Miri
An interpreter for Rust’s mid-level intermediate representation
Scott Olson

Supervisor: Christopher Dutchyn

CMPT 400
University of Saskatchewan

https://www.rust-lang.org

https://www.rust-lang.org

What is Rust? [review]

According to the website...

Rust is a systems programming language that runs
blazingly fast, prevents nearly all segfaults, and
guarantees thread safety.

It’s a new programming language from Mozilla, and it looks like this:

fn factorial(n: u64) -> u64 {
(1..n).fold(1, |a, b| a * b)
}

fn main() {

for x in 1..6 {

println! ("{}", factorial(x));
}
// = 1
// = 1
// = 2
// = 6
// = 2

How does Rust compile code? [review]

Source
Code

Machine
Code

How does Rust compile code? [review]

Source Parse AST
Cod e Abstract Syntax Tree

Machine
Code

How does Rust compile code? [review]

Source Parse AST Simplify HIR
Code Abstract Syntax Tree High;evel Intern_wediate
epresentation

Machine
Code

How does Rust compile code? [review]

Source Parse AST Simplify HIR
COCI e Abstract Syntax Tree High’;level Intermediate
epresentation

Lower

MIR Machine
Mid-level Intermediate
Representation Code

How does Rust compile code? [review]

Source Parse AST Simplify HIR
COd e Abstract Syntax Tree High’;level Intermediate
epresentation

Lower

MIR Translate LLVM IR Machine
Mid-level Intermediate Low-level Intermediate
Representation Representation COd e

How does Rust compile code? [review]

Source Parse AST Simplify HIR
COd e Abstract Syntax Tree High’;level Intermediate
epresentation

Lower

MIR Translate LLVM IR Magic Machine
Mid-level Intermediate Low-level Intermediate
Representation Representation COd e

How does Rust compile code?

Source Parse AST Simplify HIR
Cod e Abstract Syntax Tree High’;level Intermediate
epresentation

Lower

MIR Translate LLVM IR Magic Machine
Mid-level Intermediate Low-level Intermediate
Representation Representation Code

Execution

How does Rust compile code?

Source Parse AST Simplify HIR
Cod e Abstract Syntax Tree High’;level Intermediate
epresentation

Lower

LLVM IR Magic Machine
Low-level Intermediate
Representation COde

MIR

Mid-level Intermediate
Representation

Translate

Execution

Why build Miri?

» For fun and learning.

» | originally planned to use it for testing the compiler and
execution of unsafe code, but shifted my goals along the way.

Why build Miri?

» For fun and learning.

» | originally planned to use it for testing the compiler and
execution of unsafe code, but shifted my goals along the way.

» Now it serves as an experimental implementation of the
upcoming compile-time function evaluation feature in Rust.

Why build Miri?

» For fun and learning.

» | originally planned to use it for testing the compiler and
execution of unsafe code, but shifted my goals along the way.

» Now it serves as an experimental implementation of the
upcoming compile-time function evaluation feature in Rust.
» Similar to C++14’s constexpr feature.

» You can do complicated calculations at compile time and
compile their results into the executable.

Why build Miri?

» For fun and learning.

» | originally planned to use it for testing the compiler and
execution of unsafe code, but shifted my goals along the way.

» Now it serves as an experimental implementation of the
upcoming compile-time function evaluation feature in Rust.

» Similar to C++14’s constexpr feature.

» You can do complicated calculations at compile time and
compile their results into the executable.

» For example, you can compute a “perfect hash function” for a
statically-known map at compile-time and have guaranteed
no-collision lookup at runtime.

Why build Miri?

» For fun and learning.

» | originally planned to use it for testing the compiler and
execution of unsafe code, but shifted my goals along the way.

» Now it serves as an experimental implementation of the
upcoming compile-time function evaluation feature in Rust.

» Similar to C++14’s constexpr feature.

» You can do complicated calculations at compile time and
compile their results into the executable.

» For example, you can compute a “perfect hash function” for a
statically-known map at compile-time and have guaranteed
no-collision lookup at runtime.

» Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.

How was it built?

At first | wrote a naive version with a number of downsides:
» represented values in a traditional dynamic language format,
where every value was the same size.
» didn’t work well for aggregates (structs, enums, arrays, etc.).

» made unsafe programming tricks that make assumptions
about low-level value layout essentially impossible.

How was it built?

» Later, a Rust compiler team member proposed a “Rust abstract
machine” with specialized value layout which solved my
previous problems.

How was it built?

» Later, a Rust compiler team member proposed a “Rust abstract
machine” with specialized value layout which solved my
previous problems.

» His proposal was intended for a compile-time function
evaluator in the Rust compiler, so | effectively implemented an
experimental version of that.

How was it built?

» Later, a Rust compiler team member proposed a “Rust abstract
machine” with specialized value layout which solved my
previous problems.

» His proposal was intended for a compile-time function
evaluator in the Rust compiler, so | effectively implemented an
experimental version of that.

» After this point, making Miri work well was primarily a software
engineering problem.

Data layout

» Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.

> Allocations are represented by:

Data layout

» Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.
> Allocations are represented by:
1. An array of raw bytes with a size based on the type of the value

Data layout

» Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.
> Allocations are represented by:

1. An array of raw bytes with a size based on the type of the value
2. Aset of relocations — pointers into other abstract allocations

Data layout

» Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.
> Allocations are represented by:

1. An array of raw bytes with a size based on the type of the value
2. Aset of relocations — pointers into other abstract allocations
3. Amask determining which bytes are undefined

square example

// Rust

fn square(n: u64) -> u64 {

n *

}

n

// Generated MIR
fn square(argd: u64) -> u64 {

let

bbo:

bb1:

var@: u64; // n

{
var0® = argo;

return = Mul(var0@, var0);
goto -> bbl;

{

return;

//
/7
//

//
//
//

//

On function entry, Miri creates
virtual allocations for all the
arguments, variables, and
temporaries.

Copy the argument into ‘n".
Multiply ‘n’ with itself.
Jump to basic block ‘bbl’.

Return from the current fn.

sumexample

// Rust

fn sum() -> u64 {
let mut sum = 0; let mut i =
while i < 10 { sum += d; i +=
sum

CH
15}

}

// Generated MIR

fn sum() -> u64 {
let mut var@: u64; // sum
let mut varl: u64; // i
let mut tmp0: bool;

bbo: {
// sum = 0; 1 = 0;
var® = const Qu64; varl = const Qu64; goto -> bbl;

}

bbl: {
// 1f 1 < 10 { goto bb2; } else { goto bb3; }
tmp® = Lt(varl, const 10u64);
if(tmp@) -> [true: bb2, false: bb3];

}

bb2: {
var0 = Add(var@, varl); // sum = sum + 1i;
varl = Add(varl, const 1u64); // 1 = 1 + 1;
goto -> bbl;

bb3: {
return = var@; goto -> bb4;

bb4: { return; }

Heap allocations!

fn make_vec() -> Vec<u8> {
// Empty array with space for 4 bytes - allocated on the heap!
let mut vec = Vec::with_capacity(4);
// Initialize the first two slots.
vec.push(1l);
vec.push(2);
vec

}

// For reference:
// struct Vec<T> { capacity: usize, data: *mut T, length: usize }

// Resulting allocations (on 32-bit little-endian architectures):
// Region A:

// 04 00 OO OO0 0O 00 O OO0 0602 OO0 00 00

// L—g)—

//

// Region B:

// 01 02 __ __ (underscores denote undefined bytes)

Evaluating the above involves a number of compiler built-ins, “unsafe” code
blocks, and more inside the standard library, but Miri handles it all.

Unsafe code!

fn out_of_bounds() -> u8 {
let mut vec = vec![1, 2]
unsafe { *vec.get_unchecked(5) }

}

// test.rs:3: error: pointer offset outside bounds of allocation
// test.rs:3: unsafe { xvec.get_unchecked(5) }

// Ao e e e e e e e e

fn undefined_bytes() -> u8 {
let mut vec = Vec::with_capacity(10);
unsafe { *vec.get_unchecked(5) }

// test.rs:3: error: attempted to read undefined bytes
// test.rs:3: unsafe { xvec.get_unchecked(5) }

What can’t Miri do?

» Miri can’t do all the stuff | didn’t implement yet. :)

>

>
>
>

non-trivial casts

function pointers

calling destructors and freeing memory

taking target architecture endianess and alignment information
into account when computing data layout

handling all constants properly (but, well, Miri might be
replacing the old constants system)

What can’t Miri do?

» Miri can’t do all the stuff | didn’t implement yet. :)

>

>
>
>

non-trivial casts

function pointers

calling destructors and freeing memory

taking target architecture endianess and alignment information
into account when computing data layout

handling all constants properly (but, well, Miri might be
replacing the old constants system)

» Miri can’t do foreign function calls (e.g. calling functions
defined in C or C++), but there is a reasonable way it could be
done with libffi.

| 4

On the other hand, for constant evaluation in the compiler, you
want the evaluator to be deterministic and safe, so FFl calls
might be banned anyway.

What can’t Miri do?

» Miri can’t do all the stuff | didn’t implement yet. :)

>

>
>
>

non-trivial casts

function pointers

calling destructors and freeing memory

taking target architecture endianess and alignment information
into account when computing data layout

handling all constants properly (but, well, Miri might be
replacing the old constants system)

» Miri can’t do foreign function calls (e.g. calling functions
defined in C or C++), but there is a reasonable way it could be
done with libffi.

| 4

On the other hand, for constant evaluation in the compiler, you
want the evaluator to be deterministic and safe, so FFl calls
might be banned anyway.

» Without quite some effort, Miri will probably never handle
inline assembly...

Questions?

varNvs. argN

// Rust

type Pair = (u64, u64);

fn swap((a, b): Pair) -> Pair {
(b, a)

}

// Generated MIR

fn swap(arg0d: (u64, u64)) -> (u64, u64) {
let var0: ue4; // a
let varl: ue4; // b

bbo: {
var@ = arg0.0; // get the 1st part of the pair
varl = arg0.1; // get the 2nd part of the pair

return = (var®, varl); // build a new pair in the result
goto -> bbl;

¥

bbl: {
return;

}

factorial example

// Rust

fn factorial(n: u64) -> u64 {

(1..

n).fold(1, |a, b| a * b)

// Generated MIR
fn factorial(argd: u64) -> u64 {

let
let
let

bbo:

bb1:

var@: ué4; // n
mut tmp@: Range<u64>; // Miri calculates sizes for generics like Range<u64>.
mut tmpl: [closure];

{

var@ = arg0;

// tmpO = 1..n
tmpO® = Range<u64> { start: const 1lu64, end: var0 };

// tmpl = |a, b| a x b
tmpl = [closure];

// This loads the MIR for the ‘fold' fn from the standard library.
// In general, MIR for any function from any library can be loaded.
// return tmpo@.fold(1, tmpl)

return = Range<u64>::fold(tmp®, const 1lu64, tmpl) -> bbl;

{

return;

