 2 A §§§1 1 §
Worker 3 && B 1 1§2 2 o0
Worker 4 §& 1)1 2 %ﬂ 3
| Startuf) State | Stead'y State
Time

I Forward Pass [| Backward Pass XYY Idle

To support stage replication, need to modify this mechanism slightly — see paper for details!

Outline

 Challenges for effective pipeline-parallel training

« Managing weights and activation versions for effective learning

e Evaluation

Naive pipelining leads to weight version mismatches

Naive pipelining leads to mismatch in weight versions

hon A > Vn Forward pass
Wit
Vx, -« Wiip < Vy, Backward pass

Input n sees updates in backward pass not seen in the forward
pass, leading to incorrect gradients

17

1F1B Scheduling + Weight Stashing

Naive pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
 Ensures same weight versions used in both forward and backward pass

hon A > Yn Forward pass
Wit
[Wh IWn+1 Wn+2] o0
: Stashed weights
Vx, -« w, . Vy, Backward pass

« Worst case memory footprint similar to data parallelism (= n - (|W|+|A|)/n>

Outline

» Evaluation
« Setup
« Comparison to Data Parallelism on Time-to-Accuracy
« Communication Overhead of Pipeline Parallelism

Evaluation Setup

* Integrated PipeDream with PyTorch in ~3000 lines of Python code

* Integrated with PyTorch’'s communication library

 NCCL backend for Data Parallelism baselines
 Gloo backend for PipeDream

 Experiments run on three different server types
« Cluster A: 4xV100 GPUs, PCle intra-server, and 10 Gbps inter-server (Azure)
Cluster B: 8xV100 GPUs, NVLink intra-server, and 25 Gbps inter-server (AWS)
Cluster C: 1xTitan X, and 40 Gbps inter-server (private)

PipeDream > Data Parallelism (DP) end-to-end

Top-1 Accuracy (%)
-

S
S
]

N
o
!

—— DP —— DP

-
-

—e&— PipeDream —&— PipeDream

N
-
I

2.46x faster

5.28x faster

Top-1 Accuracy (%)
-

20 40 0 510 15 20
Time (hours) Time (hours)

(a) Cluster-A. (b) Cluster-B.

21

PipeDream vs. Data Parallelism on Time-to-Accuracy

Task Model Dataset Accuracy # Servers X # GPUs PipeDream Speedup over DP
Threshold per server (Cluster) Config

Epoch time TTA

4x4 (A) 15-1 5.28X 5.28X

VGG-16 [48] ImageNet [44] 68% top-1 2x8 (B) 15-1 2 08% 2 46x

4x4 (A) 16 1X 1X

Image ResNet-50 [26] ImageNet [44] 75.9% top-1 2x8 (B) 16 15 15
Classification)

: 4x4 (A 15-1 4.92X N/A

AlexNet [37] Synthetic Data N/A 2x8 (B) 15-1 5 04x N/A

1x4 (A) Straight 1.46x 2.2X

GNMT-16 [55] WMT16 EN-De 21.8 BLEU 4x4 (A) Straight 2.34x 2.92X

Translation 2x8 (B) Straight 3.14x 3.14X

1x4 (A) Straight 1.5X 1.5X

GNMT-8 [55] WMT16 EN-De 21.8 BLEU 3x4 (A) Straight 2.95x 2.95x

2x8 (B) 16 1X 1X

Language Model AWD LM [40] Penn Treebank [41] 98 perplexity 1x4 (A) Straight 4.25X 4.25X

Video Captioning S2VT [54] MSVD [11] 0.294 METEOR 4x1 (C) 2-1-1 3.01x 3.01x

22

PipeDream vs. Data Parallelism on Time-to-Accuracy

Task

Image

Classfcaton Experiments on 4 different tasks: image
classification, translation, language
modeling, video captioning

Translation

Language Model

Video Captioning

PipeDream vs. Data Parallelism on Time-to-Accuracy

With the same number of GPUs, PipeDream
up to 5.3x faster than Data Parallelism

24

PipeDream vs. Data Parallelism on Time-to-Accuracy

PipeDream

Config

Optimizer recommends a number of L
different configurations like 15-1, —

Straight, and a fully data-parallel setup Staight
Straight

Straight
16

Straight

2-1-1

PipeDream reduces communication overhead

le8 B Becst non-DP e DP

A gl

GNMT-8 GNMT-16 VGG-16 ResNet-50

[——
o
|

Bytes communicated
per training sample
o o
- N

For many models, intermediate activations and gradients order of
magnitude smaller than communication with Data Parallelism (DP)

26

Conclusion

* Model and data parallelism often suffer from high communication overhead
and low resource utilization for certain models and deployments

 PipeDream shows pipelining can be used to accelerate DNN training

* Pipelining, when combined with data and model parallelism in a principled
way, achieves end-to-end speedups of up to 5.3x

Code available at
https://github.com/msr-fiddle/pipedream

a https://cs.stanford.edu/~deepakn/

27

https://github.com/msr-fiddle/pipedream

