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Deep Neural Networks have empowered state of
the art results across a range of applications...
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..hut first need to be trained!
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Background: DNN Training

Model training time- and compute- intensive!



Parallelizing DNN Training: Data Parallelism

Despite many performance optimizations,
communication overhead high!
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Parallelizing DNN training: Model Parallelism
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PipeDream: Pipeline-Parallel Training

We propose pipeline parallelism, a combination of data and model parallelism with pipelining
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Pipeline-parallel training up to 5.3x faster than data parallelism
without sacrificing on final accuracy of the model 7



Pipelining in DNN Training != Traditional Pipelining

« How should the operators in a DNN model be partitioned into pipeline stages?
 Each operator has a different computation time
 Activations and gradients need to be communicated across stages

« How should forward and backward passes of different inputs be scheduled?
 Training is bidirectional
 Forward pass followed by backward pass to compute gradients

« How should weight and activation versions be managed?
« Backward pass operators depend on internal state (W, activations)



Outline

 Challenges for effective pipeline-parallel training
* Partitioning and load balancing operators across workers
 Scheduling of forward and backward passes of different inputs
« Managing weights and activation versions for effective learning

e Evaluation



How do we assign operators to pipeline stages?
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 Desiderata #1: t4, t,, t3 as close to each other as possible
« Compute resources seldom idle — better hardware efficiency

» Desiderata #2: t{OINMM gnd ¢ S9N minimized
* Less communication — better hardware efficiency 10



How do we assign operators to pipeline stages?

. : Throughput = a.
Compute time = 2 ] (1/2)x2=1 int
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For some OperatOrS,
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Better load balancing across stages Data-parallel communication small

Replication of stages helps load balance computation
and reduce communication between workers .



Example PipeDream configuration

Pipelined model parallelism
1
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Configuration: 2-3-2-1

Stages can have different replication factors
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PipeDream Profiler and Optimizer

‘ Computational
Input DNN graph with profile

Profiler

Optimizer

1

Deployment constraints such as
number of accelerators, memory and
interconnect characteristics

Determines a partitioning of operators
amongst workers, while also deciding
replication factors

Generalizes along many axes

« Hardware topologies

« Model structures

« Memory capacities of workers

See paper for details of
algorithm!



Outline

 Challenges for effective pipeline-parallel training

 Scheduling of forward and backward passes of different inputs
« Managing weights and activation versions for effective learning

e Evaluation



1F1B Scheduling

Workers alternate between forward and backward passes
« Workers always utilized
 Gradients used to update model immediately
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To support stage replication, need to modify this mechanism slightly — see paper for details!



Outline

 Challenges for effective pipeline-parallel training

« Managing weights and activation versions for effective learning

e Evaluation



Naive pipelining leads to weight version mismatches

Naive pipelining leads to mismatch in weight versions
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Input n sees updates in backward pass not seen in the forward
pass, leading to incorrect gradients
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1F1B Scheduling + Weight Stashing

Naive pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
 Ensures same weight versions used in both forward and backward pass
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« Worst case memory footprint similar to data parallelism (= n - (|W|+|A|)/n>



Outline

» Evaluation
« Setup
« Comparison to Data Parallelism on Time-to-Accuracy
« Communication Overhead of Pipeline Parallelism



Evaluation Setup

* Integrated PipeDream with PyTorch in ~3000 lines of Python code

* Integrated with PyTorch’'s communication library

 NCCL backend for Data Parallelism baselines
 Gloo backend for PipeDream

 Experiments run on three different server types
« Cluster A: 4xV100 GPUs, PCle intra-server, and 10 Gbps inter-server (Azure)
Cluster B: 8xV100 GPUs, NVLink intra-server, and 25 Gbps inter-server (AWS)
Cluster C: 1xTitan X, and 40 Gbps inter-server (private)




PipeDream > Data Parallelism (DP) end-to-end
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PipeDream vs. Data Parallelism on Time-to-Accuracy

Task Model Dataset Accuracy # Servers X # GPUs PipeDream Speedup over DP
Threshold per server (Cluster) Config

Epoch time TTA

4x4 (A) 15-1 5.28X  5.28X

VGG-16 [48] ImageNet [44] 68% top-1 2x8 (B) 15-1 2 08% 2 46x

4x4 (A) 16 1X 1X

Image ResNet-50 [26] ImageNet [44] 75.9% top-1 2x8 (B) 16 15 15
Classification )

: 4x4 (A 15-1 4.92X N/A

AlexNet [37] Synthetic Data N/A 2x8 (B) 15-1 5 04x N/A

1x4 (A) Straight 1.46x  2.2X

GNMT-16 [55] WMT16 EN-De 21.8 BLEU 4x4 (A) Straight 2.34x  2.92X

Translation 2x8 (B) Straight 3.14x 3.14X

1x4 (A) Straight 1.5X  1.5X

GNMT-8 [55] WMT16 EN-De 21.8 BLEU 3x4 (A) Straight 2.95x  2.95x

2x8 (B) 16 1X 1X

Language Model AWD LM [40] Penn Treebank [41] 98 perplexity 1x4 (A) Straight 4.25X  4.25X

Video Captioning S2VT [54] MSVD [11] 0.294 METEOR 4x1 (C) 2-1-1 3.01x 3.01x
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PipeDream vs. Data Parallelism on Time-to-Accuracy

Task

Image

Classfcaton Experiments on 4 different tasks: image
classification, translation, language
modeling, video captioning

Translation

Language Model

Video Captioning




PipeDream vs. Data Parallelism on Time-to-Accuracy

With the same number of GPUs, PipeDream
up to 5.3x faster than Data Parallelism
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PipeDream vs. Data Parallelism on Time-to-Accuracy

PipeDream

Config

Optimizer recommends a number of L
different configurations like 15-1, —

Straight, and a fully data-parallel setup Staight
Straight

Straight
16

Straight

2-1-1




PipeDream reduces communication overhead
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For many models, intermediate activations and gradients order of
magnitude smaller than communication with Data Parallelism (DP)
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Conclusion

* Model and data parallelism often suffer from high communication overhead
and low resource utilization for certain models and deployments

 PipeDream shows pipelining can be used to accelerate DNN training

* Pipelining, when combined with data and model parallelism in a principled
way, achieves end-to-end speedups of up to 5.3x

Code available at
https://github.com/msr-fiddle/pipedream

a https://cs.stanford.edu/~deepakn/
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