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Deep Neural Networks have empowered state of 
the art results across a range of applications…

2

cat dog

வண#க%எ'ெபய+த-ப#

Hello, my name is Deepak

Machine Translation

Game PlayingSpeech-to-Text

Image Classification



…but first need to be trained!
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Background: DNN Training
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Model training time- and compute- intensive!



Parallelizing DNN Training: Data Parallelism
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Despite many performance optimizations, 
communication overhead high!

8xV100s with NVLink (AWS)
PyTorch + NCCL 2.4

…
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Worker !

Parallelizing DNN training: Model Parallelism

All inputs

Single version of weights split over workers

Activations and gradients sent between 
workers using peer-to-peer communication
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Low hardware efficiency

Worker 1



PipeDream: Pipeline-Parallel Training
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Pipeline-parallel training up to 5.3x faster than data parallelism 
without sacrificing on final accuracy of the model

We propose pipeline parallelism, a combination of data and model parallelism with pipelining



Pipelining in DNN Training != Traditional Pipelining
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• How should the operators in a DNN model be partitioned into pipeline stages?
• Each operator has a different computation time
• Activations and gradients need to be communicated across stages

• How should forward and backward passes of different inputs be scheduled?
• Training is bidirectional
• Forward pass followed by backward pass to compute gradients

• How should weight and activation versions be managed? 
• Backward pass operators depend on internal state (!, activations)



Outline
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• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation



How do we assign operators to pipeline stages?
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Stage 1 Stage 2 Stage 3

!" !# !$

• Desiderata #1: !", !#, !$ as close to each other as possible
• Compute resources seldom idle → better hardware efficiency

• Desiderata #2: !"→#comm and !#→$comm minimized
• Less communication → better hardware efficiency

!"→#comm !#→$comm



How do we assign operators to pipeline stages?
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Replication of stages helps load balance computation 
and reduce communication between workers

Compute time = 2

Compute time = 1 Throughput = 1

Compute time = 2 !int

%
&
'&

For some operators, 
∑&'& < 2!int

Throughput =
(1 / 2) × 2 = 1 

Better load balancing across stages Data-parallel communication small



Example PipeDream configuration
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Stages can have different replication factors

Configuration: 2-3-2-1



PipeDream Profiler and Optimizer
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Computational 
graph with profileInput DNN

Deployment constraints such as 
number of accelerators, memory and 

interconnect characteristics

Optimizer

Profiler
Determines a partitioning of operators 
amongst workers, while also deciding 
replication factors

Generalizes along many axes
• Hardware topologies
• Model structures
• Memory capacities of workers

See paper for details of 
algorithm!



Outline
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• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation



1F1B Scheduling
Workers alternate between forward and backward passes
• Workers always utilized
• Gradients used to update model immediately

15To support stage replication, need to modify this mechanism slightly – see paper for details! 



Outline
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• Background and Motivation

• Challenges for effective pipeline-parallel training
• Partitioning and load balancing operators across workers
• Scheduling of forward and backward passes of different inputs
• Managing weights and activation versions for effective learning

• Evaluation



Naïve pipelining leads to weight version mismatches

Naïve pipelining leads to mismatch in weight versions

Input ! sees updates in backward pass not seen in the forward 
pass, leading to incorrect gradients
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!"#" $" Forward pass

%&∇#" ∇$" Backward pass

!"()

1F1B Scheduling + Weight Stashing
Naïve pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
• Ensures same weight versions used in both forward and backward pass

• Worst case memory footprint similar to data parallelism (= + ⋅ -( / ( 0 ) ")
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Outline
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• Background and Motivation

• Challenges for effective pipeline-parallel training

• Evaluation
• Setup
• Comparison to Data Parallelism on Time-to-Accuracy
• Communication Overhead of Pipeline Parallelism
• Comparison to Model Parallelism and Hybrid Parallelism on Throughput
• PipeDream’s Memory Footprint



Evaluation Setup
• Integrated PipeDream with PyTorch in ~3000 lines of Python code

• Integrated with PyTorch’s communication library
• NCCL backend for Data Parallelism baselines
• Gloo backend for PipeDream

• Experiments run on three different server types
• Cluster A: 4xV100 GPUs, PCIe intra-server, and 10 Gbps inter-server (Azure)
• Cluster B: 8xV100 GPUs, NVLink intra-server, and 25 Gbps inter-server (AWS)
• Cluster C: 1xTitan X, and 40 Gbps inter-server (private)
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5.28x faster
2.46x faster
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PipeDream > Data Parallelism (DP) end-to-end
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PipeDream vs. Data Parallelism on Time-to-Accuracy
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PipeDream vs. Data Parallelism on Time-to-Accuracy

Experiments on 4 different tasks: image 
classification, translation, language 

modeling, video captioning
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PipeDream vs. Data Parallelism on Time-to-Accuracy

With the same number of GPUs, PipeDream
up to 5.3x faster than Data Parallelism
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PipeDream vs. Data Parallelism on Time-to-Accuracy

Optimizer recommends a number of 
different configurations like 15-1, 

Straight, and a fully data-parallel setup



PipeDream reduces communication overhead

For many models, intermediate activations and gradients order of 
magnitude smaller than communication with Data Parallelism (DP)
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Conclusion

https://cs.stanford.edu/~deepakn/

• Model and data parallelism often suffer from high communication overhead
and low resource utilization for certain models and deployments

• PipeDream shows pipelining can be used to accelerate DNN training

• Pipelining, when combined with data and model parallelism in a principled 
way, achieves end-to-end speedups of up to 5.3x

Code available at
https://github.com/msr-fiddle/pipedream
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https://github.com/msr-fiddle/pipedream

