Miri:

An interpreter for Rust’s mid-level intermediate representation

Scott Olson”
Supervised by Christopher Dutchyn

April 12th, 2016

1 Abstract

The increasing need for safe low-level code in contexts
like operating systems and browsers is driving the de-
velopment of Rust!, a programming language promis-
ing high performance without the risk of memory un-
safety. To make programming more convenient, it’s
often desirable to be able to generate code or per-
form some computation at compile-time. The former
is mostly covered by Rust’s existing macro feature or
build-time code generation, but the latter is currently
restricted to a limited form of constant evaluation ca-
pable of little beyond simple math.

The architecture of the compiler at the time the
existing constant evaluator was built limited its po-
tential for future extension. However, a new inter-
mediate representation was recently added® to the
Rust compiler between the abstract syntax tree and
the back-end LLVM IR, called mid-level intermedi-
ate representation, or MIR for short. This report
will demonstrate that writing an interpreter for MIR
is a surprisingly effective approach for supporting a
large proportion of Rust’s features in compile-time
execution.

2 Background

The Rust compiler generates an instance of Mir for
each function [Figure 1]. Each Mir structure repre-

*scott@solson.me
Thttps://www.rust-lang.org
2Rust RFC #1211: Mid-level IR (MIR)

sents a control-flow graph for a given function, and
contains a list of “basic blocks” which in turn contain
a list of statements followed by a single terminator.
Each statement is of the form lvalue = rvalue. An
Lvalue is used for referencing variables and calculat-
ing addresses such as when dereferencing pointers,
accessing fields, or indexing arrays. An Rvalue rep-
resents the core set of operations possible in MIR,
including reading a value from an lvalue, performing
math operations, creating new pointers, structures,
and arrays, and so on. Finally, a terminator decides
where control will flow next, optionally based on the
value of a boolean or integer.

3 First implementation

3.1 Basic operation

To investigate the possibility of executing Rust at
compile-time T wrote an interpreter for MIR called
Miri®. The structure of the interpreter closely mir-
rors the structure of MIR itself. It starts executing a
function by iterating the statement list in the start-
ing basic block, translating the lvalue into a pointer
and using the rvalue to decide what to write into
that pointer. Evaluating the rvalue may involve reads
(such as for the two sides of a binary operation) or
construction of new values. When the terminator
is reached, it is used to decide which basic block to
jump to next. Finally, Miri repeats this entire pro-
cess, reading statements from the new block.

3https ://github.com/tsion/miri

mailto:scott@solson.me
https://www.rust-lang.org
https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md
https://github.com/tsion/miri

struct Mir {
basic_blocks: Vec<BasicBlockData>,

// ...

struct BasicBlockData {
statements: Vec<Statement>,
terminator: Terminator,

// ...

struct Statement {
lvalue: Lvalue,
rvalue: Rvalue

enum Terminator {
Goto { target: BasicBlock },

If {
cond: Operand,
targets: [BasicBlock; 2]
1,
// ...
}
Figure 1: MIR (simplified)
3.2 Function calls

To handle function call terminators®, Miri is required
to store some information in a virtual call stack so
that it may pick up where it left off when the callee
returns. Each stack frame stores a reference to the
Mir for the function being executed, its local vari-
ables, its return value location®, and the basic block
where execution should resume. When Miri encoun-
ters a Return terminator in the MIR, it pops one
frame off the stack and resumes the previous func-
tion. Miri’s execution ends when the function it was
initially invoked with returns, leaving the call stack
empty.

It should be noted that Miri does not itself re-
curse when a function is called; it merely pushes a

4Calls occur only as terminators, never as rvalues.
5Return value pointers are passed in by callers.

virtual stack frame and jumps to the top of the inter-
preter loop. Consequently, Miri can interpret deeply
recursive programs without overflowing its native call
stack. This approach would allow Miri to set a vir-
tual stack depth limit and report an error when a
program exceeds it.

3.3 Flaws

This version of Miri supported quite a bit of the Rust
language, including booleans, integers, if-conditions,
while-loops, structures, enums, arrays, tuples, point-
ers, and function calls, requiring approximately 400
lines of Rust code. However, it had a particularly
naive value representation with a number of down-
sides. It resembled the data layout of a dynamic lan-
guage like Ruby or Python, where every value has the
same size® in the interpreter:

enum Value {
Uninitialized,
Bool(bool),
Int(ie64),
Pointer (Pointer), // index into stack
Aggregate {
variant: usize,
data: Pointer,

I

This representation did not work well for aggre-
gate types’ and required strange hacks to support
them. Their contained values were allocated else-
where on the stack and pointed to by the aggregate
value, which made it more complicated to implement
copying aggregate values from place to place.

Moreover, while the aggregate issues could be
worked around, this value representation made com-
mon unsafe programming tricks (which make as-
sumptions about the low-level value layout) funda-
mentally impossible.

6An enum is a discriminated union with a tag and space to
fit the largest variant, regardless of which variant it contains.
"That is, structures, enums, arrays, tuples, and closures.

4 Current implementation

Roughly halfway through my time working on Miri,
Eduard Burtescu® from the Rust compiler team®
made a post on Rust’s internal forums about a
“Rust Abstract Machine” specification'” which could
be used to implement more powerful compile-time
function execution, similar to what is supported by
C++14’s constexpr feature. After clarifying some
of the details of the data layout with Burtescu via
IRC, I started implementing it in Miri.

4.1 Raw value representation

The main difference in the new value representation
was to represent values by “abstract allocations” con-
taining arrays of raw bytes with different sizes de-
pending on their types. This mimics how Rust values
are represented when compiled for physical machines.
In addition to the raw bytes, allocations carry infor-
mation about pointers and undefined bytes.

struct Memory {
map: HashMap<AllocId, Allocation>,
next_id: AllocId,

struct Allocation {
bytes: Vec<u8>,
relocations: BTreeMap<usize, AllocId>,
undef_mask: UndefMask,

4.1.1 Relocations

The abstract machine represents pointers through
“relocations”, which are analogous to relocations in
linkers''. Instead of storing a global memory address
in the raw byte representation like on a physical ma-
chine, we store an offset from the start of the target
allocation and add an entry to the relocation table
which maps the index of the offset bytes to the tar-
get allocation.

8eddyb on GitHub

9https ://www.rust-lang.org/team.html#Compiler
10Burtescu’s reply on “MIR constant evaluation”
HRelocation (computing) - Wikipedia

In Figure 2, the relocation stored at offset 0 in y
points to offset 2 in x (the 2nd 16-bit integer). Thus,
the relocation table for y is {0 => x}, meaning the
next N bytes after offset 0 denote an offset into al-
location x where N is the size of a pointer (4 in this
example). The example shows this as a labelled line
beneath the offset bytes.

In effect, the abstract machine represents pointers
as (allocation_id, offset) pairs. This makes it
easy to detect when pointer accesses go out of bounds.

let x: [i16; 3] =
let y = &x[1];
// x: BB AA DD CC FF EE (6 bytes)

// y: 02 00 00 00 (4 bytes)
// l—(x)—I

[OXAABB, ©xCCDD, OXEEFF];

Figure 2: Example relocation on 32-bit little-endian

4.1.2 TUndefined byte mask

The final piece of an abstract allocation is the unde-
fined byte mask. Logically, we store a boolean for the
definedness of every byte in the allocation, but there
are multiple ways to make the storage more compact.
I tried two implementations: one based on the end-
points of alternating ranges of defined and undefined
bytes and the other based on a bitmask. The former
is more compact but I found it surprisingly difficult
to update cleanly. I currently use the much simpler
bitmask system.

See Figure 3 for an example of an undefined byte in
a value, represented by underscores. Note that there
is a value for the second byte in the byte array, but
it doesn’t matter what it is. The bitmask would be
105, i.e. [true, false].

let x: [u8; 2] = unsafe {

[1, std::mem::uninitialized()]
};
// x: 01 __ (2 bytes)

Figure 3: Example undefined byte

https://github.com/eddyb
https://www.rust-lang.org/team.html#Compiler
https://internals.rust-lang.org/t/mir-constant-evaluation/3143/31
https://en.wikipedia.org/wiki/Relocation_(computing)

4.2 Computing data layout

Currently, the Rust compiler’s data layouts for types
are hidden from Miri, so it does its own data lay-
out computation which will not always match what
the compiler does, since Miri doesn’t take target type
alignments into account. In the future, the Rust com-
piler may be modified so that Miri can use the exact
same data layout.

Miri’s data layout calculation is a relatively simple
transformation from Rust types to a structure with
constant size values for primitives and sets of fields
with offsets for aggregate types. These layouts are
cached for performance.

5 Deterministic execution

In order to be effective as a compile-time evaluator,
Miri must have deterministic execution, as explained
by Burtescu in the “Rust Abstract Machine” post.
That is, given a function and arguments to that func-
tion, Miri should always produce identical results.
This is important for coherence in the type checker
when constant evaluations are involved in types, such
as for sizes of array types:

*/ }

const fn get_size() -> usize { /* ...
let array: [i32; get_size()];

Since Miri allows execution of unsafe code'?, it is
specifically designed to remain safe while interpreting
potentially unsafe code. When Miri encounters an
unrecoverable error, it reports it via the Rust com-
piler’s usual error reporting mechanism, pointing to
the part of the original code where the error occurred.
Below is an example from Miri’s repository.'?

let b = Box::new(42);

let p: *const 132 = &x*b;

drop(b);

unsafe { »p }

// ~~ error: dangling pointer
// was dereferenced

12In fact, the distinction between safe and unsafe doesn’t
exist at the MIR level.
13miri/test /errors.rs

6 Language support

In its current state, Miri supports a large proportion
of the Rust language, detailed below. The major ex-
ception is a lack of support for FFI'*, which elimi-
nates possibilities like reading and writing files, user
input, graphics, and more. However, for compile-time
evaluation in Rust, this limitation is desired.

6.1 Primitives

Miri supports booleans, integers of various sizes and
signed-ness (i.e. i8, 116, 132, 164, isize, u8, uls,
u32, u64, usize), and unary and binary operations
over these types. The isize and usize types will be
sized according to the target machine’s pointer size
just like in compiled Rust. The char and float types
(f32, f64) are not supported yet, but there are no
known barriers to doing so.

When examining a boolean in an i f condition, Miri
will report an error if its byte representation is not
precisely 0 or 1, since having any other value for a
boolean is undefined behaviour in Rust. The char
type will have similar restrictions once it is imple-
mented.

6.2 Pointers

Both references and raw pointers are supported, with
essentially no difference between them in Miri. It is
also possible to do pointer comparisons and math.
However, a few operations are considered errors and
a few require special support.

Firstly, pointers into the same allocations may be
compared for ordering, but pointers into different al-
locations are considered unordered and Miri will com-
plain if you attempt this. The reasoning is that differ-
ent allocations may have different orderings in the
global address space at runtime, making this non-
deterministic. However, pointers into different allo-
cations may be compared for direct equality (they are
always unequal).

Secondly, pointers represented using relocations
may be compared against pointers casted from in-

14Foreign Function Interface, e.g. calling functions defined in
Assembly, C, or C++.

https://github.com/tsion/miri/blob/master/test/errors.rs

tegers (e.g. O as *const i32) for things like null
pointer checks. To handle these cases, Miri has a
concept of “integer pointers” which are always un-
equal to abstract pointers. Integer pointers can be
compared and operated upon freely. However, note
that it is impossible to go from an integer pointer to
an abstract pointer backed by a relocation. It is not
valid to dereference an integer pointer.

6.2.1 Slice pointers

Rust supports pointers to “dynamically-sized types”
such as [T] and str which represent arrays of in-
determinate size. Pointers to such types contain an
address and the length of the referenced array. Miri
supports these fully.

6.2.2 Trait objects

Rust also supports pointers to “trait objects” which
represent some type that implements a trait, with
the specific type unknown at compile-time. These
are implemented using virtual dispatch with a vtable,
similar to virtual methods in C++. Miri does not
currently support these at all.

6.3 Aggregates

Aggregates include types declared with struct or
enum as well as tuples, arrays, and closures. Miri
supports all common usage of all of these types. The
main missing piece is to handle #[repr(..)] anno-
tations which adjust the layout of a struct or enum.

6.4 Lvalue projections

This category includes field accesses, dereferencing,
accessing data in an enum variant, and indexing ar-
rays. Miri supports all of these, including nested pro-
jections such as *xfoo.bar[2].

6.5 Control flow

All of Rust’s standard control flow features, including
loop, while, for, if, if let, while let, match,
break, continue, and return are supported. In
fact, supporting these was quite easy since the Rust

compiler reduces them all down to a small set of
control-flow graph primitives in MIR.

6.6 Function calls

As previously described, Miri supports arbitrary
function calls without growing the native stack (only
its virtual call stack). It is somewhat limited by the
fact that cross-crate!® calls only work for functions
whose MIR is stored in crate metadata. This is cur-
rently true for const, generic, and inline functions.
A branch of the compiler could be made that stores
MIR for all functions. This would be a non-issue for a
compile-time evaluator based on Miri, since it would
only call const fns.

6.6.1 Method calls

Miri supports trait method calls, including invoking
all the compiler-internal lookup needed to find the
correct implementation of the method.

6.6.2 Closures

Calls to closures are also supported with the excep-
tion of one edge case'®. The value part of a closure
that holds the captured variables is handled as an ag-
gregate and the function call part is mostly the same
as a trait method call, but with the added complica-
tion that closures use a separate calling convention
within the compiler.

6.6.3 Function pointers

Function pointers are not currently supported by
Miri, but there is a relatively simple way they could
be encoded using a relocation with a special reserved
allocation identifier. The offset of the relocation
would determine which function it points to in a spe-
cial array of functions in the interpreter.

15 A crate is a single Rust library (or executable).

16Calling a closure that takes a reference to its captures via
a closure interface that passes the captures by value is not yet
supported.

6.6.4 Intrinsics

To support unsafe code, and in particular to sup-
port Rust’s standard library, it became clear that
Miri would have to support calls to compiler intrin-
sics'”. Intrinsics are function calls which cause the
Rust compiler to produce special-purpose code in-
stead of a regular function call. Miri simply recog-
nizes intrinsic calls by their unique ABI'® and name

and runs special-purpose code to handle them.

An example of an important intrinsic is size_of
which will cause Miri to write the size of the type in
question to the return value location. The Rust stan-
dard library uses intrinsics heavily to implement var-
ious data structures, so this was a major step toward
supporting them. Intrinsics have been implemented
on a case-by-case basis as tests which required them
were written, and not all intrinsics are supported yet.

6.6.5 Generic function calls

Miri needs special support for generic function calls
since Rust is a monomorphizing compiler, meaning it
generates a special version of each function for each
distinct set of type parameters it gets called with.
Since functions in MIR are still polymorphic, Miri
has to do the same thing and substitute function type
parameters into all types it encounters to get fully
concrete, monomorphized types. For example, in...

fn some<T>(t: T) -> Option<T> { Some(t) }

..Miri needs to know the size of T to copy the right
amount of bytes from the argument to the return
value. If we call some (10132) Miri will execute some
knowing that T = 32 and generate a representation
for Option<i32>.

Miri currently does this monomorphization lazily
on-demand unlike the Rust back-end which does it
all ahead of time.

17https ://doc.rust-lang.org/stable/std/intrinsics/
index.html

18 Application Binary Interface, which defines calling conven-
tions. Includes “C”, “Rust”, and “rust-intrinsic”.

6.7 Heap allocations

The next piece of the puzzle for supporting in-
teresting programs (and the standard library) was
heap allocations. There are two main interfaces for
heap allocation in Rust: the built-in Box rvalue in
MIR and a set of C ABI foreign functions includ-
ing __rust_allocate, __rust_reallocate, and
__rust_deallocate. These correspond approxi-
mately to malloc, realloc, and free in C.

The Box rvalue allocates enough space for a single
value of a given type. This was easy to support in
Miri. It simply creates a new abstract allocation in
the same manner as for stack-allocated values, since
there’s no major difference between them in Miri.

The allocator functions, which are used to imple-
ment things like Rust’s standard Vec<T> type, were
a bit trickier. Rust declares them as extern "C" fn
so that different allocator libraries can be linked in at
the user’s option. Since Miri doesn’t actually support
FFI and wants full control of allocations for safety, it
“cheats” and recognizes these allocator functions in
essentially the same way it recognizes compiler intrin-
sics. Then, a call to __rust_allocate simply cre-
ates another abstract allocation with the requested
size and __rust_reallocate grows one.

In the future, Miri should also track which alloca-
tions came from __rust_allocate so it can reject

reallocate or deallocate calls on stack allocations.

6.8 Destructors

When a value which “owns” some resource (like a
heap allocation or file handle) goes out of scope, Rust
inserts drop glue that calls the user-defined destruc-
tor for the type if it has one, and then drops all of
the subfields. Destructors for types like Box<T> and
Vec<T> deallocate heap memory.

Miri doesn’t yet support calling user-defined de-
structors, but it has most of the machinery in place to
do so already. There ¢s support for dropping Box<T>
types, including deallocating their associated alloca-
tions. This is enough to properly execute the dan-
gling pointer example in section 5.

https://doc.rust-lang.org/stable/std/intrinsics/index.html
https://doc.rust-lang.org/stable/std/intrinsics/index.html

6.9 Constants

Only basic integer, boolean, string, and byte-string
literals are currently supported. FEvaluating more
complicated constant expressions in their current
form would be a somewhat pointless exercise for Miri.
Instead, we should lower constant expressions to MIR
so Miri can run them directly, which is precisely what
would need be done to use Miri as the compiler’s con-
stant evaluator.

6.10 Static variables

Miri doesn’t currently support statics, but they
would need support similar to constants. Also note
that while it would be invalid to write to static (i.e.
global) variables in Miri executions, it would proba-
bly be fine to allow reads.

6.11 Standard library

Throughout the implementation of the above fea-
tures, I often followed this process:

1. Try using a feature from the standard library.
2. See where Miri runs into stuff it can’t handle.
3. Fix the problem.

4. Go to 1.

At present, Miri supports a number of major non-
trivial features from the standard library along with
tons of minor features. Smart pointer types such as
Box, Rc' and Arc?? all seem to work. I’ve also tested
using the shared smart pointer types with Cell and
RefCell?! for internal mutability, and that works as
well, although RefCell can’t ever be borrowed twice
until T implement destructor calls, since a destructor
is what releases the borrow.

But the standard library collection I spent the most
time on was Vec, the standard dynamically-growable
array type, similar to C++’s std: :vector or Java’s
java.util.ArrayList. In Rust, Vec is an extremely

19Reference counted shared pointer
20 Atomically reference-counted thread-safe shared pointer
21Rust documentation for cell types

struct Vec<T> {
data: *mut T, // 4 byte pointer
capacity: usize, // 4 byte integer
length: usize, // 4 byte integer

let mut v: Vec<u8> =

Vec: :with_capacity(2);
// v: 00 00 00 00 02 00 00
// (data)—
// data: __ __

00 00 00 600 00

v.push(1);

// vi 00 00 00 00 02
// (data)—

// data: 01 __

00 00 00 01 00 00 00

v.push(2);

// vi 00 00 00 00 02
/7 (data)—

// data: 01 02

00 00 00 02 00 00 00

v.push(3);
// v 00 00 00 00 04
/7 (data)—

// data: 01 02 03 _

00 00 00 03 00 00 00

Figure 4: Vec example on 32-bit little-endian

pervasive collection, so supporting it is a big win for
supporting a larger swath of Rust programs in Miri.

See Figure 4 for an example (working in Miri to-
day) of initializing a Vec with a small amount of space
on the heap and then pushing enough elements to
force it to reallocate its data array. This involves
cross-crate generic function calls, unsafe code using
raw pointers, heap allocation, handling of uninitial-
ized memory, compiler intrinsics, and more.

Miri supports unsafe operations on Vec like
v.set_len(10) or v.get_unchecked(2), provided
that such calls do no invoke undefined behaviour. If a
call does invoke undefined behaviour, Miri will abort
with an appropriate error message (see Figure 5).

https://doc.rust-lang.org/stable/std/cell/index.html

fn out_of_bounds() -> u8 {
let v = vec![1, 2];
let p = unsafe { v.get_unchecked(5) };
*p + 10

// ~~ error: pointer offset outside
// bounds of allocation
}

fn undefined_bytes() -> u8 {

let v = Vec::<u8>::with_capacity(10);
let p = unsafe { v.get_unchecked(5) };
*p + 10

[/ e~ error: attempted to read

// undefined bytes

1

Figure 5: Vec examples with undefined behaviour

Here is one final code sample Miri can execute that
demonstrates many features at once, including vec-
tors, heap allocation, iterators, closures, raw point-
ers, and math:

let x: u8 = vec![1l, 2, 3, 4]
.into_iter ()
.map(|x| x * x)

Lfold(0, [x, y| x +y);
// x: le (that is, the hex value
// Oxle = 30 = 1 + 4 + 9 + 16)

7 Future directions

7.1 Finishing the implementation

There are a number of pressing items on my to-do
list for Miri, including:

e A much more comprehensive and automated test
suite.

o User-defined destructor calls.

e Non-trivial casts between primitive types like in-
tegers and pointers.

o Handling statics and global memory.

« Reporting errors for all undefined behaviour.??

o Function pointers.

e Accounting for target machine primitive type
alignment and endianness.

e Optimizations (undefined byte masks, tail-calls).
¢ Benchmarking Miri vs. unoptimized Rust.
e Various TODOs and FIXMEs left in the code.

o Integrating into the compiler proper.

7.2 Future projects
Other possible Miri-related projects include:

A read-eval-print-loop (REPL) for Rust, which
may be easier to implement on top of Miri than
the usual LLVM back-end.

e A graphical or text-mode debugger that steps
through MIR execution one statement at a time,
for figuring out why some compile-time execu-
tion is raising an error or simply learning how
Rust works at a low level.

e A less restricted version of Miri that is able to
run foreign functions from C/C++ and generally
has full access to the operating system. Such an
interpreter could be used to more quickly proto-
type changes to the Rust language that would
otherwise require changes to the LLVM back-
end.

o Unit-testing the compiler by comparing the re-
sults of Miri’s execution against the results of
LLVM-compiled machine code’s execution. This
would help to guarantee that compile-time exe-
cution works the same as runtime execution.

¢ Some kind of Miri-based symbolic evaluator that
examines multiple possible code paths at once to
determine if undefined behaviour could be ob-
served on any of them.

22The Rust reference on what is considered undefined be-
haviour

https://doc.rust-lang.org/reference.html#behavior-considered-undefined
https://doc.rust-lang.org/reference.html#behavior-considered-undefined

8 Final thoughts

Writing an interpreter which models values of vary-
ing sizes, stack and heap allocation, unsafe memory
operations, and more requires some unconventional
techniques compared to conventional interpreters tar-
geting dynamically-typed languages. However, aside
from the somewhat complicated abstract memory
model, making Miri work was primarily a software en-
gineering problem, and not a particularly tricky one.
This is a testament to MIR’s suitability as an inter-
mediate representation for Rust—removing enough
unnecessary abstraction to keep it simple. For exam-
ple, Miri doesn’t even need to know that there are
different kinds of loops, or how to match patterns in
a match expression.

Another advantage to targeting MIR is that any
new features at the syntax-level or type-level gener-
ally require little to no change in Miri. For example,
when the new “question mark” syntax for error han-
dling®® was added to rustc, Miri required no change
to support it. When specialization?* was added, Miri
supported it with just minor changes to trait method
lookup.

Of course, Miri also has limitations. The inabil-
ity to execute FFI and inline assembly reduces the
amount of Rust programs Miri could ever execute.
The good news is that in the constant evaluator, FFI
can be stubbed out in cases where it makes sense,
like I did with __rust_allocate. For a version of
Miri not intended for constant evaluation, it may be
possible to use libffi to call C functions from the in-
terpreter.

In conclusion, Miri is a surprisingly effective
project, and a lot of fun to implement. Due to
MIR’s tendency to collapse multiple source-level fea-
tures into one, I often ended up supporting features
I hadn’t explicitly intended to. I am excited to work
with the compiler team going forward to try to make
Miri useful for constant evaluation in Rust.

23 Question mark syntax RFC
24 Specialization RFC

9 Thanks

A big thanks goes to Eduard Burtescu for writing the
abstract machine specification and answering my in-
cessant questions on IRC, to Niko Matsakis for com-
ing up with the idea for Miri and supporting my de-
sire to work with the Rust compiler, and to my re-
search supervisor Christopher Dutchyn. Thanks also
to everyone else on the compiler team and on Mozilla
TRC who helped me figure stuff out. Finally, thanks
to Daniel Keep and everyone else who helped fix my
numerous writing mistakes.

https://github.com/rust-lang/rfcs/blob/master/text/0243-trait-based-exception-handling.md
https://github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.md

	Abstract
	Background
	First implementation
	Basic operation
	Function calls
	Flaws

	Current implementation
	Raw value representation
	Relocations
	Undefined byte mask

	Computing data layout

	Deterministic execution
	Language support
	Primitives
	Pointers
	Slice pointers
	Trait objects

	Aggregates
	Lvalue projections
	Control flow
	Function calls
	Method calls
	Closures
	Function pointers
	Intrinsics
	Generic function calls

	Heap allocations
	Destructors
	Constants
	Static variables
	Standard library

	Future directions
	Finishing the implementation
	Future projects

	Final thoughts
	Thanks

