
Miri
An interpreter for Rust’s mid-level intermediate representation

Scott Olson
Supervisor: Christopher Dutchyn

CMPT 400
University of Saskatchewan

https://www.rust-lang.org

https://www.rust-lang.org


What is Rust? [review]

According to the website…
Rust is a systems programming language that runs
blazingly fast, prevents nearly all segfaults, and
guarantees thread safety.

It’s a new programming language fromMozilla, and it looks like this:
fn factorial(n: u64) -> u64 {

(1..n).fold(1, |a, b| a * b)
}

fn main() {
for x in 1..6 {

println!("{}", factorial(x));
}
// ⇒ 1
// ⇒ 1
// ⇒ 2
// ⇒ 6
// ⇒ 24

}



How does Rust compile code? [review]

Source
Code

Machine
Code

?

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate

Execution

CPU
Miri



How does Rust compile code? [review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate

Execution

CPU
Miri



How does Rust compile code? [review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate

Execution

CPU
Miri



How does Rust compile code? [review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate

Execution

CPU
Miri



How does Rust compile code? [review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate

Execution

CPU
Miri



How does Rust compile code? [review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate Magic

Execution

CPU
Miri



How does Rust compile code?

[review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate Magic

Execution

CPU
Miri



How does Rust compile code?

[review]

Source
Code

Machine
Code

AST
Abstract Syntax Tree

Parse HIR
High-level Intermediate

Representation

Simplify

MIR
Mid-level Intermediate

Representation

Lower

LLVM IR
Low-level Intermediate

Representation

Translate Magic

Execution

CPU
Miri



Why build Miri?

I For fun and learning.
I I originally planned to use it for testing the compiler and

execution of unsafe code, but shiftedmy goals along the way.

I Now it serves as an experimental implementation of the
upcoming compile-time function evaluation feature in Rust.

I Similar to C++14’s constexpr feature.
I You can do complicated calculations at compile time and

compile their results into the executable.
I For example, you can compute a “perfect hash function” for a

statically-knownmap at compile-time and have guaranteed
no-collision lookup at runtime.

I Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.



Why build Miri?

I For fun and learning.
I I originally planned to use it for testing the compiler and

execution of unsafe code, but shiftedmy goals along the way.
I Now it serves as an experimental implementation of the

upcoming compile-time function evaluation feature in Rust.

I Similar to C++14’s constexpr feature.
I You can do complicated calculations at compile time and

compile their results into the executable.
I For example, you can compute a “perfect hash function” for a

statically-knownmap at compile-time and have guaranteed
no-collision lookup at runtime.

I Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.



Why build Miri?

I For fun and learning.
I I originally planned to use it for testing the compiler and

execution of unsafe code, but shiftedmy goals along the way.
I Now it serves as an experimental implementation of the

upcoming compile-time function evaluation feature in Rust.
I Similar to C++14’s constexpr feature.
I You can do complicated calculations at compile time and

compile their results into the executable.

I For example, you can compute a “perfect hash function” for a
statically-knownmap at compile-time and have guaranteed
no-collision lookup at runtime.

I Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.



Why build Miri?

I For fun and learning.
I I originally planned to use it for testing the compiler and

execution of unsafe code, but shiftedmy goals along the way.
I Now it serves as an experimental implementation of the

upcoming compile-time function evaluation feature in Rust.
I Similar to C++14’s constexpr feature.
I You can do complicated calculations at compile time and

compile their results into the executable.
I For example, you can compute a “perfect hash function” for a

statically-knownmap at compile-time and have guaranteed
no-collision lookup at runtime.

I Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.



Why build Miri?

I For fun and learning.
I I originally planned to use it for testing the compiler and

execution of unsafe code, but shiftedmy goals along the way.
I Now it serves as an experimental implementation of the

upcoming compile-time function evaluation feature in Rust.
I Similar to C++14’s constexpr feature.
I You can do complicated calculations at compile time and

compile their results into the executable.
I For example, you can compute a “perfect hash function” for a

statically-knownmap at compile-time and have guaranteed
no-collision lookup at runtime.

I Miri actually supports far more of Rust than C++14’s
constexpr does of C++ — even heap allocation and unsafe
code.



Howwas it built?

At first I wrote a naive version with a number of downsides:

I represented values in a traditional dynamic language format,
where every value was the same size.

I didn’t work well for aggregates (structs, enums, arrays, etc.).
I made unsafe programming tricks that make assumptions

about low-level value layout essentially impossible.



Howwas it built?

I Later, a Rust compiler teammember proposed a “Rust abstract
machine” with specialized value layout which solvedmy
previous problems.

I His proposal was intended for a compile-time function
evaluator in the Rust compiler, so I effectively implemented an
experimental version of that.

I After this point, making Miri work well was primarily a software
engineering problem.



Howwas it built?

I Later, a Rust compiler teammember proposed a “Rust abstract
machine” with specialized value layout which solvedmy
previous problems.

I His proposal was intended for a compile-time function
evaluator in the Rust compiler, so I effectively implemented an
experimental version of that.

I After this point, making Miri work well was primarily a software
engineering problem.



Howwas it built?

I Later, a Rust compiler teammember proposed a “Rust abstract
machine” with specialized value layout which solvedmy
previous problems.

I His proposal was intended for a compile-time function
evaluator in the Rust compiler, so I effectively implemented an
experimental version of that.

I After this point, making Miri work well was primarily a software
engineering problem.



Data layout

I Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.

I Allocations are represented by:

1. An array of raw byteswith a size based on the type of the value
2. A set of relocations—pointers into other abstract allocations
3. A mask determining which bytes are undefined



Data layout

I Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.

I Allocations are represented by:
1. An array of raw byteswith a size based on the type of the value

2. A set of relocations—pointers into other abstract allocations
3. A mask determining which bytes are undefined



Data layout

I Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.

I Allocations are represented by:
1. An array of raw byteswith a size based on the type of the value
2. A set of relocations—pointers into other abstract allocations

3. A mask determining which bytes are undefined



Data layout

I Memory in Miri is literally a HashMap from “allocation IDs” to
“abstract allocations”.

I Allocations are represented by:
1. An array of raw byteswith a size based on the type of the value
2. A set of relocations—pointers into other abstract allocations
3. A mask determining which bytes are undefined



square example

// Rust
fn square(n: u64) -> u64 {

n * n
}

// Generated MIR
fn square(arg0: u64) -> u64 {

let var0: u64; // n // On function entry, Miri creates
// virtual allocations for all the
// arguments, variables, and
// temporaries.

bb0: {
var0 = arg0; // Copy the argument into `n`.
return = Mul(var0, var0); // Multiply `n` with itself.
goto -> bb1; // Jump to basic block `bb1`.

}

bb1: {
return; // Return from the current fn.

}
}



sum example

// Rust
fn sum() -> u64 {

let mut sum = 0; let mut i = 0;
while i < 10 { sum += i; i += 1; }
sum

}

// Generated MIR
fn sum() -> u64 {

let mut var0: u64; // sum
let mut var1: u64; // i
let mut tmp0: bool;

bb0: {
// sum = 0; i = 0;
var0 = const 0u64; var1 = const 0u64; goto -> bb1;

}
bb1: {

// if i < 10 { goto bb2; } else { goto bb3; }
tmp0 = Lt(var1, const 10u64);
if(tmp0) -> [true: bb2, false: bb3];

}
bb2: {

var0 = Add(var0, var1); // sum = sum + i;
var1 = Add(var1, const 1u64); // i = i + 1;
goto -> bb1;

}
bb3: {

return = var0; goto -> bb4;
}
bb4: { return; }

}



Heap allocations!

fn make_vec() -> Vec<u8> {
// Empty array with space for 4 bytes - allocated on the heap!
let mut vec = Vec::with_capacity(4);
// Initialize the first two slots.
vec.push(1);
vec.push(2);
vec

}

// For reference:
// struct Vec<T> { capacity: usize, data: *mut T, length: usize }

// Resulting allocations (on 32-bit little-endian architectures):
// Region A:
// 04 00 00 00 00 00 00 00 02 00 00 00
// └───(B)───┘
//
// Region B:
// 01 02 __ __ (underscores denote undefined bytes)

Evaluating the above involves a number of compiler built-ins, “unsafe” code
blocks, andmore inside the standard library, but Miri handles it all.



Unsafe code!

fn out_of_bounds() -> u8 {
let mut vec = vec![1, 2]
unsafe { *vec.get_unchecked(5) }

}

// test.rs:3: error: pointer offset outside bounds of allocation
// test.rs:3: unsafe { *vec.get_unchecked(5) }
// ^~~~~~~~~~~~~~~~~~~~~

fn undefined_bytes() -> u8 {
let mut vec = Vec::with_capacity(10);
unsafe { *vec.get_unchecked(5) }

}

// test.rs:3: error: attempted to read undefined bytes
// test.rs:3: unsafe { *vec.get_unchecked(5) }
// ^~~~~~~~~~~~~~~~~~~~~



What can’t Miri do?

I Miri can’t do all the stuff I didn’t implement yet. :)
I non-trivial casts
I function pointers
I calling destructors and freeing memory
I taking target architecture endianess and alignment information

into account when computing data layout
I handling all constants properly (but, well, Miri might be

replacing the old constants system)

I Miri can’t do foreign function calls (e.g. calling functions
defined in C or C++), but there is a reasonable way it could be
done with libffi.

I On the other hand, for constant evaluation in the compiler, you
want the evaluator to be deterministic and safe, so FFI calls
might be banned anyway.

I Without quite some effort, Miri will probably never handle
inline assembly...



What can’t Miri do?

I Miri can’t do all the stuff I didn’t implement yet. :)
I non-trivial casts
I function pointers
I calling destructors and freeing memory
I taking target architecture endianess and alignment information

into account when computing data layout
I handling all constants properly (but, well, Miri might be

replacing the old constants system)
I Miri can’t do foreign function calls (e.g. calling functions

defined in C or C++), but there is a reasonable way it could be
done with libffi.

I On the other hand, for constant evaluation in the compiler, you
want the evaluator to be deterministic and safe, so FFI calls
might be banned anyway.

I Without quite some effort, Miri will probably never handle
inline assembly...



What can’t Miri do?

I Miri can’t do all the stuff I didn’t implement yet. :)
I non-trivial casts
I function pointers
I calling destructors and freeing memory
I taking target architecture endianess and alignment information

into account when computing data layout
I handling all constants properly (but, well, Miri might be

replacing the old constants system)
I Miri can’t do foreign function calls (e.g. calling functions

defined in C or C++), but there is a reasonable way it could be
done with libffi.

I On the other hand, for constant evaluation in the compiler, you
want the evaluator to be deterministic and safe, so FFI calls
might be banned anyway.

I Without quite some effort, Miri will probably never handle
inline assembly...



Questions?



varN vs. argN

// Rust
type Pair = (u64, u64);
fn swap((a, b): Pair) -> Pair {

(b, a)
}

// Generated MIR
fn swap(arg0: (u64, u64)) -> (u64, u64) {

let var0: u64; // a
let var1: u64; // b

bb0: {
var0 = arg0.0; // get the 1st part of the pair
var1 = arg0.1; // get the 2nd part of the pair
return = (var0, var1); // build a new pair in the result
goto -> bb1;

}

bb1: {
return;

}
}



factorial example

// Rust
fn factorial(n: u64) -> u64 {

(1..n).fold(1, |a, b| a * b)
}

// Generated MIR
fn factorial(arg0: u64) -> u64 {

let var0: u64; // n
let mut tmp0: Range<u64>; // Miri calculates sizes for generics like Range<u64>.
let mut tmp1: [closure];

bb0: {
var0 = arg0;

// tmp0 = 1..n
tmp0 = Range<u64> { start: const 1u64, end: var0 };

// tmp1 = |a, b| a * b
tmp1 = [closure];

// This loads the MIR for the `fold` fn from the standard library.
// In general, MIR for any function from any library can be loaded.
// return tmp0.fold(1, tmp1)
return = Range<u64>::fold(tmp0, const 1u64, tmp1) -> bb1;

}

bb1: {
return;

}
}


