PipeDream: Generalized Pipeline Parallelism for DNN Training

Deepak Narayanan[§], Aaron Harlap[†], Amar Phanishayee[⋆], Vivek Seshadri[⋆], Nikhil R. Devanur[⋆], Gregory R. Ganger[†], Phillip B. Gibbons[†], Matei Zaharia[§]

* Microsoft Research † Carnegie Mellon University § Stanford University

Deep Neural Networks have empowered state of the art results across a range of applications...

Image Classification

Speech-to-Text

வணக்கம் என் பெயர் தீபக்

1

Hello, my name is Deepak

Machine Translation

...but first need to be trained!

W optimized using standard iterative optimization procedures

$$W = W - \eta \cdot \nabla W$$

Background: DNN Training

W optimized using standard iterative optimization procedures

$$W = W - \eta \cdot \nabla W$$

Parallelizing DNN Training: Data Parallelism

n copies of the same model

$$\nabla W = \nabla W^1 + \nabla W^2 + \dots + \nabla W^n$$

Gradient aggregation using AllReduce

Despite many performance optimizations, communication overhead high!

8xV100s with NVLink (AWS) PyTorch + NCCL 2.4

Parallelizing DNN training: Model Parallelism

Single version of weights split over workers

Activations and gradients sent between workers using peer-to-peer communication

Low hardware efficiency

PipeDream: Pipeline-Parallel Training

We propose pipeline parallelism, a combination of data and model parallelism with pipelining

Pipeline-parallel training up to **5.3x faster** than data parallelism without sacrificing on final accuracy of the model

Pipelining in DNN Training != Traditional Pipelining

- How should the operators in a DNN model be partitioned into pipeline stages?
 - Each operator has a different computation time
 - Activations and gradients need to be communicated across stages
- How should forward and backward passes of different inputs be scheduled?
 - Training is bidirectional
 - Forward pass followed by backward pass to compute gradients
- How should weight and activation versions be managed?
 - Backward pass operators depend on internal state (W, activations)

Outline

- Background and Motivation
- Challenges for effective pipeline-parallel training
 - Partitioning and load balancing operators across workers
 - Scheduling of forward and backward passes of different inputs
 - Managing weights and activation versions for effective learning
- Evaluation

How do we assign operators to pipeline stages?

- Desiderata #1: t_1 , t_2 , t_3 as close to each other as possible
 - Compute resources seldom idle → better hardware efficiency
- Desiderata #2: $t_{1\rightarrow 2}^{\mathbf{comm}}$ and $t_{2\rightarrow 3}^{\mathbf{comm}}$ minimized
 - Less communication → better hardware efficiency

How do we assign operators to pipeline stages?

Compute time = 2 Throughput = $(1/2) \times 2 = 1$

Compute time = 1 Throughput = 1

For **some** operators, $\sum_{i} W_{i} < 2a_{int}$

Better load balancing across stages

Data-parallel communication small

Replication of stages helps load balance computation and reduce communication between workers

Example PipeDream configuration

Stages can have different replication factors

PipeDream Profiler and Optimizer

Input DNN

Computational graph with profile

Optimizer

Deployment constraints such as number of accelerators, memory and interconnect characteristics

Determines a partitioning of operators amongst workers, while also deciding replication factors

Generalizes along many axes

- Hardware topologies
- Model structures
- Memory capacities of workers

See paper for details of algorithm!

Outline

- Background and Motivation
- Challenges for effective pipeline-parallel training
 - Partitioning and load balancing operators across workers
 - Scheduling of forward and backward passes of different inputs
 - Managing weights and activation versions for effective learning
- Evaluation

1F1B Scheduling

Workers alternate between forward and backward passes

To support stage replication, need to modify this mechanism slightly – see paper for details!

Outline

- Background and Motivation
- Challenges for effective pipeline-parallel training
 - Partitioning and load balancing operators across workers
 - Scheduling of forward and backward passes of different inputs
 - Managing weights and activation versions for effective learning
- Fvaluation

Naïve pipelining leads to weight version mismatches

Naïve pipelining leads to mismatch in weight versions

Input n sees updates in backward pass not seen in the forward pass, leading to incorrect gradients

1F1B Scheduling + Weight Stashing

Naïve pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions

Ensures same weight versions used in both forward and backward pass

• Worst case memory footprint similar to data parallelism $(=n \cdot (|W|+|A|)/n)$

Outline

- Background and Motivation
- Challenges for effective pipeline-parallel training
- Evaluation
 - Setup
 - Comparison to Data Parallelism on Time-to-Accuracy
 - Communication Overhead of Pipeline Parallelism
 - Comparison to Model Parallelism and Hybrid Parallelism on Throughput
 - PipeDream's Memory Footprint

Evaluation Setup

- Integrated PipeDream with PyTorch in ~3000 lines of Python code
- Integrated with PyTorch's communication library
 - NCCL backend for Data Parallelism baselines
 - Gloo backend for PipeDream
- Experiments run on three different server types
 - Cluster A: 4xV100 GPUs, PCIe intra-server, and 10 Gbps inter-server (Azure)
 - Cluster B: 8xV100 GPUs, NVLink intra-server, and 25 Gbps inter-server (AWS)
 - Cluster C: 1xTitan X, and 40 Gbps inter-server (private)

PipeDream > Data Parallelism (DP) end-to-end

Task	Model	Dataset	Accuracy Threshold	# Servers × # GPUs per server (Cluster)	PipeDream Config	Speedup over DP	
				1 , ,	C	Epoch time	TTA
	VGG-16 [48]	ImageNet [44]	68% top-1	4x4 (A)	15-1	5.28×	5.28×
				2x8 (B)	15-1	2.98×	2.46×
Imaga	ResNet-50 [26]	ImageNet [44]	75.9% top-1	4x4 (A)	16	1×	$1 \times$
Image Classification	Resinet-50 [26]			2x8 (B)	16	1×	1×
Classification	AlexNet [37]	Synthetic Data	N/A	4x4 (A)	15-1	4.92×	N/A
	Alexivet [37]	Symmetic Data		2x8 (B)	15-1	2.04×	N/A
	GNMT-16 [55]	WMT16 EN-De	21.8 BLEU	1x4 (A)	Straight	1.46×	$2.2 \times$
				4x4 (A)	Straight	$2.34 \times$	$2.92 \times$
Translation				2x8 (B)	Straight	3.14×	3.14×
				1x4 (A)	Straight	1.5×	1.5×
	GNMT-8 [55]	WMT16 EN-De	21.8 BLEU	3x4 (A)	Straight	$2.95 \times$	$2.95 \times$
				2x8 (B)	16	1×	1×
Language Model	AWD LM [40]	Penn Treebank [41]	98 perplexity	1x4 (A)	Straight	4.25×	4.25×
Video Captioning	S2VT [54]	MSVD [11]	0.294 METEOR	4x1 (C)	2-1-1	3.01×	3.01×

Task	Model	Dataset	Accuracy Threshold	# Servers × # GPUs per server (Cluster)	PipeDream Config	Speedup o	over DP
			11110011011	per server (cruster)	Coming	Epoch time	TTA
	VGG-16 [48]	ImageNet [44]	68% top-1	4x4 (A) 2x8 (B)	15-1 15-1		
Image Classification				fferent ta nslation,			<i>Y</i> < <
Translation	(model	ling, vid	leo captio	ning		
Translation	GNMT-8 [55]	WMT16 EN-De	21.8 BLEU	1x4 (A) 3x4 (A) 2x8 (B)	Straight Straight 16	1.5× 2.95× 1×	1.5× 2.95× 1×
Language Model	AWD LM [40]	Penn Treebank [41]	98 perplexity	1x4 (A)		4.25×	
Video Captioning	S2VT [54]	MSVD [11]	0.294 METEOR	4x1 (C)	2-1-1	3.01×	3.01×

Task	Model	Dataset	Accuracy Threshold	# Servers × # GPUs per server (Cluster)	PipeDream Config	Speedup o	ver DP
				1		Epoch time	TTA
	VGG-16 [48]	ImageNet [44]	68% top-1	4x4 (A)	15-1	5.28×	5.28×
					15-1	2.98×	2.46×
With the	o camo	number o	f GPIIc	PineDre:	am	1× 1×	1× 1×
		ster than	•	•		4.92× 2.04×	N/A N/A
Translation	GNMT-16 [55]	WMT16 EN-De	21.8 BLEU	4x4 (A) 2x8 (B)	Straight Straight	1.46× 2.34× 3.14×	2.2× 2.92×
TTAIISIALIOII							3.14×
	GNMT-8 [55]	WMT16 EN-De	21.8 BLEU	1x4 (A) 3x4 (A) 2x8 (B)	Straight Straight 16	1.5× 2.95× 1×	3.14× 1.5× 2.95× 1×
Language Model	GNMT-8 [55] AWD LM [40]	WMT16 EN-De Penn Treebank [41]	21.8 BLEU 98 perplexity	3x4 (A)	Straight	2.95×	1.5× 2.95×

Task	Model	Dataset	Accuracy Threshold	# Servers × # GPUs per server (Cluster)	PipeDream Config	Speedup over DP	
				1 /		Epoch time	TTA
	VGG-16 [48]	ImageNet [44]	68% top-1	4x4 (A) 2x8 (B)	15-1 15-1	5.28× 2.98×	
Ontimi-	zor roco	mmends	a numh	or of	16 16	1× 1×	1× 1×
•		iguration			15-1 15-1	4.92× 2.04×	N/A N/A
		ully data-		•	Straight Straight Straight	1.46× 2.34× 3.14×	2.2× 2.92× 3.14×
	GNMT-8 [55]	WMT16 EN-De	21.8 BLEU	1x4 (A) 3x4 (A) 2x8 (B)	Straight Straight 16	1.5× 2.95× 1×	1.5× 2.95× 1×
Language Model	AWD LM [40]	Penn Treebank [41]	98 perplexity	1x4 (A)	Straight	4.25×	
Video Captioning	S2VT [54]	MSVD [11]	0.294 METEOR	4x1 (C)	2-1-1	3.01×	3.01×

PipeDream reduces communication overhead

For many models, intermediate activations and gradients order of magnitude smaller than communication with Data Parallelism (DP)

Conclusion

- Model and data parallelism often suffer from high communication overhead and low resource utilization for certain models and deployments
- PipeDream shows pipelining can be used to accelerate DNN training
- Pipelining, when combined with data and model parallelism in a principled way, achieves end-to-end speedups of up to 5.3x

Code available at https://github.com/msr-fiddle/pipedream

https://cs.stanford.edu/~deepakn/