
PipeDream: Generalized Pipeline
Parallelism for DNN Training

Deepak Narayanan§, Aaron Harlap†, Amar Phanishayee★, Vivek Seshadri★,
Nikhil R. Devanur★, Gregory R. Ganger†, Phillip B. Gibbons†, Matei Zaharia§

★Microsoft Research † Carnegie Mellon University § Stanford University

Deep Neural Networks have empowered state of
the art results across a range of applications…

2

cat dog

வண#க%எ'ெபய+த-ப#

Hello, my name is Deepak

Machine Translation

Game PlayingSpeech-to-Text

Image Classification

…but first need to be trained!

3

!" = tiger

$" =

activations

gradients

% optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

Background: DNN Training

4

!" = tiger

$" =

activations

gradients

W optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

Model training time- and compute- intensive!

Parallelizing DNN Training: Data Parallelism

…

Worker 1

∇" = ∇"$ + ∇"& +⋯+ ∇"(

∇"$

Gradient aggregation using AllReduce

) copies of the
same model

5

Despite many performance optimizations,
communication overhead high!

8xV100s with NVLink (AWS)
PyTorch + NCCL 2.4

…

Worker *
∇"(

Worker !

Parallelizing DNN training: Model Parallelism

All inputs

Single version of weights split over workers

Activations and gradients sent between
workers using peer-to-peer communication

6

Low hardware efficiency

Worker 1

PipeDream: Pipeline-Parallel Training

7

Pipeline-parallel training up to 5.3x faster than data parallelism
without sacrificing on final accuracy of the model

We propose pipeline parallelism, a combination of data and model parallelism with pipelining

Pipelining in DNN Training != Traditional Pipelining

8

• How should the operators in a DNN model be partitioned into pipeline stages?
• Each operator has a different computation time
• Activations and gradients need to be communicated across stages

• How should forward and backward passes of different inputs be scheduled?
• Training is bidirectional
• Forward pass followed by backward pass to compute gradients

• How should weight and activation versions be managed?
• Backward pass operators depend on internal state (!, activations)

Outline

9

• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation

How do we assign operators to pipeline stages?

10

Stage 1 Stage 2 Stage 3

!" !# !$

• Desiderata #1: !", !#, !$ as close to each other as possible
• Compute resources seldom idle → better hardware efficiency

• Desiderata #2: !"→#comm and !#→$comm minimized
• Less communication → better hardware efficiency

!"→#comm !#→$comm

How do we assign operators to pipeline stages?

11

Replication of stages helps load balance computation
and reduce communication between workers

Compute time = 2

Compute time = 1 Throughput = 1

Compute time = 2 !int

%
&
'&

For some operators,
∑&'& < 2!int

Throughput =
(1 / 2) × 2 = 1

Better load balancing across stages Data-parallel communication small

Example PipeDream configuration

12
Stages can have different replication factors

Configuration: 2-3-2-1

PipeDream Profiler and Optimizer

13

Computational
graph with profileInput DNN

Deployment constraints such as
number of accelerators, memory and

interconnect characteristics

Optimizer

Profiler
Determines a partitioning of operators
amongst workers, while also deciding
replication factors

Generalizes along many axes
• Hardware topologies
• Model structures
• Memory capacities of workers

See paper for details of
algorithm!

Outline

14

• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation

1F1B Scheduling
Workers alternate between forward and backward passes
• Workers always utilized
• Gradients used to update model immediately

15To support stage replication, need to modify this mechanism slightly – see paper for details!

Outline

16

• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation

Naïve pipelining leads to weight version mismatches

Naïve pipelining leads to mismatch in weight versions

Input ! sees updates in backward pass not seen in the forward
pass, leading to incorrect gradients

17

"#$# %# Forward pass

"#&'∇$# ∇%# Backward pass

"#&)

!"#" $" Forward pass

%&∇#" ∇$" Backward pass

!"()

1F1B Scheduling + Weight Stashing
Naïve pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
• Ensures same weight versions used in both forward and backward pass

• Worst case memory footprint similar to data parallelism (= + ⋅ -(/ (0) ")
18

!" !"() !"(2
Stashed weights

Outline

19

• Background and Motivation

• Challenges for effective pipeline-parallel training

• Evaluation
• Setup
• Comparison to Data Parallelism on Time-to-Accuracy
• Communication Overhead of Pipeline Parallelism
• Comparison to Model Parallelism and Hybrid Parallelism on Throughput
• PipeDream’s Memory Footprint

Evaluation Setup
• Integrated PipeDream with PyTorch in ~3000 lines of Python code

• Integrated with PyTorch’s communication library
• NCCL backend for Data Parallelism baselines
• Gloo backend for PipeDream

• Experiments run on three different server types
• Cluster A: 4xV100 GPUs, PCIe intra-server, and 10 Gbps inter-server (Azure)
• Cluster B: 8xV100 GPUs, NVLink intra-server, and 25 Gbps inter-server (AWS)
• Cluster C: 1xTitan X, and 40 Gbps inter-server (private)

20

5.28x faster
2.46x faster

21

PipeDream > Data Parallelism (DP) end-to-end

22

PipeDream vs. Data Parallelism on Time-to-Accuracy

23

PipeDream vs. Data Parallelism on Time-to-Accuracy

Experiments on 4 different tasks: image
classification, translation, language

modeling, video captioning

24

PipeDream vs. Data Parallelism on Time-to-Accuracy

With the same number of GPUs, PipeDream
up to 5.3x faster than Data Parallelism

25

PipeDream vs. Data Parallelism on Time-to-Accuracy

Optimizer recommends a number of
different configurations like 15-1,

Straight, and a fully data-parallel setup

PipeDream reduces communication overhead

For many models, intermediate activations and gradients order of
magnitude smaller than communication with Data Parallelism (DP)

26

Conclusion

https://cs.stanford.edu/~deepakn/

• Model and data parallelism often suffer from high communication overhead
and low resource utilization for certain models and deployments

• PipeDream shows pipelining can be used to accelerate DNN training

• Pipelining, when combined with data and model parallelism in a principled
way, achieves end-to-end speedups of up to 5.3x

Code available at
https://github.com/msr-fiddle/pipedream

27

https://github.com/msr-fiddle/pipedream

